首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monitoring of induced seismicity is gaining importance in a broad range of industrial operations from hydrocarbon reservoirs to mining to geothermal fields. Such passive seismic monitoring mainly aims at identifying fractures, which is of special interest for safety and productivity reasons. By analysing shear‐wave splitting it is possible to determine the anisotropy of the rock, which may be caused by sedimentary layering and/or aligned fractures, which in turn offers insight into the state of stress in the reservoir. We present a workflow strategy for automatic and effective processing of passive microseismic data sets, which are ever increasing in size. The automation provides an objective quality control of the shear‐wave splitting measurements and is based on characteristic differences between the two independent eigenvalue and cross‐correlation splitting techniques. These differences are summarized in a quality index for each measurement, allowing identification of an appropriate quality threshold. Measurements above this threshold are considered to be of good quality and are used in further interpretation. We suggest an automated inversion scheme using rock physics theory to test for best correlation of the data with various combinations of fracture density, its strike and the background anisotropy. This fully automatic workflow is then tested on a synthetic and a real microseismic data set.  相似文献   

2.
The study of seismic anisotropy in exploration seismology is gaining interest as it provides valuable information about reservoir properties and stress directions. In this study we estimate anisotropy in a petroleum field in Oman using observations of shear‐wave splitting from microseismic data. The data set was recorded by arrays of borehole geophones deployed in five wells. We analyse nearly 3400 microearthquakes, yielding around 8500 shear‐wave splitting measurements. Stringent quality control reduces the number of reliable measurements to 325. Shear‐wave splitting modelling in a range of rock models is then used to guide the interpretation. The difference between the fast and slow shear‐wave velocities along the raypath in the field ranges between 0–10% and it is controlled both by lithology and proximity to the NE‐SW trending graben fault system that cuts the field formations. The anisotropy is interpreted in terms of aligned fractures or cracks superimposed on an intrinsic vertical transversely isotropic (VTI) rock fabric. The highest magnitudes of anisotropy are within the highly fractured uppermost unit of the Natih carbonate reservoir. Anisotropy decreases with depth, with the lowest magnitudes found in the deep part of the Natih carbonate formation. Moderate amounts of anisotropy are found in the shale cap rock. Anisotropy also varies laterally with the highest anisotropy occurring either side of the south‐eastern graben fault. The predominant fracture strikes, inferred from the fast shear‐wave polarizations, are consistent with the trends of the main faults (NE‐SW and NW‐SE). The majority of observations indicate subvertical fracture dip (>70° ). Cumulatively, these observations show how studies of shear‐wave splitting using microseismic data can be used to characterize fractures, important information for the exploitation of many reservoirs.  相似文献   

3.
Azimuthal anisotropy in rocks can result from the presence of one or more sets of partially aligned fractures with orientations determined by the stress history of the rock. A shear wave propagating in an azimuthally anisotropic medium splits into two components with different polarizations if the source polarization is not aligned with the principal axes of the medium. For vertical propagation of shear waves in a horizontally layered medium containing vertical fractures, the shear‐wave splitting depends on the shear compliance of the fractures, but is independent of their normal compliance. If the fractures are not perfectly vertical, the shear‐wave splitting also depends on the normal compliance of the fractures. The normal compliance of a fluid‐filled fracture decreases with increasing fluid bulk modulus. For dipping fractures, this results in a decrease in shear‐wave splitting and an increase in shear‐wave velocity with increasing fluid bulk modulus. The sensitivity of the shear‐wave splitting to fluid bulk modulus depends on the interconnectivity of the fracture network, the permeability of the background medium and on whether the fracture is fully or partially saturated.  相似文献   

4.
Comparison of surface and borehole locations of induced seismicity   总被引:1,自引:0,他引:1  
Monitoring of induced microseismic events has become an important tool in hydraulic fracture diagnostics and understanding fractured reservoirs in general. We compare microseismic event and their uncertainties using data sets obtained with surface and downhole arrays of receivers. We first model the uncertainties to understand the effect of different acquisition geometries on location accuracy. For a vertical array of receivers in a single monitoring borehole, we find that the largest part of the final location uncertainty is related to estimation of the backazimuth. This is followed by uncertainty in the vertical position and radial distance from the receivers. For surface monitoring, the largest uncertainty lies in the vertical position due to the use of only a single phase (usually P‐wave) in the estimation of the event location. In surface monitoring results, lateral positions are estimated robustly and are not sensitive to the velocity model. In this case study, we compare event location solutions from two catalogues of microseismic events; one from a downhole array and the second from a surface array of 1C geophone. Our results show that origin time can be reliably used to find matching events between the downhole and surface catalogues. The locations of the corresponding events display a systematic shift consistent with a poorly calibrated velocity model for downhole dataset. For this case study, locations derived from surface monitoring have less scatter in both vertical and horizontal directions.  相似文献   

5.
We investigate fracture‐induced attenuation anisotropy in a cluster of events from a microseismic dataset acquired during hydraulic fracture stimulation. The dataset contains 888 events of magnitude ?3.0 to 0.0. We use a log‐spectral‐amplitude‐ratio method to estimate change in over a half‐hour time period where fluid is being injected and an increase in fracturing from S‐wave splitting analysis has been previously inferred. A Pearson's correlation analysis is used to assess whether or not changes in attenuation with time are statistically significant. P‐waves show no systematic change in during this time. In contrast, S‐waves polarised perpendicular to the fractures show a clear and statistically significant increase with time, whereas S‐waves polarised parallel to the fractures show a weak negative trend. We also compare between the two S‐waves, finding an increase in with time. A poroelastic rock physics model of fracture‐induced attenuation anisotropy is used to interpret the results. This model suggests that the observed changes in t* are related to an increase in fracture density of up to 0.04. This is much higher than previous estimates of 0.025 ± 0.002 based on S‐wave velocity anisotropy, but there is considerably more scatter in the attenuation measurements. This could be due to the added sensitivity of attenuation measurement to non‐aligned fractures, fracture shape, and fluid properties. Nevertheless, this pilot study shows that attenuation measurements are sensitive to fracture properties such as fracture density and aspect ratio.  相似文献   

6.
地震各向异性——多组裂隙对横波偏振的影响   总被引:10,自引:2,他引:10       下载免费PDF全文
通过对多分量地震资料的分析,我们发现随着频率的增加横波分裂时差减小.对于深部接收的VSP数据来说快横波的偏振方向保持不变,而对于浅层接收的VSP数据来说偏振方向却存在一个最大可以达到20°的旋转.尽管多尺度随机分布微裂隙岩石物理模型已经成功地模拟并解释了横波分裂时差随频率变化的现象,却不能解释与频率相关的横波分裂.据推测,如果微裂隙的排列方向和大裂隙的排列方向不同,利用低频信息获得的偏振方向将指示裂隙主方向,而利用高频信息获得的偏振方向则指示微裂隙方向.在背景多孔隙介质中存在多组裂隙的情况下,推导出垂直入射条件下横波偏振方向的解析式,给出了系统研究横波在介质中传播的方法.研究结果表明,横波偏振方向会随着频率的变化而变化,并且在入射方位、角度一定的条件下,是裂隙方位和密度的函数,这些认识可能有助于揭示观测到的、依赖频率变化的横波偏振现象.  相似文献   

7.
The existence of aligned fractures in fluid-saturated rocks leads to obvious attenuation anisotropy and velocity anisotropy. Attenuation anisotropy analysis can be applied to estimate fracture density and scale, which provide important information for reservoir identification. This paper derives P-wave attenuation anisotropy in the ATI media where the symmetry axis is in the arbitrary direction theoretically and modifies the spectral ratio method to measure attenuation anisotropy in the ATI media, thus avoiding a large measurement error when applied to wide azimuth or full azimuth data. Fracture dip and azimuth can be estimated through attenuation anisotropy analysis. For small-scale fractures, fracture scale and fracture density can be determined with enhanced convergence if velocity and attenuation information are both used. We also apply the modified spectralratio method to microseismic field data from an oilfield in East China and extract the fracture dip through attenuation anisotropy analysis. The result agrees with the microseismic monitoring.  相似文献   

8.
裂缝广泛分布于地球介质中并且具有多尺度的特点,裂缝尺度对于油气勘探和开发有着重要的意义.本文制作了一组含不同长度裂缝的人工岩样,其中三块含裂缝岩样中的裂缝直径分别为2 mm、3 mm和4 mm,裂缝的厚度都约为0.06 mm,裂缝密度大致相同(分别为4.8%、4.86%和4.86%).在岩样含水的条件下测试不同方向上的纵横波速度,实验结果表明,虽然三块裂缝岩样中的裂缝密度大致相同,但是含不同直径裂缝岩样的纵横波速度存在差异.在各个方向上,含数量众多的小尺度裂缝的岩样中纵横波速度都明显低于含少量的大尺度裂缝的岩样中纵横波速度.尤其是对纵波速度和SV波速度,在不同尺度裂缝岩样中的差异更明显.在含数量多的小尺度裂缝的岩样中纵波各向异性和横波各向异性最高,而含少量的大尺度的裂缝的岩样中的纵波各向异性和横波各向异性较低.实验测量结果与Hudson理论模型预测结果进行了对比分析,结果发现Hudson理论考虑到了裂缝尺度对纵波速度和纵波各向异性的影响,但是忽略了其对横波速度和横波各向异性的影响.  相似文献   

9.
We present laboratory ultrasonic measurements of shear‐wave splitting from two synthetic silica cemented sandstones. The manufacturing process, which enabled silica cementation of quartz sand grains, was found to produce realistic sandstones of average porosity 29.7 ± 0.5% and average permeability 29.4 ± 11.3 mD. One sample was made with a regular distribution of aligned, penny‐shaped voids to simulate meso‐scale fractures in reservoir rocks, while the other was left blank. Ultrasonic shear waves were measured with a propagation direction of 90° to the coincident bedding plane and fracture normal. In the water saturated blank sample, shear‐wave splitting, the percentage velocity difference between the fast and slow shear waves, of <0.5% was measured due to the bedding planes (or layering) introduced during sample preparation. In the fractured sample, shear‐wave splitting (corrected for layering anisotropy) of 2.72 ± 0.58% for water, 2.80 ± 0.58% for air and 3.21 ± 0.58% for glycerin saturation at a net pressure of 40 MPa was measured. Analysis of X‐ray CT scan images was used to determine a fracture density of 0.0298 ± 0.077 in the fractured sample. This supports theoretical predictions that shear‐wave splitting (SWS) can be used as a good estimate for fracture density in porous rocks (i.e., SWS = 100εf, where εf is fracture density) regardless of pore fluid type, for wave propagation at 90° to the fracture normal.  相似文献   

10.
Cross‐hole anisotropic electrical and seismic tomograms of fractured metamorphic rock have been obtained at a test site where extensive hydrological data were available. A strong correlation between electrical resistivity anisotropy and seismic compressional‐wave velocity anisotropy has been observed. Analysis of core samples from the site reveal that the shale‐rich rocks have fabric‐related average velocity anisotropy of between 10% and 30%. The cross‐hole seismic data are consistent with these values, indicating that observed anisotropy might be principally due to the inherent rock fabric rather than to the aligned sets of open fractures. One region with velocity anisotropy greater than 30% has been modelled as aligned open fractures within an anisotropic rock matrix and this model is consistent with available fracture density and hydraulic transmissivity data from the boreholes and the cross‐hole resistivity tomography data. However, in general the study highlights the uncertainties that can arise, due to the relative influence of rock fabric and fluid‐filled fractures, when using geophysical techniques for hydrological investigations.  相似文献   

11.
—?The injection or production of fluids can induce microseismic events in hydrocarbon and geothermal reservoirs. By deploying sensors downhole, data sets have been collected that consist of a few hundred to well over 10,000 induced events. We find that most induced events cluster into well-defined geometrical patterns. In many cases, we must apply high-precision, relative location techniques to observe these patterns. At three sedimentary sites, thin horizontal strands of activity are commonly found within the location patterns. We believe this reflects fracture containment between stratigraphic layers of differing mechanical properties or states of stress. At a massive carbonate and two crystalline sites, combinations of linear and planar features indicate networks of intersecting fractures and allow us to infer positions of aseismic fractures through their influence on the location patterns. In addition, the fine-scale seismicity patterns often evolve systematically with time. At sedimentary sites, migration of seismicity toward the injection point has been observed and may result from slip-induced stress along fractures that initially have little resolved shear. In such cases, triggering events may be critical to generate high levels of seismic activity. At one crystalline site, the early occurrence of linear features that traverse planes of activity indicate permeable zones and possible flow paths within fractures. We hope the continued development of microseismic techniques and refinement of conceptual models will further increase our understanding of fluid behavior and lead to improved resource management in fractured reservoirs.  相似文献   

12.
Although it is believed that natural fracture sets predominantly have near‐vertical orientation, oblique stresses and some other mechanisms may tilt fractures away from the vertical. Here, we examine an effective medium produced by a single system of obliquely dipping rotationally invariant fractures embedded in a transversely isotropic with a vertical symmetry axis (VTI) background rock. This model is monoclinic with a vertical symmetry plane that coincides with the dip plane of the fractures. Multicomponent seismic data acquired over such a medium possess several distinct features that make it possible to estimate the fracture orientation. For example, the vertically propagating fast shear wave (and the fast converted PS‐wave) is typically polarized in the direction of the fracture strike. The normal‐moveout (NMO) ellipses of horizontal reflection events are co‐orientated with the dip and strike directions of the fractures, which provides an independent estimate of the fracture azimuth. However, the polarization vector of the slow shear wave at vertical incidence does not lie in the horizontal plane – an unusual phenomenon that can be used to evaluate fracture dip. Also, for oblique fractures the shear‐wave splitting coefficient at vertical incidence becomes dependent on fracture infill (saturation). A complete medium‐characterization procedure includes estimating the fracture compliances and orientation (dip and azimuth), as well as the Thomsen parameters of the VTI background. We demonstrate that both the fracture and background parameters can be obtained from multicomponent wide‐azimuth data using the vertical velocities and NMO ellipses of PP‐waves and two split SS‐waves (or the traveltimes of PS‐waves) reflected from horizontal interfaces. Numerical tests corroborate the accuracy and stability of the inversion algorithm based on the exact expressions for the vertical and NMO velocities.  相似文献   

13.
—For small-scale microseismic events, the source sizes provided by shear models are unrealistically large when compared to visual observations of rock fractures near underground openings. A detailed analysis of the energy components in data from a mine-by experiment and from some mines showed that there is a depletion of S-wave energy for events close to the excavations, indicating that tensile cracking is the dominant mechanism in these microseismic events.¶In the present study, a method is proposed to estimate the fracture size from microseismic measurements. The method assumes tensile cracking as the dominant fracture mechanism for brittle rocks under compressive loads and relates the fracture size to the measured microseismic energy. With the proposed method, more meaningful physical fracture sizes can be obtained and this is demonstrated by an example on data from an underground excavation with detailed, high-quality microseismic records.  相似文献   

14.
The dependence of shear‐wave splitting in fractured reservoirs on the properties of the filling fluid may provide a useful attribute for identifying reservoir fluids. If the direction of wave propagation is not perpendicular or parallel to the plane of fracturing, the wave polarized in the plane perpendicular to the fractures is a quasi‐shear mode, and therefore the shear‐wave splitting will be sensitive to the fluid bulk modulus. The magnitude of this sensitivity depends upon the extent to which fluid pressure can equilibrate between pores and fractures during the period of the deformation. In this paper, we use the anisotropic Gassmann equations and existing formulations for the excess compliance due to fracturing to estimate the splitting of vertically propagating shear waves as a function of the fluid modulus for a porous medium with a single set of dipping fractures and with two conjugate fracture sets, dipping with opposite dips to the vertical. This is achieved using two alternative approaches. In the first approach, it is assumed that the deformation taking place is quasi‐static: that is, the frequency of the elastic disturbance is low enough to allow enough time for fluid to flow between both the fractures and the pore space throughout the medium. In the second approach, we assume that the frequency is low enough to allow fluid flow between a fracture set and the surrounding pore space, but high enough so that there is not enough time during the period of the elastic disturbance for fluid flow between different fracture sets to occur. It is found that the second approach yields a much stronger dependence of shear‐wave splitting on the fluid modulus than the first approach. This is a consequence of the fact that at higher wave frequencies there is not enough time for fluid pressure to equilibrate and therefore the elastic properties of the fluid have a greater effect on the magnitude of the shear‐wave splitting.  相似文献   

15.
In hydraulic fracturing treatments, locating not only hydraulic fractures but also any pre‐existing natural fractures and faults in a subsurface reservoir is very important. Hydraulic fractures can be tracked by locating microseismic events, but to identify the locations of natural fractures, an additional technique is required. In this paper, we present a method to image pre‐existing fractures and faults near a borehole with virtual reverse vertical seismic profiling data or virtual single‐well profiling data (limited to seismic reflection data) created from microseismic monitoring using seismic interferometry. The virtual source data contain reflections from natural fractures and faults, and these features can be imaged by applying migration to the virtual source data. However, the imaging zone of fractures in the proposed method is strongly dependent on the geographic extent of the microseismic events and the location and direction of the fracture. To verify our method, we produced virtual reverse vertical seismic profiling and single‐well profiling data from synthetic microseismic data and compared them with data from real sources in the same relative position as the virtual sources. The results show that the reflection travel times from the fractures in the virtual source data agree well with travel times in the real‐source data. By applying pre‐stack depth migration to the virtual source data, images of the natural fractures were obtained with accurate locations. However, the migrated section of the single‐well profiling data with both real and virtual sources contained spurious fracture images on the opposite side of the borehole. In the case of virtual single‐well profiling data, we could produce correct migration images of fractures by adopting directional redatuming for which the occurrence region of microseismic events is divided into several subdivisions, and fractures located only on the opposite side of the borehole are imaged for each subdivision.  相似文献   

16.
Finite-difference modelling of S-wave splitting in anisotropic media   总被引:4,自引:0,他引:4  
We have implemented a 3D finite‐difference scheme to simulate wave propagation in arbitrary anisotropic media. The anisotropic media up to orthorhombic symmetry were modelled using a standard staggered grid scheme and beyond (monoclinic and triclinic) using a rotated staggered grid scheme. The rationale of not using rotated staggered grid for all types of anisotropic media is that the rotated staggered grid schemes are more expensive than standard staggered grid schemes. For a 1D azimuthally anistropic medium, we show a comparison between the seismic data generated by our finite‐difference code and by the reflectivity algorithm; they are in excellent agreement. We conducted a study on zero‐offset shear‐wave splitting using the finite‐difference modelling algorithm using the rotated staggered grid scheme. Our S‐wave splitting study is mainly focused on fractured media. On the scale of seismic wavelenghts, small aligned fractures behave as an equivalent anisotropic medium. We computed the equivalent elastic properties of the fractures and the background in which the fractures were embedded, using low‐frequency equivalent media theories. Wave propagation was simulated for both rotationally invariant and corrugated fractures embedded in an isotropic background for one, or more than one, set of fluid‐filled and dry fractures. S‐wave splitting was studied for dipping fractures, two vertical non‐orthogonal fractures and corrugated fractures. Our modelling results confirm that S‐wave splitting can reveal the fracture infill in the case of dipping fractures. S‐wave splitting has the potential to reveal the angle between the two vertical fractures. We also notice that in the case of vertical corrugated fractures, S‐wave splitting is sensitive to the fracture infill.  相似文献   

17.
We present results of processed microseismic events induced by hydraulic fracturing and detected using dual downhole monitoring arrays. The results provide valuable insight into hydraulic fracturing. For our study, we detected and located microseismic events and determined their magnitudes, source mechanisms and inverted stress field orientation. Event locations formed a distinct linear trend above the stimulated intervals. Source mechanisms were only computed for high‐quality events detected on a sufficient number of receivers. All the detected source mechanisms were dip‐slip mechanisms with steep and nearly horizontal nodal planes. The source mechanisms represented shear events and the non‐double‐couple components were very small. Such small, non‐double‐couple components are consistent with a noise level in the data and velocity model uncertainties. Strikes of inverted mechanisms corresponding to the nearly vertical fault plane are (within the error of measurements) identical with the strike of the location trend. Ambient principal stress directions were inverted from the source mechanisms. The least principal stress, σ3, was determined perpendicular to the strike of the trend of the locations, indicating that the hydraulic fracture propagated in the direction of maximum horizontal stress. Our analysis indicated that the source mechanisms observed using downhole instruments are consistent with the source mechanisms observed in microseismic monitoring arrays in other locations. Furthermore, the orientation of the inverted principal components of the ambient stress field is in agreement with the orientation of the known regional stress, implying that microseismic events induced by hydraulic fracturing are controlled by the regional stress field.  相似文献   

18.
Elastic wave propagation and attenuation in porous rock layers with oriented sets of fractures, especially in carbonate reservoirs, are anisotropic owing to fracture sealing, fracture size, fracture density, filling fluid, and fracture strike orientation. To address this problem, we adopt the Chapman effective medium model and carry out numerical experiments to assess the variation in P-wave velocity and attenuation, and the shear-wave splitting anisotropy with the frequency and azimuth of the incident wave. The results suggest that velocity, attenuation, and anisotropy vary as function of azimuth and frequency. The azimuths of the minimum attenuation and maximum P-wave velocity are nearly coincident with the average strike of the two sets of open fractures. P-wave velocity is greater in sealed fractures than open fractures, whereas the attenuation of energy and anisotropy is stronger in open fractures than sealed fractures. For fractures of different sizes, the maximum velocity together with the minimum attenuation correspond to the average orientation of the fracture sets. Small fractures affect the wave propagation less. Azimuth-dependent anisotropy is low and varies more than the other attributes. Fracture density strongly affects the P-wave velocity, attenuation, and shear-wave anisotropy. The attenuation is more sensitive to the variation of fracture size than that of velocity and anisotropy. In the seismic frequency band, the effect of oil and gas saturation on attenuation is very different from that for brine saturation and varies weakly over azimuth. It is demonstrated that for two sets of fractures with the same density, the fast shear-wave polarization angle is almost linearly related with the orientation of one of the fracture sets.  相似文献   

19.
基于地震横波分裂理论的火成岩裂缝检测   总被引:5,自引:5,他引:0       下载免费PDF全文
定向地下裂缝是低渗透率油气藏油气的储集空间和运移通道,对油气的开采有着重要的意义.本文基于横波分裂理论,提出了比值法叠后快、慢横波分离方法,通过分离后的快、慢横波的振幅差异和时间延迟可求取地下介质的裂缝走向方位和密度以及各向异性系数.该方法被应用到松辽盆地某气田对火成岩储层裂缝走向方位和密度进行了检测,检测结果与区域应力场和实钻数据具有较好的一致性.  相似文献   

20.
Distributed acoustic sensing is a growing technology that enables affordable downhole recording of strain wavefields from microseismic events with spatial sampling down to ∼1 m. Exploiting this high spatial information density motivates different detection approaches than typically used for downhole geophones. A new machine learning method using convolutional neural networks is described that operates on the full strain wavefield. The method is tested using data recorded in a horizontal observation well during hydraulic fracturing in the Eagle Ford Shale, Texas, and the results are compared to a surface geophone array that simultaneously recorded microseismic activity. The neural network was trained using synthetic microseismic events injected into real ambient noise, and it was applied to detect events in the remaining data. There were 535 detections found and no false positives. In general, the signal-to-noise ratio of events recorded by distributed acoustic sensing was lower than the surface array and 368 of 933 surface array events were found. Despite this, 167 new events were found in distributed acoustic sensing data that had no detected counterpart in the surface array. These differences can be attributed to the different detection threshold that depends on both magnitude and distance to the optical fibre. As distributed acoustic sensing data quality continues to improve, neural networks offer many advantages for automated, real-time microseismic event detection, including low computational cost, minimal data pre-processing, low false trigger rates and continuous performance improvement as more training data are acquired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号