首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
殿沟泉气氡浓度在汶川地震后经常出现成簇高频震荡异常。应用数据挖掘方法,采用正规化、聚类、特征值计算等方法对氡观测数据和地震目录进行预处理,提取气氡异常、震级、震源深度和地震分区等参数,在此基础上采用贝叶斯网络模型开展殿沟泉氡异常与周边区域地震活动统计关系研究。利用聚类开展的地震分区结果显示与构造分区基本吻合,反映出不同构造单元地震活动的丛集性特征;贝叶斯网络模型结果表明泉点气氡异常与周边地震活动有关,特别是与汶川地震主震区龙门山断裂中段和临近区青川断裂区域的地震活动有关。研究结果有助于了解泉点气氡对周边地震响应的差异性特征,对未来该泉点气氡异常的判断与地震预测有参考意义。为地震前兆异常分析和地震活动分区提供了一种新的技术思路和方法。  相似文献   

2.
In this paper we present the results of a geostructural study on active faults in central Italy, where seismogenic fault zones occur as part of a Quaternary network dissecting and/or inverting earlier tectonic features of the central Apennines fold and thrust belt. In our work we focus on the possibility of using structurally-oriented quantitative analysis of fault fabrics and fluid inclusion studies for assessing the hydraulic properties and scaling relations of fault zones in order to evaluate the role and effects of the interaction between rock and fluids in the brittle deformation of strained crustal rock volumes. The results of our study show that this approach is appropriate for (i) assessing the structural permeability of faulted and fractured rock volumes, (ii) defining the conduit/barrier behaviour of fault zones to fluid flow, (iii) mapping spatial variations of the fluid pressure across different fault segments, (iv) evaluating the maturity of a structural network and the degree of interaction of linked structural discontinuities, (v) assessing fluid composition and the conditions of deformation by means of microstructural and fluid inclusion data.  相似文献   

3.
湖北襄樊—福建罗源一千多公里的剖面上作了23个大地电磁测深点。该剖面穿过不同的地质构造单元。 大地电磁测深的结果清楚地反映了剖面内地壳和上地幔的电性结构特征。例如构造单元的形态、边界、断层位置、地壳和上地幔的高导层发育情况等。结果对于了解该区的深部构造背景、探讨深浅构造之间的关系提供了有益信息  相似文献   

4.
The Ximalin fault is the northwest section of the Ximalin-Shuiquan fault, which is part of the north-edge fault zone of the Yanghe Basin, located in the conjunction of the Zhangjiakou-Bohai fault zone and Shanxi fault-depression basin, and its structural geometry and deformation characteristics can facilitate the research on the interaction of the two tectonic belts. In this paper, data of geological surveys and geophysical exploration are used to study this fault exhaustively, concerning its geometry, structural features and activity as well as its relationship with adjacent faults and rule in the deformation transform of the north-edge fault zone of the Yanghe Basin. The results show that the Ximalin Fault is a strike-slip feature with thrust component. Its vertical slip rates are 0.17mm/a and 0.25~0.38mm/a, and the horizontal slip rate is 0.58~0.67mm/a and 0.50mm/a during the late Middle Pleistocene and Holocene, respectively. It is formed alternately by the NW-trending main faults and secondary NE-trending faults, of which the former is characterized by high-angle reverse with sinistral strike-slip, and the latter shows normal faulting. The two sets of structures have specific structural geometry relations, and the motion manners and deformation characteristics match each other. During the active process of the north-edge fault of the Yanghe Basin, the NW trending Ximalin fault played a role similar to a transform fault in deformation change and stress transfer, and its sinistral strike slip activity accommodated the NE trending normal faulting at the both ends.  相似文献   

5.
The Pengxian blind fault is a typical active fault in the central Longmen Shan front belt. It has important reference value for understanding the growth mode and process of the eastern Tibetan plateau. Because the fault is covered by the thick Upper Cenozoic strata in the western Sichuan Basin, its three-dimensional spatial distribution, structural style and formation mechanism remain unclear. In this paper, based on several high-resolution 3-D seismic reflection profiles, together with near-surface geological data and borehole data, we investigate the structural geometry of the Pengxian blind fault and build a 3-D model based on the results. We analyze the shape and scale of underground spatial distribution of the fault through a three-dimensional fault model. According to the theory of fault-related fold and fold-accommodation fault, this paper discusses the forming mechanism of the Pengxian buried structures. The shallow tectonic deformation in front of Longmen Shan is closely related to the detachment layer of the Middle and Lower Triassic, and this detachment layer f1 horizontally propagates into the Longquanshan anticline in the western Sichuan Basin. The Pengxian buried fault is a typical fault-bend fold and the f1 horizontally propagates into the western Sichuan Basin with a fault slip of 3.5km. The Pengxian blind fault is a high angle(50°~60°)thrust fault developed in the front wing of the kink-band zone, striking NE-SW, with a total length of~50km; But the fault is not connected with the Dayi buried fault in the south section of Longmen Shan. They are two different faults, and this defines the scale of the Pengxian blind fault. This limitation makes sense for analyzing and evaluating the magnitudes of potential earthquake. All above study provides research basis for further analysis of the potential seismic risk in this area. The Pengxian blind fault is parallel to the anticlinal axis with small amount of offset as a fold-accommodation fault. We believe that the fault formation is related to the fold deformation of the fold front limb. The study reveals the geometry, kinematics and formation mechanism of the Pengxian active fault, and provides a basis for further analysis of fault activity and hazard. Therefore, there is little possibility of strong earthquakes at the Pengxian blind fault due to its formation mechanism of the fault which is generally characterized by fold deformation and shortening deformation. In this paper, we discuss the location of Pengxian blind fault in the middle of Longmen Shan and Sichuan Basin. Because the Pengxian buried structures are in the transition area, the shortening amount in Pengxian indicates that the absorption in the basin is quite limited. It reflects the blocking effect of Sichuan Basin. In the study, we find that the relationship between folds, faults and sediments is an important part of tectonic interpretation; the theory of fault-related fold and fold-accommodation fault is well used for analysis. This would have great significance for the study of structural deformation, which can help to build a three-dimensional model of fault.  相似文献   

6.
地震勘探资料揭示郑州老鸦陈断层特征   总被引:2,自引:1,他引:1  
断层活动性的探测研究是城市地震预测和防震减灾的基础性工作。为了查明郑州老鸦陈断层的位置、性质及其活动性,2006年底,在郑州市北郊横跨老鸦陈断层进行了不同探测深度的浅层地震勘探,通过采用爆破震源和可控震源相结合、不同观测系统参数相结合的工作方法,获得了探测深度30—6000m范围内的地下结构与构造图像。结果表明,老鸦陈断层为一条倾向NE、走向NW的正断层,该断层错断了新第三纪(N)以前的地层,在Q N地层内部没有发现断层引起的地层错断现象。  相似文献   

7.
对2019年在台湾海峡6.2级地震震区布设的N01、NE02测线地震测深剖面的Pg波走时进行层析成像反演,获得测线下方地壳上部二维速度结构。对N01测线单道反射地震测深剖面进行多次波衰减等处理,并与Pg波成像结果进行对比。研究结果表明,采用走时层析成像方法与单道反射地震测深剖面获得沿探测剖面沉积层上地壳基底形态特征等具有较好的对应关系。由于测线穿越多个地质构造单元和多条断裂带,走时层析成像和单道反射地震测深剖面结果综合显示研究区结晶基底面起伏较大,沉积层速度和厚度变化较剧烈,受台湾海峡西部新生代构造活动影响,显示了相应的断裂或不同地质构造单元在上部地壳内的结构特征。  相似文献   

8.
由于活动的青藏高原不断的隆升和推挤作用,在西南向东北的推挤作用和周缘块体的阻挡以及东北缘内部块体挤压形变的作用下,形成了多个走向不同的青藏高原东北缘构造体系.新生代构造变形和地震活动强烈,区内分布多条大型深断裂带.海原断裂是青藏高原东北缘发育的弧形活动断裂带中规模最大、活动最为强烈的一条左旋走滑型断裂带,是重要的大地构造区边界,也是控制现今强震活动的活断层.本文利用2009年完成的高分辨率深地震反射剖面的北段资料,对其进行初步构造解释,揭示出海原断裂带的深部几何形态和其两侧地壳上地幔细结构.结果显示海原断裂并不是简单的陡立或者较缓,其几何形态随着深度变化.在海原断裂之下的Moho并未错断的反射特征显示海原断裂并不是直接错断莫霍面的超壳断裂.海原断裂带及两侧岩石圈结构和构造样式的研究为探讨青藏高原东北缘岩石圈变形机制提供地震学依据.  相似文献   

9.
The Helan Mountains and Yinchuan Basin(HM-YB) are located at the northern end of the North-South tectonic belt,and form an intraplate tectonic deformation zone in the western margin of the North China Craton(NCC).The HM-YB has a complicated history of formation and evolution,and is tectonically active at the present day.It has played a dominant role in the complex geological structure and modern earthquake activities of the region.A 135-km-long deep seismic reflection profile across the HM-YB was acquired in early 2014,which provides detailed information of the lithospheric structure and faulting characteristics from near-surface to various depths in the region.The results show that the Moho gradually deepens from east to west in the depth range of 40-48 km along the profile.Significant differences are present in the crustal structure of different tectonic units,including in the distribution of seismic velocities,depths of intra-crustal discontinuities and undulation pattern of the Moho.The deep seismic reflection profile further reveals distinct structural characteristics on the opposite sides of the Helan Mountains.To the east,The Yellow River fault,the eastern piedmont fault of the Helan Mountains,as well as multiple buried faults within the Yinchuan Basin are all normal faults and still active since the Quaternary.These faults have controlled the Cenozoic sedimentation of the basin,and display a "negative-flower" structure in the profile.To the west,the Bayanhaote fault and the western piedmont fault of the Helan Mountains are east-dipping thrust faults,which caused folding,thrusting,and structural deformation in the Mesozoic stratum of the Helan Mountains uplift zone.A deep-penetrating fault is identified in the western side of the Yinchuan Basin.It has a steep inclination cutting through the middle-lower crust and the Moho,and may be connected to the two groups of faults in the upper crust.This set of deep and shallow fault system consists of both strike-slip,thrust,and normal faults formed over different eras,and provides the key tectonic conditions for the basin-mountains coupling,crustal deformation and crust-mantle interactions in the region.The other important phenomenon revealed from the results of deep seismic reflection profiling is the presence of a strong upper mantle reflection(UMR) at a depth of 82-92 km beneath the HM-YB,indicating the existence of a rapid velocity variation or a velocity discontinuity in that depth range.This is possibly a sign of vertical structural inhomogeneity in the upper mantle of the region.The seismic results presented here provide new clues and observational bases for further study of the deep structure,structural differences among various blocks and the tectonic relationship between deep and shallow processes in the western NCC.  相似文献   

10.
滇东南楔形构造区发震构造背景探讨   总被引:2,自引:4,他引:2       下载免费PDF全文
何宏林 《地震地质》1992,14(3):217-226
滇东南楔形构造区的区域断裂几何结构突出地表现为半棋盘格式。具有区域应力场分界意义的红河断裂,把其它几条断裂限制在其北部,并与小江断裂带构成第一级的半断块。构造区内,曲江断裂被李浩寨断裂限制在其西侧;后者与异龙湖断裂交汇于建水盆地中;建水断裂把黑泥地断裂限制于其东,并与李浩寨断裂构成建水盆地右阶拉分岩桥区,向南终止于山花。 深部构造、区域形变及断裂活动表明该构造区是一个断块挤压隆起构造区。最后,对楔形构造区的地震活动与挤压隆起断块运动的关系作了简要的分析  相似文献   

11.
Geometry,kinematics and evolution of the Tongbai orogenic belt   总被引:2,自引:0,他引:2  
1 Introduction spectively[2,3]. Several tectonic units such as the Bei- The Qinling-Dabie orogenic belt has attracted huaiyang, north Dabie, south Dabie and Susong belts worldwide attention by its very complex and abundant have been recognized in eastern Dabie[4]. Nine tec- geological characters, and has been a “hot point” of tonic units have been recognized in western Dabie and international geological research[1]. A vast amount of a more detailed division has been suggested especially …  相似文献   

12.
Studying the geologic architecture of the Xiong’an New Area will provide important basis for the evaluation of crustal stability, urban planning and infrastructural projects in this region, and it is also of great significance in exploring the occurrence of oil and gas, geothermal, hot dry rock and other resources. The stratigraphic system of the study area is established by using latest high quality seismic reflection and deep borehole data. Characteristics of the major faults developed in the study area are finely depicted with the method of structural analysis. Tectonic evolution of Xiong’an and adjacent areas is reconstructed by using balanced geological cross-section technique. The tectonic activity of the study area is discussed on the basis of the development of secondary faults and the distribution of active earthquakes across the region. This study demonstrates that Xiong’an New Area is located at the transfer zone of the central and northern Jizhong Depression. There are three regional unconformities developed in this area, by which four structural layers are sub-divided. Controlled by the Taihang Mountain piedmont fault, the Daxing fault, the Rongcheng fault and the Niudong fault, the structural framework of the study area is characterized by intervening highs with sags. This structural pattern has an important controlling over the reservoir characteristics, hydrocarbon accumulation and the distribution of geothermal resources and hot dry rock within this region. Rifting in this area began in the early Paleogene, exhibiting typical episodic character and became inactive in Neogene. The development feature of secondary faults along with the distribution of active earthquakes indicate that Xiong’an New Area has been in a relatively stable tectonic setting since the Neogene, while the Baxian Sag and other structural units to the east of it have obviously been in a rather active environment.  相似文献   

13.
The results of studying the near-surface and deep structure of the mud volcano of Mt. Karabetov are presented. Based on direct observations in a specially dug trench and in the natural outcrops, together with the analysis of the structural morphological data, the structural kinematic characteristics are obtained for the fault zone associated with a mud volcano. The displacements of recent soil and overburden, as well as the topographic manifestations testify to the recent high level of mobility of the fault, whereas the natural structural parageneses suggest the primarily tectonic nature of the displacements, which is determined by the regional stress field.  相似文献   

14.
郯庐断裂带鲁苏皖段及邻区地壳速度结构   总被引:9,自引:6,他引:9       下载免费PDF全文
郯庐断裂带是我国东部规模最大的深断裂带.为了揭示该断裂带的深部结构,本文利用江苏、安徽、山东、上海和浙江地震台网记录的近震到时资料,对8700个地震事件重新精确定位,进而开展了多震相地震走时成像法反演地壳速度结构.通过分析郯庐断裂带鲁苏皖段及邻区三维地壳速度结构图像,发现(1)研究区内不同构造块体具有差异明显的地壳速度...  相似文献   

15.
鲜水河断裂带的现今水平形变及构造动态   总被引:2,自引:0,他引:2       下载免费PDF全文
据鲜水河断裂带水平测距的新成果,讨论该带现今构造运动的动态特征。在分析水平形变的基础上,联系表层构造形变和区域背景,探讨地块沿断裂带运动的模式。认为该带的现今运动主要表现为断裂带两侧地块往东南的同向不等速滑动,其地表形变效应则与左旋走滑相一  相似文献   

16.
青藏高原地壳密度变形带及构造分区   总被引:1,自引:1,他引:0       下载免费PDF全文
将区域重力场多尺度刻痕分析用于提取青藏高原地壳变形带的信息,可了解高原内地壳变形带从浅到深的变化和平面分布特征,并对青藏高原主要地体的空间分布定位,为岩石圈研究提供地表地质难以取得的新信息.多尺度脊形化系数的图像刻划不同深度平面上的地壳变形带.青藏高原地壳变形带从上到下由细密逐渐变为粗稀型,而且细密型变形区分布的范围逐渐缩小,到下地壳完全消失.从这种情况可以推测,以垂直地面方向上看,地壳变形带应该是树形的,下地壳粗稀型的变形带为树的主干,而中地壳粗稀型的变形带为树的分枝,上地壳的变形带为树枝的小枝杈.上地壳细密型变形分布区反映了与中新生代地壳缩短变形区的范围,下地壳清晰连续的变形带反映了青藏高原的构造骨架.多尺度边界刻痕系数的图像刻画不同深度平面上的地体边界,下地壳的刻痕边界系数与密度剧烈变化带位置吻合;因此,由多尺度刻痕分析划分地体时同时取得地体密度信息.青藏高原内密度较高的地体包括喜马拉雅地体、克什米亚地体、察隅河地体、柴达木地体、巴颜喀拉地体和羌塘地体.柴达木地体、巴颜喀拉地体和羌塘地体是青藏高原中有壳根的核,而密度最高的克什米亚和察隅河地体在大陆碰撞时不易碎裂,对东西两个构造结的形成起了关键作用.  相似文献   

17.
《Journal of Geodynamics》2010,49(3-5):269-278
The project “Seismic Hazard Assessment for Almaty” has a main objective to improve existing seismic hazard maps for the region of northern Tien Shan and especially for the surroundings of Almaty and to generate a new geodynamic model of the region.In the first step a composite seismic catalogue for the northern Tien Shan region was created, which contains about 20,000 events and is representative for strong earthquakes for the period back to the year 500. For the period of instrumental observation 1911–2006 the catalogue contains data for earthquakes with a body wave magnitude larger than 4. For smaller events with magnitudes up to 2.2 the data are only available since 1980. The composite catalogue was created on the basis of several catalogues from the United States Geologic Survey (USGS), local catalogues from the Kazakh National Data Centre (KNDC) and the USSR earthquake catalogue. Due to the different magnitudes used in several catalogues a magnitude conversion was necessary.Event density maps were created to rate the seismicity in the region and to identify seismic sources. Subsurface fault geometries were constructed using tectonic model which uses fault parallel material flow and is constrained by GPS data. The fault geometry should improve the estimation of the expected seismic sources from seismic density maps.First analysis of the earthquake catalogue and the density maps has shown that nearly all large events are related to fault systems. Annual seismicity distribution maps suggest different processes as the cause for the seismic events. Apart from tectonics, also fluids play a major part in triggering of the earthquakes.Beneath the Issyk-Kul basin the absence of strong seismic activity suggests aseismic sliding at the flat ramp in a ductile crust part and low deformation within the stable Issyk-Kul micro-continent which underthrust the northern ranges of Tien Shan. First results suggest a new partition of the region in tectonic units, whose bounding faults are responsible for most of the seismic activity.  相似文献   

18.
川、滇毗邻地区新构造运动与活动断裂   总被引:3,自引:0,他引:3  
对川、滇毗邻地区新构造运动作区域让运动学研究认为,该区在总体隆升过程中,沿断块间主干活动断裂带的强烈构造运动与断块内部的相对稳定同时并存。依据对重点断裂剖面的观察和年代样品鉴定结果,对区内活断裂的特征及活动时期作了综合归纳,重点阐述了则木河(南段)-小江断裂(北段)的几何学和运动学特征。  相似文献   

19.
郯庐断裂带明光-庐江段遥感特征分析   总被引:2,自引:0,他引:2  
郑颖平  方良好  疏鹏  路硕 《中国地震》2017,33(1):129-140
利用ETM+、KH卫星影像资料,对郯庐断裂带明光-庐江段开展详细的遥感解译工作,分析其构造地貌及几何展布,并结合现场地质调查加以验证。结果表明,郯庐断裂带明光-庐江段的4条主干断裂在遥感影像中均有表现;西支2条断裂北段明显,南段隐伏,断层沿线发育串珠状湖泊、断塞塘、线性陡坎、弧形等构造;东支2条断裂全段影像线性特征均明显,断层通过处地形凹槽带、线性陡坎、刀砍状断层崖等地貌特征极为发育;野外调查发现,在线性影像特征较明显的地方,断层破碎带均发育,有的宽达几十米,且性质变化明显,该段具有多期多次复杂活动特征。综合遥感解译及现场调查研究认为,本文获得了郯庐断裂带明光-庐江段构造地貌特征及地表几何分布,为该区域地震危险性评价提供了依据。  相似文献   

20.
Tectonic inversion is a common phenomenon in island arc settings, especially in back‐arc basins. The reactivation of normal faults as thrusts, triggered by tectonic inversion, produces typical inversion fault‐related folds and thrusts in the hangingwall. These hangingwall inversion geometries are affected by two factors: the geometry of the underlying master fault and the angle of inclined simple shear relative to the regional dip of strata, in the case that the deformation is approximated by simple shear. This study employed numerical simulations to analyse the influence of the antithetic shear angle on the geometry of the hangingwall and displacement along the master fault. The simulation results reveal that a steeply inclined shear vector during extension produces a narrow, steep‐sided half‐graben, whereas a gently inclined shear produces a wide, open basin. After tectonic inversion, a tight anticline is formed under steeply inclined shear, whereas an open anticline is formed under gently inclined shear. Antithetic shear results in reduced total displacement along the master fault, and the greater the angle between the shear direction and the regional dip, the greater the displacement along the master fault. Because the deformation geometry of syn‐extension layers is affected by extension followed by contraction, a change in the shear angle during tectonic inversion produces a wide variety of deformation geometries. Comparison of the simulation results with the results of analogue modelling suggests that the shear angle decreases by 5° during the transition from extension to tectonic inversion and that such a change may be commonly observed in natural geological structures. These results highlight the benefits of numerical simulations, which can be used to readily examine a variety of constraining parameters and thereby lead to a better understanding of the mechanism of hangingwall deformation, avoiding erroneous estimates of the amount of fault displacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号