首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In seismic hazard assessment studies, near-surface geophysical prospecting is increasingly used to help in identifying active faults and to constrain seismic deformation parameters (fault offset, recurrence…). In the current study, electrical tomography was used (1) to locate the Trévaresse slow reverse fault (Provence, SE France), the source of the most important seismic event recorded in the 20th century in France and (2) to test electrical tomography's ability to detect faults and tectonic deformation in a complex geological environment. Our study is supported by a detailed geologic and geomorphic field study. In the investigated area, where the geology is made of a succession of folded marl and limestone layers, electrical images are strongly influenced by electrical macro-anisotropy which plays a critical role in this survey, depending on the investigation scale. When resolution (i.e. the smallest target that can be resolved) is larger than the layer thickness (at depth and/or for large electrode spacing), inversion is unable to retrieve the real structure. To successfully interpret these electrical images, in terms of tectonically induced dip variations, we constrain field data interpretation by comparing measured and inverted electrical data with synthetic modelling results and geological data. The synthetic models were hypothetical coarse geological structures determined on the basis of geological/geomorphologic information (e.g. outcropping layers). For shallow depths, when the resolution is smaller or equal to the anisotropy scale, an electrical tomogram yields straightforward interpretation of the subsurface structure. Coupled with numerical modelling, electrical results successfully helped in positioning a trench for fault characterization.  相似文献   

2.
Infrastructure and communication facilities are repeatedly affected by ground deformation in Gharwal Himalaya, India; for effective remediation measures, a thorough understanding of the real reasons for these movements is needed. In this regard, we undertook an integrated geophysical and geotechnical study of the Salna sinking zone close to the Main Central Thrust in Garhwal Himalaya. Our geophysical data include eight combined electrical resistivity tomography (ERT) and induced polarization imaging (IPI) profiles spanning 144–600 m, with 3–10 m electrode separation in the Wenner–Schlumberger configuration, and five micro-gravity profiles with 10–30 m station spacing covering the study region. The ERT sections clearly outline the heterogeneity in the subsurface lithology. Further, the ERT, IPI, and shaliness (shaleyness) sections infer the absence of clayey horizons and slip surfaces at depth. However, the Bouguer gravity analysis has revealed the existence of several faults in the subsurface, much beyond the reach of the majority of ERT sections. These inferred vertical to subvertical faults run parallel to the existing major lineaments and tectonic elements of the study region. The crisscross network of inferred faults has divided the entire study region into several blocks in the subsurface. Our studies stress that the sinking of the Salna village area is presently taking place along these inferred vertical to subvertical faults. The Chamoli earthquake in March 1999 probably triggered seismically induced ground movements in this region. The absence of few gravity-inferred faults in shallow ERT sections may hint at blind faults, which could serve as future source(s) for geohazards in the study region. Soil samples at two sites of study region were studied in a geotechnical laboratory. These, along with stability studies along four slope sections, have indicated the critical state of the study region. Thus, our integrated studies emphasize the crucial role of micro-gravity in finding fine subsurface structure at deeper depth level; supported by ERT and IPI at shallow depth intervals, they can satisfactorily explain the Salna sinking zone close to Lesser Himalaya. The geotechnical studies also lend support to these findings. These integrated studies have yielded a better understanding of the mass-wasting mechanism for the study region.  相似文献   

3.
The Multichannel Analysis of Surface Waves (MASW) is an increasingly used technique for recognition of a shallow geological structure and estimation of geotechnical parameters, e.g., S-wave velocity, layer density, layer thickness, shear modulus, estimated P-wave velocity, and estimated Poisson ratio. MASW surveys were carried out in two limestone quarries in the southern part of Poland. The experimental areas are characterised by a simple geological structure: consolidated Triassic limestone. Measurement profiles were arranged as a shapely six-pointed star. For each survey line, 12 geophones with 2-meter (Deposit 1) and 3-meter (Deposit 2) spacing were applied. The research allowed to compare P- and S-wave velocity changes with the main crack systems in the studied rock masses.  相似文献   

4.
Abstract Ground penetrating radar (GPR) and high‐resolution shallow reflection seismic surveying were carried out to investigate the subsurface geology in and around the Uemachi Fault zone in the Yamato River area, Osaka, Japan. Shallow drilling in the area showed a major displacement event during the middle Pleistocene. The main Uemachi Fault plane could be clearly imaged on the seismic section, except for the most shallow 200 m. Several shallow normal fault planes with less displacement could be detected on both sides of the fault plane. GPR profiles confirmed the presence of several shallow normal faults within the area near the fault zone. These shallow faults could be followed in all of the GPR profiles crossing the fault zone. The integration of seismic section, GPR profiles and drilling data led to a conceptual model that explains the evolution of the Uemachi Fault system. The proposed model suggests the occurrence of several cycles of small vertical displacement along the deep part of the fault plane caused by the regional east–west compressional stress. The ductile nature of the shallow sedimentary cover and the absence of confining pressure in the shallow part allow for a considerable amount of plastic bending before failing in the shallow sedimentary layers. This bending generates stretching force within the shallow sedimentary cover, which in time, along with gravitational force, gives rise to the formation of the swarm of normal faults within the shallow layers near the fault zone. Some of the detected faults extend to a depth of less than 3 m below the ground surface, suggesting that the last tectonic activity along the fault plane may have occurred recently.  相似文献   

5.
The presence of peats and high compressibility inorganic clays within alluvial fills on the left-side tributaries of the Tiber River, close to Rome’s historic center in Italy, is well documented in literature. Nevertheless, few literature data exist until now on the dynamic properties of these deposits by undisturbed bore-hole samples. The Galba test-site was set up to characterise dynamic properties of the alluvial deposits by using lab-tests as well as to derive velocity profiles by seismic noise measurements. These were performed in the Giustiniano Imperatore area located in the Grottaperfetta valley, about 2?km south of Rome’s historic centre. The alluvial deposits filled a paleovalley excavated in the bedrock during the Würm glacial (18–20 ky). The stratigraphic setting of the alluvial body was reconstructed along three geological cross-sections by means of the available logs; seven lithotecnical horizons can be distinguished within the alluvial body, some tens of meters thick, based on both log-stratigraphic data and in-site geotechnical tests. These horizons include peaty layers (T) and high compressibility inorganic clays (AGI), which characterise the alluvial deposits in the Grottaperfetta valley. They do not have direct correlation with the alluvial horizons which constitute the alluvial body of the main Tiber valley in Rome’s historical centre. These alluvial horizons which are distinguished and characterised at the Galba test-site can be regarded as typical of other lateral valleys of the Tiber River in Southern Rome. They are characterised by the presence of similar high compressibility clayey deposits as well as peaty layers up to some meters thick. Undisturbed samples were also obtained at the Galba test-site for dynamic testing via resonant column and cyclic torsional shear tests. In order to attribute dynamic properties to the alluvial body at the Grottaperfetta valley, an extrapolation process was performed based on a detailed engineering-geology model of the alluvial body which was reconstructed along three transversal geological sections of the valley using bore-hole data. Three subsoil profiles, considered representative of the geological setting along the three reconstructed transversal cross sections, were analysed by seismic noise measurements performed specifically to derive S-waves velocity profiles. The results obtained show a very low velocity (<180 m/s) for the layers T and AGI. 1D modelling of seismic shaking was performed by the code Shake91, in order to evaluate the influence of the low-velocity strata on maximum shear strains induced within the alluvial deposits under the maximum expected seismic action. The results of the numerical modelling indicate that the AGI and the T layers play a key role in: (i) concentrating the maximum shear strain along the subsoil profiles, even though the volumetric threshold is never exceeded; (ii) increasing the maximum shear strain along the subsoil profiles; (iii) causing the resonance frequency of the alluvial fill to assume an almost constant value (about 1Hz) which is quite similar to that measured in the main Tiber River valley, despite a significant change in thickness of the alluvial body along the Grottaperfetta valley.  相似文献   

6.
塔里木盆地SHB地区的深部碳酸盐岩缝洞型储层主要发育于断裂破碎带,大多表现为断裂破碎形成的裂缝和后期溶蚀形成相互连通的断溶体。因此,断层的识别与精细评价成为该区缝洞型储层识别评价的基础。考虑到研究区处于沙漠腹部,深部地层的地震反射能量相对较弱,用单一地震属性难以实现断裂带的识别。本文针对研究区地震资料的地质-地球物理特征,提出融合多种地震属性的断层识别与评价方法。①利用地震剖面上“断裂+杂乱反射”特征,识别可能存在的断裂或裂缝带;②运用谱白化和倾角导向滤波方法,拓频并压制地震数据的随机噪声;③用去噪和拓频后的地震数据计算相干体、蚂蚁体等多种地震属性;④融合多种地震属性来识别和评价断层,并用剖面形态和平面切片的组合分析不同断裂系统的形成次序;⑤利用多种地震属性与稀疏脉冲反演结果综合进行缝洞体预测,与实钻结果对比具有良好的一致性。   相似文献   

7.
The seismic hazard and risk analysis for the onshore Groningen gas field requires information about local soil properties, in particular shear-wave velocity (VS). A fieldwork campaign was conducted at 18 surface accelerograph stations of the monitoring network. The subsurface in the region consists of unconsolidated sediments and is heterogeneous in composition and properties. A range of different methods was applied to acquire in situ VS values to a target depth of at least 30 m. The techniques include seismic cone penetration tests (SCPT) with varying source offsets, multichannel analysis of surface waves (MASW) on Rayleigh waves with different processing approaches, microtremor array, cross-hole tomography and suspension P-S logging. The offset SCPT, cross-hole tomography and common midpoint cross-correlation (CMPcc) processing of MASW data all revealed lateral variations on length scales of several to tens of metres in this geological setting. SCPTs resulted in very detailed VS profiles with depth, but represent point measurements in a heterogeneous environment. The MASW results represent VS information on a larger spatial scale and smooth some of the heterogeneity encountered at the sites. The combination of MASW and SCPT proved to be a powerful and cost-effective approach in determining representative VS profiles at the accelerograph station sites. The measured VS profiles correspond well with the modelled profiles and they significantly enhance the ground motion model derivation. The similarity between the theoretical transfer function from the VS profile and the observed amplification from vertical array stations is also excellent.  相似文献   

8.
应用于城市活断层调查的地震方法技术   总被引:22,自引:3,他引:22  
用地震方法探测城市直下型活动断裂是一种不可替代的勘探技术。地震方法能够准确确定断层的位置,但对于断层的地质年代问题,地震方法本身难以解决,然而结合钻孔资料和测区标准地质剖面,根据地震深度剖面,可以定性地(或半定量地)确定反射波组的地质年代。确定城市直下型活动断裂的上断点需要采用高分辨率的地震反射技术,为有效地确定深部断裂的几何特征,特别是确定深浅断裂构造之间的关系,反射地震方法优于折射地震方法。  相似文献   

9.
The Buyuk Menderes Graben is a depression in the Menderes core complex of western Turkey. The region is one of the most rapidly deforming regions of continental crust in the world and has exceptionally high seismic activity. In this study, shallow and deep seismic studies were conducted at the Buyuk Menderes graben. These studies included surface geological mapping and two seismic reflection sections. Detailed modelling was performed with the seismic study. In addition to these, a moving windows power spectrum was applied to the Bouguer gravity profile data of the study area. Since no deep well is available in this area, the geological interpretation of the seismic stratigraphy is based on the correlation with the surface geology, this was combined with the major reflections and the seismic facies observed along the profiles, and, thus, four main seismic units can be distinguished in the basin fill. Structural features of the basin is driven by a complex extensional faults system, consisting of a low-angle, S-dipping Buyuk Menderes detachment and by its synthetic and antithetic splays, bordering the opposite flanks of the basin. As a result of conventional deep seismic reflection sections and gravity data, three layers were defined in the study area. The first layer occurs at a thickness of 6 km, and the second layer is between 13 and 18 km. The third layer is at ~33 km and may also emphasize Moho depth. The Buyuk Menderes graben has three clear reflectors which are base sediments, brittle-ductile transition, Moho and faults that show a half-graben floored by a detachment. The Moho depth is comparable with previous estimates. According to the results obtained, Bouguer gravity and seismic results are very much consistent with each other. It was observed that at the depths determined from seismic and gravity data, the distribution percentage of earthquake focal depths also rises.  相似文献   

10.
This study aimed at the micro-level seismic behavior and zoning of the saline sabkha strata in Jubail industrial area in Eastern Saudi Arabia. It encompasses the evaluation of the site-specific seismic response parameters and the liquefaction potential for various possible subsurface conditions under the probable seismic event(s). The approach to achieve the objectives of this study included the following: analysis of geologic, hydrologic, and geotechnical data of the area; performance of field and laboratory dynamic testing; and dynamic modeling and analysis of the subsurface profiles. The results of the simulation have been used to develop liquefaction potential maps and site-specific spectra of the study area, consisting of ten seismic zones under a range of probable peak horizontal ground acceleration (PHA). Results do not show significant probability of liquefaction of the loose soil layers in the study area at the maximum possible design PHA of 0.035 g; however, liquefaction is anticipated at higher PHA values. Site-specific spectral response resulted in values of S s and S 1 spectral accelerations to be different as compared to those suggested by local standards. The resulting seismic micro-zonation maps and the corresponding parameters are very useful for the stability analysis of the existing and planned structures in the Jubail area.  相似文献   

11.
A joint analysis of down-hole (DH) and multichannel analysis of surface waves (MASW) measurements offers a complete evaluation of shear wave velocity profiles, especially for sites where a strong lateral variability is expected, such as archeological sites. In this complex stratigraphic setting, the high “subsoil anisotropy” (i.e., sharp lithological changes due to the presence of anthropogenic backfill deposits and/or buried man-made structures) implies a different role for DH and MASW tests. This paper discusses some results of a broad experimental program conducted on the Palatine Hill, one of the most ancient areas of the city of Rome (Italy). The experiments were part of a project on seismic microzoning and consisted of 20 MASW and 11 DH tests. The main objective of this study was to examine the difficulties related to the interpretation of the DH and MASW tests and the reliability limits inherent in the application of the noninvasive method in complex stratigraphic settings. As is well known, DH tests provide good determinations of shear wave velocities (Vs) for different lithologies and man-made materials, whereas MASW tests provide average values for the subsoil volume investigated. The data obtained from each method with blind tests were compared and were correlated to site-specific subsurface conditions, including lateral variability. Differences between punctual (DH) and global (MASW) Vs measurements are discussed, quantifying the errors by synthetic comparison and by site response analyses. This study demonstrates that, for archeological sites, VS profiles obtained from the DH and MASW methods differ by more than 15 %. However, the local site effect showed comparable results in terms of natural frequencies, whereas the resolution of the inverted shear wave velocity was influenced by the fundamental mode of propagation.  相似文献   

12.
The oil shale exploration program in Jordan is undertaking great activity in the domain of applied geophysical methods to evaluate bitumen‐bearing rock. In the study area, the bituminous marl or oil shale exhibits a rock type dominated by lithofacies layers composed of chalky limestone, marls, clayey marls, and phosphatic marls. The study aims to present enhancements for oil shale seam detection using progressive interpretation from a one‐dimensional inversion to a three‐dimensional modelling and inversion of ground‐based transient electromagnetic data at an area of stressed geological layers. The geophysical survey combined 58 transient electromagnetic sites to produce geoelectrical structures at different depth slices, and cross sections were used to characterise the horizon of the most likely sites for mining oil shale. The results show valuable information on the thickness of the oil shale seam at 3.7 Ωm, which is correlated to the geoelectrical layer between 2‐ and 4 ms transient time delays, and at depths ranging between 85 and 105 m. The 300 m penetrated depth of the transient electromagnetic soundings allows the resolution of the main geological units at narrow resistivity contrast and the distinction of the main geological structures that constrain the detection of the oil shale seam. This geoelectrical layer at different depth slices illustrates a localised oil shale setting and can be spatially correlated with an area bounded by fold and fault systems. Also, three‐dimensional modelling and inversion for synthetic and experimental data are introduced at the faulted area. The results show the limitations of oil shale imaging at a depth exceeding 130 m, which depends on the near‐surface resistivity layer, the low resistivity contrast of the main lithological units, and the degree of geological detail achieved at a suitable model's misfit value.  相似文献   

13.
The Qian-Gorlos earthquake, which occurred in the Songliao basin in Jilin Province in 1119 AD, was the largest earthquake to occur in NE China before the 1975 Haicheng earthquake. Based on historical records and surface geological investigations, it has been suggested previously that the earthquake epicenter was in the Longkeng area. However, other workers have considered the epicenter to be in the Halamaodu area based on the landslides and faults found in this region. No seismogenic structure has yet been found in either of these two regions. We tried to detect active faults in the urban areas of Songyuan City, where the historical earthquake was probably located. One of the aims of this work was to clarify the seismogenic structure so that the seismic risk in the city could be more accurately evaluated. The area was investigated and analyzed using information from remote sensing and topographic surveys, seismic data from petroleum exploration, shallow seismic profiles, exploratory geological trenches on fault outcrops, and borehole data. The geophysical data did not reveal any evidence of faults cutting through Cretaceous or later strata under the Longkeng scarp, which has been suggested to be structural evidence of the Qian-Gorlos earthquake. The continuous fault surfaces on the back edge of terraces in the Halamaodu area stretch for >3.5 km and were probably formed by tectonic activity. However, results from shallow seismic profiles showed that the faults did not extend downward, with the corresponding deep structure being identified as a gentle kink band. A new reverse fault was found to the west of the two suggested epicenters, which presented as a curvilinear fault extending to the west, and was formed by two groups of NE- and NW-trending faults intersecting the Gudian fault. Three-dimensional seismic and shallow seismic data from petroleum exploration revealed its distinct spatial distribution and showed that the fault may cut through Late Quaternary strata. Exploration boreholes and later geomorphological studies provided further proof of this. Based on these results and analysis, the Gudian fault was confirmed as having been an active fault since the Late Quaternary, with the possibility of earthquakes of magnitude >7 in the future. The Qian-Gorlos earthquake was most probably the result of breakage on one or two sections of this 66-km-long fault.  相似文献   

14.
Geoelectrical sounding profiles were collected on the southern part of the Fraser River delta, to provide a geophysical estimate of the subsurface structure and geotechnical properties. The differences between emergent and intertidal areas were assessed, and the geoelectric technique was found to be a viable one in an intermittently exposed tidal-flat environment. The subsurface geoelectric structure provides a link between reflection seismic data sets for Georgia Strait and the lower mainland. The survey was intentionally designed to complement the conventional exploration information for this basin and the shallow high-resolution seismic and drilling which focused on the unconsolidated Quaternary section. The electrical models consist of three layers: (I) electrically-conductive, porous, saturated and under-saturated marine silts, sands and gravels, overlying (II) less conductive and more consolidated marine clays, and variably reworked glaciomarine deposits together with weathered clastic sedimentary bedrock, which in turn overlies (III) less porous, more resistive, relatively unweathered bedrock. Estimates of thickness and geotechnical properties are obtained for shallow layers which are not available from either the short boreholes or shallow high-resolution seismic lines. This information is particularly useful in appraising the liquefaction potential of the unconsolidated layers due to earthquake risk.  相似文献   

15.
Subsurface lithology and seismic site classification of Lucknow urban center located in the central part of the Indo-Gangetic Basin (IGB) are presented based on detailed shallow subsurface investigations and borehole analysis. These are done by carrying out 47 seismic surface wave tests using multichannel analysis of surface waves (MASW) and 23 boreholes drilled up to 30 m with standard penetration test (SPT) N values. Subsurface lithology profiles drawn from the drilled boreholes show low- to medium-compressibility clay and silty to poorly graded sand available till depth of 30 m. In addition, deeper boreholes (depth >150 m) were collected from the Lucknow Jal Nigam (Water Corporation), Government of Uttar Pradesh to understand deeper subsoil stratification. Deeper boreholes in this paper refer to those with depth over 150 m. These reports show the presence of clay mix with sand and Kankar at some locations till a depth of 150 m, followed by layers of sand, clay, and Kankar up to 400 m. Based on the available details, shallow and deeper cross-sections through Lucknow are presented. Shear wave velocity (SWV) and N-SPT values were measured for the study area using MASW and SPT testing. Measured SWV and N-SPT values for the same locations were found to be comparable. These values were used to estimate 30 m average values of N-SPT (N 30) and SWV (V s 30 ) for seismic site classification of the study area as per the National Earthquake Hazards Reduction Program (NEHRP) soil classification system. Based on the NEHRP classification, the entire study area is classified into site class C and D based on V s 30 and site class D and E based on N 30. The issue of larger amplification during future seismic events is highlighted for a major part of the study area which comes under site class D and E. Also, the mismatch of site classes based on N 30 and V s 30 raises the question of the suitability of the NEHRP classification system for the study region. Further, 17 sets of SPT and SWV data are used to develop a correlation between N-SPT and SWV. This represents a first attempt of seismic site classification and correlation between N-SPT and SWV in the Indo-Gangetic Basin.  相似文献   

16.
The Yurihara oil and gas field is located on the southern edge of Akita Prefecture, northeastern Japan. In this area, drilling, surface geological surveys and many seismic surveys have been used to investigate the geological structure. Wells drilled into the Nishikurosawa Basalt Group (NBG) of Miocene age found oil and gas reservoirs at depths of 1.5–2 km. Oil and gas are now being produced commercially and further exploration is required in the surrounding areas. However, since the neighbouring areas are covered with young volcanic products from the Chokai volcano, and have a rough topography, the subsurface distribution of the NBG must be investigated using other methods in addition to seismic reflection. According to the well data, the resistivity of the NBG is comparatively higher than that of the overlying sedimentary formations, and therefore the magnetotelluric (MT) method is expected to be useful for the estimation of the distribution of the NBG. An MT survey was conducted along three survey lines in this area. Each line trended east–west, perpendicular to the regional geological strike, and was composed of about 25 measurement sites. Induction vectors evaluated from the magnetic field show that this area has a two-dimensional structure. The evaluated resistivity sections are in agreement with the log data. In conclusion, we were able to detect resistive layers (the NBG) below conductive layers. The results indicate that the NBG becomes gradually less resistive from north to south. In the centre of the northern line, an uplifted resistive area is interpreted as corresponding to the reservoir. By comparison with a seismic section, we prove the effectiveness of the integration of seismic and MT surveys for the investigation of the morphology and internal structure of the NBG. On other survey lines, the resistive uplifted zones are interpreted as possible prospective areas.  相似文献   

17.
—?The geology of Lisbon is very diversified, with a predominance of cretaceous rocks (basalt and limestone) in the western zone, while east and south it is covered by progressively thicker Tertiary deposits with diverse lithologies (sands, clays, silts, sandstones and limestones) and different geotechnical properties. Lisbon also contains several narrow long valleys, filled with thin alluvial deposits. A set of new geological profiles was drawn, along the east–west direction, 500 meters spaced. These profiles were based on the existing geological maps and complemented with new information collected from recent geotechnical boreholes. Theoretical modeling, using the Thomson–Haskell 1-D approach, was performed for 314 geological columns chosen from these profiles according to a regular grid 500 meters long. The physical parameters were obtained from specialized literature, seismic experiments and laboratory tests. The results are presented as contour maps for the peak frequencies and for the corresponding amplification factors. These results are compared with the microzonation map obtained by microtremor analysis and with the damage distribution observed in past earthquakes.  相似文献   

18.
Integrated geophysical surveys were performed in two sites, Fossa di Fuardo and Terme di San Calogero in Lipari Island, Southern Italy with the intent of the exploration of low-enthalpy geothermal fluids. Both sites show strong geochemical and geologic evidences of hydrothermal activity. The geophysical methods consist of two microgravimetric surveys, two 2D geoelectric profiles, a seismic reflection profile and a five seismic refraction profiles. The seismic methods allowed us to locate the main subsurface seismic discontinuities and to evaluate their geometrical relationships. The gravity field was used to constraint the seismic discontinuities, while the electric prospecting let discriminate more conductive areas, which could correspond to an increase in thermal fluid circulation in the investigated sites.The results obtained by the different geophysical methods are in good agreement and permit the definition of a reliable geo-structural model of the subsurface setting of the two investigated areas. A low-enthalpy geothermal reservoir constituted by a permeable pyroclastic and lava sequence underlying two shallow impermeable formations was found at Fossa del Fuardo. The reservoir is intersected by some sub-vertical faults/fractures that probably play an important role in convoying the thermal water up to the surface. At the other site, Terme di S. Calogero, the geophysical surveys showed that an intense circulation of fluids affects the subsurface of the area. This circulation concentrates along a ENE-trending fault located at a little distance from the thermal resort. The hot fluids may upraise along the fault if the width of the ascent area is smaller than 20 m.  相似文献   

19.
20.
This paper deals with the geometry and kinematics of the active normal faults in northern Umbria, and their relationship with the seismicity observed in the area. In particular, we illustrate the contribution of seismic reflection data (a network of seismic profiles, NNW–SSE and WSW–ENE trending) in constraining at depth the geometry of the different active fault systems and their reciprocal spatial relationships. The main normal fault in the area is the Alto Tiberina fault, NNW trending and ENE dipping, producing a displacement of about 5 km, and generating a continental basin (Val Tiberina basin), infilled by up to 1500 m with Upper Pliocene–Quaternary deposits. The fault has a staircase trajectory, and can be traced on the seismic profiles to a depth of about 13 km. A set of WSW-dipping, antithetic faults can be recognised on the profiles, the most important of which is the Gubbio fault, bordering an extensional Quaternary basin and interpreted as an active fault based on geological, geomorphologic and seismological evidence. The epicentral distribution of the main historical earthquakes is strictly parallel to the general trend of the normal faults. The focal mechanisms of the major earthquakes show a strong similarity with the attitude of the extensional faults, mapped at the surface and recognised on the seismic profiles. These observations demonstrate the connection between seismicity in the area and the activity of the normal faults. Moreover, the distribution of the instrumental seismicity suggests the activity of the Alto Tiberina fault as the basal detachment for the extensional tectonics of the area. Finally, the action of the Alto Tiberina fault was simulated using two dimensional finite element modelling: a close correspondence between the concentration of shear stresses in the model and the distribution of the present earthquakes was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号