首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 121 毫秒
1.
建立了适合于带暗支撑剪力墙非线性分析的宏观单元模型,分别用带斜杆的多垂直杆单元模型和模拟框架单元模型对2个带暗支撑剪力墙进行了静力弹塑性分析,给出了模拟框架单元模型的刚度矩阵和杆件非线性力-变形关系,对两种不同单元模型的计算结果进行了对比,结果表明该两种模型能够较好反映带暗支撑剪力墙的弹性和塑性阶段的受力特点。  相似文献   

2.
制作了一个14层的钢筋混凝土筒中筒结构模型,模型比例为1∶10,等效为两自由度体系,进行了6种工况的地震动加速度峰值的拟动力试验,研究了筒中筒结构在地震作用下的动力特性、弹性和弹塑性阶段的地震反应、抗震性能和破坏机理。研究表明,该结构在7度罕遇地震作用下仍处于弹性状态,9度罕遇地震作用下,核心筒除与底板相交处开裂外无其它可见裂缝,而外框筒开裂严重,但结构仍具有较高的承载能力和侧向刚度。实测滞回曲线反映了筒中筒结构具有良好的延性和耗能性能。最后,采用改进了的非线性杆单元模型编写了程序,对筒中筒结构进行了非线性分析。结果表明,位移时程曲线计算值与试验值基本吻合。  相似文献   

3.
中海名都高层住宅结构模型模拟地震振动台试验研究   总被引:3,自引:0,他引:3  
中海名都高层住宅是一结构布置较为复杂的高层建筑。其特点是:底部1~3层是具有落地核心筒的大空间结构,上部4~33层为由四个剪力墙筒单元和作为楼电梯间的剪力墙核心筒组成的剪力墙结构,四个剪力墙筒单元与核心筒由局部楼板连接,上下部通过三层顶的梁式转换层衔接成为整体。作者设计了一个1∶20的结构模型,并对其进行了多种地震动的26种工况下的振动台试验,获得了充分的动力反应信号数据,从结构的宏观整体动力反应和预期地震作用下的受力特点的角度,给出了模型结构的自振特性和输入波下的动力反应,得出了一些有益的结果。试验研究表明,该结构在设防烈度所对应的地震作用下具有良好的抗震性能,在大震作用下仍具有良好的工作能力;中间核心筒和四个剪力墙单元在整个试验过程中具有良好的整体工作能力,并没有出现不稳定的现象。  相似文献   

4.
为研究钢筋砼摩擦耗能支撑框架结构的动力反应性能 ,对其中的摩擦耗能器单元和框架杆单元的单元刚度和力学模型做了分析。钢筋砼摩擦耗能支撑单元由支撑杆单元和钢板—橡胶摩擦耗能器单元组成 ,支撑单元可取空间杆单元 ,摩擦耗能器单元为平面应力矩形单元。摩擦耗能器单元的剪切恢复力曲线为理想的弹塑性曲线 ,根据耗能器单元的力学模型 ,可确定其在每一时刻的刚度 ;框架结构空间杆单元的恢复力模型采用双线型模型 ,根据杆单元的力学模型 ,可确定其在每一时刻的刚度。并利用所编制的程序对十层单榀两跨空间普通框架和摩擦耗能支撑框架在地震作用下进行了弹塑性反应时程分析 ,结果表明耗能支撑框架的顶层最大位移明显小于普通框架  相似文献   

5.
为研究钢筋砼磨擦耗能支撑框架结构的动力反应性能,对其中的磨擦耗能器单元和框加杆单元的单元刚度和力学模型做了分析。钢筋砼磨擦耗能支撑单元由支撑杆单元和钢板-橡胶磨擦耗能器单元组成,支撑单元可取空间杆单元,磨擦耗能器单元为平面应力矩形单元。磨擦耗能器单元的剪切恢复力曲线为理想的弹塑性曲线,根据耗能器单元的力学模型,可确定其在每一时刻的刚度;框架结构空间杆单元的恢复力模型采用双线型模型,根据杆单元的力学模型,可确定其在每一时刻的刚度。并利用所编制的程序对十层单榀两跨空间普通框架和摩擦耗能支持框架在地震作用下进行了弹塑性反应时程分析,结果表明耗能支撑框架的顶层最大位移明显小于普通框架。  相似文献   

6.
多垂直杆单元模型是在钢筋混凝土剪力墙非线性分析中较为常用的一种宏观模型。现有的分析方法不能考虑翼板剪滞效应的影响,然而翼板上正应力非均匀分布必然影响剪力墙承载力的充分发挥。其次现有的分析方法大多不能较好地考虑垂直杆中正应力对剪切刚度的影响。本文在多垂直杆单元模型的基础上进行改进,把垂直杆的轴向刚度和剪切刚度相结合,并引入剪滞位移自由度,摒弃平截面假定的限制,对一工程结构模型的静力分析显示其变形状态符合受力机理,对3片短肢剪力墙模型和1片剪力墙模型进行弹塑性静力加载分析,计算结果与试验结果吻合较好,表明该方法应用可行。  相似文献   

7.
通过改变基本单元的数量m,本文提出的改进框架支撑模型不仅适用于不同层高宽比和材料的剪力墙结构,而且适用于框支、开洞等不同形式的剪力墙结构。通过对框支配筋砌块砌体剪力墙KZW-2子结构拟动力试验的模拟结果表明,改进框架支撑模型能有效地模拟剪力墙结构在地震作用下的弹塑性变形性能。  相似文献   

8.
基于等效拉杆理论和静力弹塑性分析法,对8层钢板剪力墙结构进行了静力推覆分析,在节点铰接和刚接连接形式下,分析了结构层间剪力分配、荷载-位移曲线、塑性铰出现顺序等指标,研究了节点刚度变化对结构整体性能的影响.结果表明:三跨刚接模型中,剪力墙承担约65%水平剪力,钢框架承担约35%,梁柱铰接后承载力降低29%左右.单跨刚接模型中,剪力墙承担约80%水平剪力,钢框架承担约20%,梁柱铰接后承载力降低9%左右.梁柱刚接为双重抗侧力体系,相邻跨框架能提供有效刚度,节点连接形式对结构承载力的影响不容忽视.  相似文献   

9.
本文用墙单元将剪力墙中断的框架-剪力墙结构离散,利用传递矩阵技术探讨此不规则框架-剪力墙结构的地震反应,四阶Runge-Kutta法用来求解用正则坐标写出的对应于第j个振型的运动方程.将得到的3个不同剪力墙高度的钢筋混凝土框架-剪力墙模型结构的固有频率、最大位移反应和基底剪力与振动台的试验结果进行对比,说明本数值方法是正确的、有效的.最后得出了并不是对所有的框架-剪力墙结构都需把其剪力墙延伸到整个结构高度的结论以及用墙单元和传递矩阵技术求解能有效地减少计算单元、取得同样精度的计算结果.  相似文献   

10.
T形短肢剪力墙弹塑性模型及地震反应分析   总被引:9,自引:3,他引:6  
根据短肢剪力墙结构的受力和变形特点,对多竖直杆模型进行了改进,建立了截面位移模型,摒弃了杆模型平截面假定的限制,有效地考虑了剪滞效应和翼缘的影响。利用变分原理导出了T形短肢剪力墙的空间单元刚度矩阵,研制了弹塑性时程分析程序,并输入三种不同的地震动进行了算例分析,计算结果表明,短肢剪力墙结构抗震性能较好,适合于在地震区推广使用。  相似文献   

11.
OpenSEES的剪力墙宏观单元的研究   总被引:3,自引:0,他引:3  
重点研究三维剪力墙单元MVLEM3D的数值模型及计算原理,并采用开源非线性有限元程序OpenSEES进行剪力墙低周往复试验的数值分析,探讨不同单元划分形式对结果的影响。通过二次开发编制了基于OpenSEES的剪力墙结构分析程序SWNA,对不同弹簧个数、不同竖向及水平划分方式,建立剪力墙宏观单元模型进行分析,对比试验结果表明该数值方法能够很好地从宏观上模拟剪力墙弹塑性行为:包括中和轴移动、剪切变形影响、局部塑性状态及破坏机制等。通过单元及弹簧的划分对比,可知该单元可通过比较少的自由度模拟剪力墙结构,节省大量计算时间。对于强非线性分析,增加水平划分可以考虑局部的破坏变形,使骨架曲线下降段明显。因此该单元适用于高层建筑结构的整体弹塑性分析及基于性能的抗震评定。  相似文献   

12.
为研究竖向压应力和高宽比对砖墙体抗震性能的影响,以砖墙体抗震承载力典型试验试件为基础,利用有限元分析软件ANSYS建立适当的空间模型。根据砖墙体的破坏模式和材料性能把墙体划分成块体单元、灰缝单元以及接触单元,为各部分材料选用不同的本构关系模型与破坏准则。并将计算结果与试验结果进行对比,验证文中模型的可适用性。选用经验证后的模型,变换竖向压应力和高宽比,得出相应的结论:墙体的开裂荷载和抗侧承载力随着高宽比的增大明显呈降低的趋势;不同高宽比的墙体,竖向压应力的影响规律不尽相同。  相似文献   

13.
The steel reinforced concrete (SRC) wall consists of structural steel embedded at the boundary elements of a reinforced concrete (RC) wall. The use of SRC walls has gained popularity in the construction of high‐rise buildings because of their superior performance over conventional RC walls. This paper presents a series of quasi‐static tests used to examine the behavior of SRC walls subjected to high axial force and lateral cyclic loading. The SRC wall specimens showed increased flexural strength and deformation capacity relative to their RC wall counterpart. The flexural strength of SRC walls was found to increase with increasing area ratio of embedded structural steel, while the section type of embedded steel did not affect the wall's strength. The SRC walls under high axial force ratio had an ultimate lateral drift ratio of approximately 1.4%. In addition, a multi‐layer shell element model was developed for the SRC walls and was implemented in the OpenSees program. The numerical model was validated through comparison with the test data. The model was able to predict the lateral stiffness, strength and deformation capacities of SRC walls with a reasonable level of accuracy. Finally, a number of issues for the design of SRC walls are discussed, along with a collection and analysis of the test data, including (1) evaluation of flexural strength, (2) calculation of effective flexural stiffness, and (3) inelastic deformation capacity of SRC walls. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Reinforced concrete shear walls are used because they provide high lateral stiffness and resistance to extreme seismic loads. However, with the increase in building height, these walls have become slenderer and hence responsible of carrying larger axial and shear loads. Because 2D/3D finite element inelastic models for walls are still complex and computationally demanding, simplified but accurate and efficient fiber element models are necessary to quickly assess the expected seismic performance of these buildings. A classic fiber element model is modified herein to produce objective results under particular loading conditions of the walls, that is, high axial loads, low axial loads, and nearly constant bending moment. To make it more widely applicable, a shear model based on the modified compression field theory was added to this fiber element. Consequently, this paper shows the formulation of the proposed element and its validation with different experimental results of cyclic tests reported in the literature. It was found that in order to get objective responses in the element, the regularization techniques based on fracture energy had to be modified, and nonlinearities because of buckling and fracture of steel bars, concrete crushing, and strain penetration effects were needed to replicate the experimental cyclic behavior. Thus, even under the assumption of plane sections, which makes the element simple and computationally efficient, the proposed element was able to reproduce the experimental data, and therefore, it can be used to estimate the seismic performance of walls in reinforced concrete buildings. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
采用SAP程序中的Link单元进行了密肋壁板结构非线性时程反应分析。推导了Link单元的刚度矩阵,确定了相对转动中心高度。并结合钢筋混凝土柱轴向恢复力模型和密肋复合墙体水平抗侧恢复力模型,给出了Link单元竖向和水平连接弹簧非线性力-位移关系的计算公式。采用Link单元建立了密肋壁板结构宏观有限元分析模型,并对1/10比例振动台模型试验进行了非线性时程反应分析。结果表明:计算结果与试验结果吻合良好,这说明采用Link单元可以较好的模拟密肋壁板结构的动力非线性行为。  相似文献   

16.
轴压比是剪力墙抗震设计中一个重要的控制因素,它直接关系到剪力墙的抗震性能。简要介绍了钢筋混凝土剪力墙和型钢混凝土剪力墙抗震研究的有关成果,重点介绍了轴压比对剪力墙抗震性能的影响。进行了3个1/3缩尺的剪力墙的抗震性能试验研究,包括1个普通混凝土剪力墙、1个内藏钢框架混凝土组合剪力墙和1个内藏钢桁架混凝土组合剪力墙。试验表明:在高轴压比情况下,内藏钢框架、内藏钢桁架混凝土组合剪力墙的抗震性能比普通混凝土剪力墙明显提高。  相似文献   

17.
Self-centering rocking walls offer the possibility of minimizing repair costs and downtimes, and also nullify the residual drift after seismic events, thanks to their self-centering properties. In this paper, the effect of axial stress ratio on the behavior of monolithic self-centering rocking walls is investigated by utilizing a developed finite element model. To verify the validity of the finite element model, results and observed damage in the model are compared with those of a full-scale wall test. The axial stress ratio is varied from 0.024 to 0.30 while keeping the other structural parameters constant. For qualitative damage evaluation, the observed damage in the model compared with expected damage states of desired performance levels. In order to evaluate the incurred damage quantitatively, the amount of crushing and damage in the wall is calculated by utilizing several ratios (crushing ratio and damage ratio). Furthermore, seismic response factors (i.e., μ, R and Cd) are calculated for different axial stress ratio values. The obtained results showed that, in order to satisfy the requirements of desired performance levels, the maximum axial stress ratio should be approximately within the range of 0.10–0.15. In addition, the maximum overall damage ratio and crushing ratio are suggested to be less than 5%. For axial stress ratio higher than 0.15, the flag-shaped pattern of hysteresis curves completely disappeared and the variation of displacement ductility is less sensitive to axial stress ratio. Considering the maximum axial stress ratio limited to 0.150, values of 4 and 3.5 are conservatively proposed as a period-independent response modification factor and displacement modification factor of the investigated structural wall, respectively.  相似文献   

18.
Distributed plasticity beam elements are commonly used to evaluate limit state demands for performance‐based analysis of reinforced concrete (RC) structures. Strain limits are often preferred to drift limits because they directly relate to damage and are therefore less dependent on member geometry and boundary conditions. However, predicting accurately strain demands still represents a major simulation challenge. Tension shift effects, which induce a linear curvature profile in the plastic hinge region of RC columns and walls, are one of the main causes for the mismatch between experimental and numerical estimates of local level quantities obtained through force‐based formulations. Classical displacement‐based approaches are instead suitable to simulate such linear curvature profile. Unfortunately, they verify equilibrium only on an average sense due to the wrong assumption on the axial displacement field, leading to poor deformation and force predictions. This paper presents a displacement‐based element in which axial equilibrium is strictly verified along the element length. The assumed transversal displacement field ensures a linear curvature profile, connecting accurately global displacement and local strain demands. The proposed finite element is validated against two sets of quasi‐static cyclic tests on RC bridge piers and walls. The results show that curvature and strain profiles for increasing ductility demands are significantly improved when axially equilibrated rather than classical displacement‐based or force‐based elements are used to model the structural members. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
等效框架模型采用宏观模型来模拟砌体墙在平面内的抗震性能。砌体墙的墙柱和墙梁采用同时考虑轴向弯曲和剪切变形的基于力法的纤维截面进行模拟,且两者的连接视为刚性区域。轴向压缩及弯曲效应在截面纤维模型中考虑,而剪切效应由V-γ剪切恢复力模型表达,弯曲和剪切在单元层面进行耦合。通过统计和分析,确定骨架曲线的计算方法,并基于Ibarra-Krawinkler模型提出剪切恢复力模型。通过算例得出:该模型在单调加载和循环加载下的数值计算结果与试验结果均吻合较好。  相似文献   

20.
内置钢板钢筋混凝土组合剪力墙具有良好的抗震性能,目前已在超高层建筑中得到越来越多的应用。采用OpenSees程序对普通钢筋混凝土剪力墙和钢板组合剪力墙试验构件进行模拟分析,验证了建模与分析方法的合理性与准确性,分析结果表明,该方法能够较好地模拟组合剪力墙的弹塑性行为。分析了轴压比和配钢率这两个关键参数对内置钢板组合剪力墙抗震性能的影响。计算结果表明,与普通钢筋混凝土剪力墙相比,内置钢板可以明显提高构件的承载力、延性和滞回耗能;轴压比和配钢率对组合剪力墙的抗震性能有较大影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号