首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microseismic monitoring is an approach for mapping hydraulic fracturing. Detecting the accurate locations of microseismic events relies on an accurate velocity model. The one‐dimensional layered velocity model is generally obtained by model calibration from inverting perforation data. However, perforation shots may only illuminate the layers between the perforation shots and the recording receivers with limited raypath coverage in a downhole monitoring problem. Some of the microseismic events may occur outside of the depth range of these layers. To derive an accurate velocity model covering all of the microseismic events and locating events at the same time, we apply the cross double‐difference method for the simultaneous inversion of a velocity model and event locations using both perforation shots and microseismic data. The cross double‐difference method could provide accurate locations in both the relative and absolute sense, utilizing cross traveltime differences between P and S phases over different events. At the downhole monitoring scale, the number of cross traveltime differences is sufficiently large to constrain events locations and velocity model as well. In this study, we assume that the layer thickness is known, and velocities of P‐ and S‐wave are inverted. Different simultaneous inversion methods based on the Geiger's, double‐difference, and cross double‐difference algorithms have been compared with the same input data. Synthetic and field data experiments suggest that combining both perforation shots and microseismic data for the simultaneous cross double‐difference inversion of the velocity model and event locations is available for overcoming the trade‐offs in solutions and producing reliable results.  相似文献   

2.
—?The reservoir structure of the Soultz HDR field has been investigated by examining induced microearthquake multiplets. Microseismic events with similar waveforms have been selected from microseismic data obtained during a 1993 hydraulic fracturing experiment. Precise relative arrival times and source locations have been determined by cross-spectrum analysis. The cross-spectrum analysis decreased the residual from 0.75?ms to 0.1?ms. The estimated orientations of the multiplet planes are consistent with fracture orientations detected in Soultz boreholes. A comparison between the stress field and the orientation of structural planes suggests that the structural planes were under a critical condition of frictional slip.  相似文献   

3.
—?The stress state at the Hijiori hot dry rock site was estimated based on the inversion from focal mechanisms of microseismic events induced during hydraulic injection experiments. The best fit stress model obtained by inverting 58 focal mechanisms of seismic events simultaneously indicates that the maximum principal stress σ1 is vertical, while the minimum principal stress σ3 is horizontal and trends north-south. The average misfit between the stress model and all the data is 6.8°. The inversion results show that the average misfit is small enough to satisfy the assumption of homogeneity in the focal mechanism data and that the 95% confidence regions of σ1 and σ3 are well constrained, i.e., they do not overlap, suggesting that the inversion results are acceptable. The stress estimates obtained by the focal mechanism inversion essentially agree with other stress estimates previously obtained. It is therefore concluded that the focal mechanism inversion method provides a useful tool for estimating the stress state. The hypocentral distributions of microseismic events associated with the hydraulic fracturing experiments are distributed around the plane that spreads to almost east–west from the injection wells and declines to the north at a high angle. The vertical orientation and east–west strike of the seismic events are essentially coplanar with the caldera ring-fault structure in the southern portion of the Hijiori Caldera. This indicates that tensile fractures of intact rock were not being created, but pre-existing fractures were being re-opened and developed in the direction of the maximum horizontal principal stress, although microseismic events were caused by shear failures.  相似文献   

4.
Comparison of surface and borehole locations of induced seismicity   总被引:1,自引:0,他引:1  
Monitoring of induced microseismic events has become an important tool in hydraulic fracture diagnostics and understanding fractured reservoirs in general. We compare microseismic event and their uncertainties using data sets obtained with surface and downhole arrays of receivers. We first model the uncertainties to understand the effect of different acquisition geometries on location accuracy. For a vertical array of receivers in a single monitoring borehole, we find that the largest part of the final location uncertainty is related to estimation of the backazimuth. This is followed by uncertainty in the vertical position and radial distance from the receivers. For surface monitoring, the largest uncertainty lies in the vertical position due to the use of only a single phase (usually P‐wave) in the estimation of the event location. In surface monitoring results, lateral positions are estimated robustly and are not sensitive to the velocity model. In this case study, we compare event location solutions from two catalogues of microseismic events; one from a downhole array and the second from a surface array of 1C geophone. Our results show that origin time can be reliably used to find matching events between the downhole and surface catalogues. The locations of the corresponding events display a systematic shift consistent with a poorly calibrated velocity model for downhole dataset. For this case study, locations derived from surface monitoring have less scatter in both vertical and horizontal directions.  相似文献   

5.
The hydrocarbon industry is moving increasingly towards tight sandstone and shale gas resources – reservoirs that require fractures to be produced economically. Therefore, techniques that can identify sets of aligned fractures are becoming more important. Fracture identification is also important in the areas of coal bed methane production, carbon capture and storage (CCS), geothermal energy, nuclear waste storage and mining. In all these settings, stress and pore pressure changes induced by engineering activity can generate or reactivate faults and fractures. P‐ and S‐waves are emitted by such microseismic events, which can be recorded on downhole geophones. The presence of aligned fracture sets generates seismic anisotropy, which can be identified by measuring the splitting of the S‐waves emitted by microseismic events. The raypaths of the S‐waves will have an arbitrary orientation, controlled by the event and geophone locations, meaning that the anisotropy system may only be partly illuminated by the available arrivals. Therefore to reliably interpret such splitting measurements it is necessary to construct models that compare splitting observations with modelled values, allowing the best fitting rock physics parameters to be determined. Commonly, splitting measurements are inverted for one fracture set and rock fabrics with a vertical axis of symmetry. In this paper we address the challenge of identifying multiple aligned fracture sets using splitting measured on microseismic events. We analyse data from the Weyburn CCS‐EOR reservoir, which is known to have multiple fracture sets, and from a hydraulic fracture stimulation, where it is believed that only one set is present. We make splitting measurements on microseismic data recorded on downhole geophone arrays. Our inversion technique successfully discriminates between the single and multiple fracture cases and in all cases accurately identifies the strikes of fracture sets previously imaged using independent methods (borehole image logs, core samples, microseismic event locations). We also generate a synthetic example to highlight the pitfalls that can be encountered if it is assumed that only one fracture set is present when splitting data are interpreted, when in fact more than one fracture set is contributing to the anisotropy.  相似文献   

6.
研究微地震的震源机制,获得压裂区域的破裂方向、尺度和应力状态等信息,在非常规油气开采过程中具有重要意义.对于微震,通常采用剪切位错或者矩张量模型对震源进行描述.本文从其实际发震机制出发,使用了"剪切+张裂"的一般位错点源模型,并基于此模型发展了一种利用全波形信息,通过波形振幅谱相关和初至约束,在频率域求解微震震源机制的方法.该方法适用于地面和井中观测,能够在得到常规震源参数(断层走向、倾角和滑动角)的同时给出裂缝断层剪切和张裂错动的距离信息,更直观体现破裂程度.理论数值测试证明方法有效、可行,在未滤波的情况下,实际数据的波形拟和结果仍较为一致,同时还发现错动距离与应力降等常规破裂参数并不严格相关,说明剪切、张裂错距可作为独立的新参数来定量评估水压致裂效果,指导工程开发进行.  相似文献   

7.
Reservoir reconstructions implemented in unconventional oil and gas exploration usually adopt hydraulic fracturing techniques to inject high-pressure fluid into the reservoir and change its pore-fracture connection structure to enhance production. Hydraulic fracturing changes the reservoir stress and causes the rocks to crack, thus generating microseismic events.One important component of microseismic research is the source mechanism inversion. Through the research on the microseismic focal mechanism, information on the source mechanisms and in-situ stress status variations can be quantitatively revealed to effectively optimize the reservoir reconstruction design for increasing production. This paper reviews the recent progress in hydraulic fracturing induced microseismic focal mechanism research. We summarize their main principles and provide a detailed introduction of the research advances in source modeling, microseismic data synthesis, and focal mechanism inversion. We also discuss the challenges and limitations in the current microseismic focal mechanism research and propose prospects for future research ideas and directions.  相似文献   

8.
We study the stability of source mechanisms inverted from data acquired at surface and near‐surface monitoring arrays. The study is focused on P‐wave data acquired on vertical components, as this is the most common type of acquisition. We apply ray modelling on three models: a fully homogeneous isotropic model, a laterally homogeneous isotropic model and a laterally homogeneous anisotropic model to simulate three commonly used models in inversion. We use geometries of real arrays, one consisting in surface receivers and one consisting in ‘buried’ geophones at the near‐surface. Stability was tested for two of the frequently observed source mechanisms: strike‐slip and dip‐slip and was evaluated by comparing the parameters of correct and inverted mechanisms. We assume these double‐couple source mechanisms and use quantitatively the inversion allowing non‐double‐couple components to measure stability of the inversion. To test the robustness we inverted synthetic amplitudes computed for a laterally homogeneous isotropic model and contaminated with noise using a fully homogeneous model in the inversion. Analogously amplitudes computed in a laterally homogeneous anisotropic model were inverted in all three models. We show that a star‐like surface acquisition array provides very stable inversion up to a very high level of noise in data. Furthermore, we reveal that strike‐slip inversion is more stable than dip‐slip inversion for the receiver geometries considered here. We show that noise and an incorrect velocity model may result in narrow bands of source mechanisms in Hudson's plots.  相似文献   

9.
The focal mechanisms of some one hundred microseismic events induced by various water injections have been determined. Within the same depth interval, numerous stress measurements have been conducted with the HTPF method. When inverted simultaneously, the HTPF data and the focal plane solutions help determine the complete stress field in a fairly large volume of rock (about 15×106 m3). These results demonstrate that hydraulically conductive fault zones are associated with local stress heterogeneities. Some of these stress heterogeneities correspond to local stress concentrations with principal stress magnitudes much larger than those of the regional stress field. They preclude the determination of the regional stress field from the sole inversion of focal mechanisms. In addition to determining the regional stress field, the integrated inversion of focal mechanisms and HTPF data help identify the fault plane for each for each of the focal mechanisms. These slip motions have been demonstrated to be consistent with Terzaghi's effective stress principle and a Coulomb friction law with a friction coefficient ranging from 0.65 to 0.9. This has been used for mapping the pore pressure in the rock mass. This mapping shows that induced seismicity does not outline zones of high flow rate but only zones of high pore pressure. For one fault zone where no significant flow has been observed, the local pore pressure has been found to be larger than the regional minimum principal stress but no hydraulic fracturing has been detected there.  相似文献   

10.
Microseismic monitoring has proven invaluable for optimizing hydraulic fracturing stimulations and monitoring reservoir changes. The signal to noise ratio of the recorded microseismic data varies enormously from one dataset to another, and it can often be very low, especially for surface monitoring scenarios. Moreover, the data are often contaminated by correlated noises such as borehole waves in the downhole monitoring case. These issues pose a significant challenge for microseismic event detection. In addition, for downhole monitoring, the location of microseismic events relies on the accurate polarization analysis of the often weak P‐wave to determine the event azimuth. Therefore, enhancing the microseismic signal, especially the low signal to noise ratio P‐wave data, has become an important task. In this study, a statistical approach based on the binary hypothesis test is developed to detect the weak events embedded in high noise. The method constructs a vector space, known as the signal subspace, from previously detected events to represent similar, yet significantly variable microseismic signals from specific source regions. Empirical procedures are presented for building the signal subspace from clusters of events. The distribution of the detection statistics is analysed to determine the parameters of the subspace detector including the signal subspace dimension and detection threshold. The effect of correlated noise is corrected in the statistical analysis. The subspace design and detection approach is illustrated on a dual‐array hydrofracture monitoring dataset. The comparison between the subspace approach, array correlation method, and array short‐time average/long‐time average detector is performed on the data from the far monitoring well. It is shown that, at the same expected false alarm rate, the subspace detector gives fewer false alarms than the array short‐time average/long‐time average detector and more event detections than the array correlation detector. The additionally detected events from the subspace detector are further validated using the data from the nearby monitoring well. The comparison demonstrates the potential benefit of using the subspace approach to improve the microseismic viewing distance. Following event detection, a novel method based on subspace projection is proposed to enhance weak microseismic signals. Examples on field data are presented, indicating the effectiveness of this subspace‐projection‐based signal enhancement procedure.  相似文献   

11.
During seismic monitoring of hydraulic fracturing treatment, it is very common to ignore the deviations of the monitoring or treatment wells from their assumed positions. For example, a well is assumed to be perfectly vertical, but in fact, it deviates from verticality. This can lead to significant errors in the observed azimuth and other parameters of the monitored fracture‐system geometry derived from microseismic event locations. For common hydraulic fracturing geometries, a 2° deviation uncertainty on the positions of the monitoring or treatment well survey can cause a more than 20° uncertainty of the inverted fracture azimuths. Furthermore, if the positions of both the injection point and the receiver array are not known accurately and the velocity model is adjusted to locate perforations on the assumed positions, several‐millisecond discrepancies between measured and modeled SH‐P traveltime differences may appear along the receiver array. These traveltime discrepancies may then be misinterpreted as an effect of anisotropy, and the use of such anisotropic model may lead to the mislocation of the detected fracture system. The uncertainty of the relative positions between the monitoring and treatment wells can have a cumulative, nonlinear effect on inverted fracture parameters. We show that incorporation of borehole deviation surveys allows reasonably accurate positioning of the microseismic events. In this study, we concentrate on the effects of horizontal uncertainties of receiver and perforation positions. Understanding them is sufficient for treatment of vertical wells, and also necessary for horizontal wells.  相似文献   

12.
The joint source scanning algorithm (SSA) scans locations and focal mechanisms of microseismic events simultaneously. Compared to the traditional source scanning algorithm, it yields much more events with extra information of focal mechanisms. The availability of more events and focal mechanisms make it possible to invert for a 2D gridded stress field. As a byproduct of hydrofracturing monitoring, the method offers a new way to extract stress field as a substitute to other more expensive technologies. This method is applied to a hydraulic fracturing dataset collected from one shale gas production field in the southeast of the Sichuan basin. A damped stress inversion is conducted to obtain a 2D stress field. five hydraulic-fracturing induced fractures can be determined from the result. The events associated with these fractures generally have relatively low stacked energy and are limited to the depth of horizontal well. One existing fault (possibly associated with the axis of the central Sichuan uplift) is also determined and the events associated with the existing fault generally have higher stacked energy and are more densely populated. The existing fault may also serve as a structural boundary where the rocks to the NW side are easier to be fractured while events on the other side are sparse with low stacked energy. The existing fault also divides the stress field into two regimes: the maximum compressional stress field to the NW and SE of the fault line are dominantly in NW-SE and N-S directions, respectively.  相似文献   

13.
In hydraulic fracturing treatments, locating not only hydraulic fractures but also any pre‐existing natural fractures and faults in a subsurface reservoir is very important. Hydraulic fractures can be tracked by locating microseismic events, but to identify the locations of natural fractures, an additional technique is required. In this paper, we present a method to image pre‐existing fractures and faults near a borehole with virtual reverse vertical seismic profiling data or virtual single‐well profiling data (limited to seismic reflection data) created from microseismic monitoring using seismic interferometry. The virtual source data contain reflections from natural fractures and faults, and these features can be imaged by applying migration to the virtual source data. However, the imaging zone of fractures in the proposed method is strongly dependent on the geographic extent of the microseismic events and the location and direction of the fracture. To verify our method, we produced virtual reverse vertical seismic profiling and single‐well profiling data from synthetic microseismic data and compared them with data from real sources in the same relative position as the virtual sources. The results show that the reflection travel times from the fractures in the virtual source data agree well with travel times in the real‐source data. By applying pre‐stack depth migration to the virtual source data, images of the natural fractures were obtained with accurate locations. However, the migrated section of the single‐well profiling data with both real and virtual sources contained spurious fracture images on the opposite side of the borehole. In the case of virtual single‐well profiling data, we could produce correct migration images of fractures by adopting directional redatuming for which the occurrence region of microseismic events is divided into several subdivisions, and fractures located only on the opposite side of the borehole are imaged for each subdivision.  相似文献   

14.
Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green’s function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.  相似文献   

15.
田宵  汪明军  张雄  张伟  周立 《中国地震》2021,37(2):452-462
微地震事件的空间分布可以用来监测水力压裂过程中裂缝的发育情况。因此,震源定位是微震监测中重要的环节。震源定位依赖准确的速度模型,而震源位置和速度模型的耦合易导致线性迭代的同时反演方法陷入局部极小值。邻近算法作为一种非线性全局优化算法,能够最大程度地避免陷入局部最优解。本文将邻近算法应用于单井监测的微震定位和一维速度模型同时反演,首先利用邻近算法搜索一维速度模型,再使用网格搜索方法进行震源定位,并根据定位的走时残差产生新的速度模型,最后通过若干次迭代使其收敛到最优解。理论和实际数据结果均表明该方法能够避免局部最优解,得到较为可靠的震源位置和一维速度模型。  相似文献   

16.
We have developed a method that enables computing double‐couple focal mechanisms with only a few sensors. This method is based on a non‐linear inversion of the P, Sv and Sh amplitudes of microseismic events recorded on a set of sensors. The information brought by the focal mechanism enables determining the geometry of the rupture on the associated geological structure. It also provides a better estimate of the conventional source parameters. Full analysis has been performed on a data set of 15 microseismic events recorded in the brine production field of Vauvert. The microseismic monitoring network consisted of two permanent tools and one temporary borehole string. The majority of the focal mechanisms computed from both permanent tools are similar to those computed from the whole network. This result indicates that the double‐couple focal mechanism determination is reliable for both permanent 3C receivers in this field.  相似文献   

17.
Like most other industrial activities that affect the subsurface, hydraulic fracturing carries the risk of reactivating pre‐existing faults and thereby causing induced seismicity. In some regions, regulators have responded to this risk by imposing traffic light scheme‐type regulations, where fracture stimulation programs must be amended or shut down if events larger than a given magnitude are induced. Some sites may be monitored with downhole arrays and/or dense near‐surface arrays, capable of detecting very small microseismic events. However, such monitoring arrangements will not be logistically or economically feasible at all sites. Instead, operators are using small, sparse arrays of surface seismometers to meet their monitoring obligations. The challenge we address in this paper is to maximise the detection thresholds of such small, sparse, surface arrays so that they are capable of robustly identifying small‐magnitude events whose signal‐to‐noise ratios may be close to 1. To do this, we develop a beamforming‐and‐stacking approach, computing running short‐term/long‐term average functions for each component of each recorded trace (P, SH, and SV), time‐shifting these functions by the expected travel times for a given location, and performing a stack. We assess the effectiveness of this approach with a case study using data from a small surface array that recorded a multi‐well, multi‐stage hydraulic fracture stimulation in Oklahoma over a period of 8 days. As a comparison, we initially used a conventional event‐detection algorithm to identify events, finding a total of 17 events. In contrast, the beamforming‐and‐stacking approach identified a total of 155 events during this period (including the 17 events detected by the conventional method). The events that were not detected by the conventional algorithm had low‐signal‐to‐noise ratios to the extent that, in some cases, they would be unlikely to be identified even by manual analysis of the seismograms. We conclude that this approach is capable of improving the detection thresholds of small, sparse arrays and thus can be used to maximise the information generated when deployed to monitor industrial sites.  相似文献   

18.
李稳  刘伊克  刘保金 《地球物理学报》2016,59(10):3869-3882
井下微震监测获得的地震记录往往包含大量的噪声,记录信噪比很低.有效地震信号的识别与提取是进行后续地震定位等工作之前需要优先解决的问题.经过研究发现,井下水压裂微地震信号具有稀疏分布的特征,而井下环境噪声则具有更多的Gaussian分布特征.为此,本文提出将图像处理领域适宜于稀疏分布信号降噪处理的稀疏码收缩方法应用于井下微震监测数据处理.为解决需要利用与待处理数据中有效信号成分具有相似分布特征的无噪信号序列估算正交基以及计算效率等问题,将原方法与小波变换理论相结合.即通过优选小波基函数作为正交基进行小波变换将信号分解为不同级的小波系数,利用稀疏码收缩方法中对稀疏编码施加的非线性收缩方式作为阈值准则对小波系数进行改造.通过多方面的数值实验证明了该方法在处理地震子波及井下微地震信号方面准确可靠.含噪记录经过处理后有效地震信号的到时、波形、时频谱特征等均能得到良好的识别和恢复.并且该方法具有很强的抗噪能力,当信噪比低至-20~-30db时,仍然能够发挥作用.在处理大量实际井下微震监测数据的过程中,面对多种复杂情况,本方法展现出了计算效率高、计算结果可靠、应用简单等优势,证明了其本身具有实际应用价值,值得进一步的研究和推广.  相似文献   

19.
Microseismic monitoring in the oil and gas industry commonly uses migration‐based methods to locate very weak microseismic events. The objective of this study is to compare the most popular migration‐based methods on a synthetic dataset that simulates a strike‐slip source mechanism event with a low signal‐to‐noise ratio recorded by surface receivers (vertical components). The results show the significance of accounting for the known source mechanism in the event detection and location procedures. For detection and location without such a correction, the ability to detect weak events is reduced. We show both numerically and theoretically that neglecting the source mechanism by using only absolute values of the amplitudes reduces noise suppression during stacking and, consequently, limits the possibility to retrieve weak microseismic events. On the other hand, even a simple correction to the data polarization used with otherwise ineffective methods can significantly improve detections and locations. A simple stacking of the data with a polarization correction provided clear event detection and location, but even better results were obtained for those data combined with methods that are based on semblance and cross‐correlation.  相似文献   

20.
沁水盆地南部煤层气储层压裂过程数值模拟研究   总被引:4,自引:1,他引:3       下载免费PDF全文
储层改造是煤层气井提高产能的重要措施,水力压裂是煤层气储层改造的重要方法.为研究煤层气储层压裂过程及其天然裂缝对煤储层压裂时破裂压力的影响,本文以山西沁水盆地南部高煤级煤矿区为研究区,运用有限元数值模拟方法,计算不同地应力条件下、裂缝处于不同位置时煤储层的破裂压力.结果表明:(1)不同类型地应力场对破裂压力的影响不同.对于均匀应力场,破裂压力随着围压的增大而增大,其增幅约为围压的两倍;对于非均匀应力场,当一个水平主应力不变时,破裂压力会随着水平主应力差的增加而减少;(2)如果地应力条件不变,煤储层破裂压力随着天然裂缝与最大水平主应力方向夹角的增加而增加,水平主应力差越大煤储层破裂压力增幅也越大;(3)在有天然裂隙的地层中进行压裂,当天然裂缝的方位不同时压裂裂缝既可能是沿着天然裂缝扩展的裂缝,也可能是压裂过程中产生的新裂缝,因此天然裂缝的方位对破裂压力具有一定的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号