首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For coastal areas, given the large and growing concentration of population and economic activity, as well as the importance of coastal ecosystems, sea level rise is one of the most damaging aspects of the warming climate. Huge progress in quantifying the cause of sea level rise and closure of sea level budget for the period since the 1990s has been made mainly due to the development of the global observing system for sea level components and total sea levels. We suggest that a large spread (1.2 ± 0.2–1.9 ± 0.3 mm year?1) in estimates of sea level rise during the twentieth century from several reconstructions demonstrates the need for and importance of the rescue of historical observations from tide gauges, with a focus on the beginning of the twentieth century. Understanding the physical mechanisms contributing to sea level rise and controlling the variability of sea level over the past few 100 years are a challenging task. In this study, we provide an overview of the progress in understanding the cause of sea level rise during the twentieth century and highlight the main challenges facing the interdisciplinary sea level community in understanding the complex nature of sea level changes.  相似文献   

2.
Based on tide gauge observations spanning almost 200 years, homogeneous time series of the mean relative sea level were derived for nine sites at the southern coast of the Baltic Sea. Our regionally concentrated data were complemented by long-term relative sea-level records retrieved from the data base of the Permanent Service for Mean Sea Level (PSMSL). From these records relative sea-level change rates were derived at 51 tide gauge stations for the period between 1908 and 2007. A minimum observation time of 60 years is required for the determination of reliable sea-level rates. At present, no anthropogenic acceleration in sea-level rise is detected in the tide gauge observations in the southern Baltic. The spatial variation of the relative sea-level rates reflects the fingerprint of GIA-induced crustal uplift. Time series of extreme sea levels were also inferred from the tide gauge records. They were complemented by water level information from historic storm surge marks preserved along the German Baltic coast. Based on this combined dataset the incidence and spatial variation of extreme sea levels induced by storm surges were analysed yielding important information for hazard assessments. Permanent GPS observations were used to determine recent crustal deformation rates for 44 stations in the Baltic Sea region. The GPS derived height change rates were applied to reduce the relative sea-level changes observed by tide gauges yielding an estimate for the eustatic sea-level change. For 13 tide gauge-GPS colocation sites a mean eustatic sea-level trend of 1.3 mm/a was derived for the last 100 years.  相似文献   

3.
In this paper we review and update detection and attribution studies in sea level and its major contributors during the past decades. Tide gauge records reveal that the observed twentieth-century global and regional sea level rise is out of the bounds of its natural variability, evidencing thus a human fingerprint in the reported trends. The signal varies regionally, and it partly depends on the magnitude of the background variability. The human fingerprint is also manifested in the contributors of sea level for which observations are available, namely ocean thermal expansion and glaciers’ mass loss, which dominated the global sea level rise over the twentieth century. Attribution studies provide evidence that the trends in both components are clearly dominated by anthropogenic forcing over the second half of the twentieth century. In the earlier decades, there is a lack of observations hampering an improved attribution of causes to the observed sea level rise. At certain locations along the coast, the human influence is exacerbated by local coastal activities that induce land subsidence and increase the risk of sea level-related hazards.  相似文献   

4.
Sea water intrusion by sea-level rise: scenarios for the 21st century   总被引:4,自引:0,他引:4  
This study presents a method to assess the contributions of 21st-century sea-level rise and groundwater extraction to sea water intrusion in coastal aquifers. Sea water intrusion is represented by the landward advance of the 10,000 mg/L iso-salinity line, a concentration of dissolved salts that renders groundwater unsuitable for human use. A mathematical formulation of the resolution of sea water intrusion among its causes was quantified via numerical simulation under scenarios of change in groundwater extraction and sea-level rise in the 21st century. The developed method is illustrated with simulations of sea water intrusion in the Seaside Area sub-basin near the City of Monterey, California (USA), where predictions of mean sea-level rise through the early 21st century range from 0.10 to 0.90 m due to increasing global mean surface temperature. The modeling simulation was carried out with a state-of-the-art numerical model that accounts for the effects of salinity on groundwater density and can approximate hydrostratigraphic geometry closely. Simulations of sea water intrusion corresponding to various combinations of groundwater extraction and sea-level rise established that groundwater extraction is the predominant driver of sea water intrusion in the study aquifer. The method presented in this work is applicable to coastal aquifers under a variety of other scenarios of change not considered in this work. For example, one could resolve what changes in groundwater extraction and/or sea level would cause specified levels of groundwater salinization at strategic locations and times.  相似文献   

5.
In this paper, mean sea level changes in the German Bight, the south-eastern part of the North Sea, are analysed. Records from 13 tide gauges covering the entire German North Sea coastline and the period from 1843 to 2008 have been used to derive high quality relative mean sea level time series. Changes in mean sea level are assessed using non-linear smoothing techniques and linear trend estimations for different time spans. Time series from individual tide gauges are analysed and then ‘virtual station’ time series are constructed (by combining the individual records) which are representative of the German Bight and the southern and eastern regions of the Bight. An accelerated sea level rise is detected for a period at the end of the nineteenth century and for another one covering the last decades. The results show that there are regional differences in sea level changes along the coastline. Higher rates of relative sea level rise are detected for the eastern part of the German Bight in comparison to the southern part. This is most likely due to different rates of vertical land movement. In addition, different temporal behaviour of sea level change is found in the German Bight compared to wider regional and global changes, highlighting the urgent need to derive reliable regional sea level projections for coastal planning strategies.  相似文献   

6.
The sea level change along the Peninsular Malaysia and Sabah–Sarawak coastlines for the 21st century is investigated along the coastal areas of Peninsular Malaysia and Sabah–Sarawak because of the expected climate change during the 21st century. The spatial variation of the sea level change is estimated by assimilating the global mean sea level projections from the Atmosphere–Ocean coupled Global Climate Model/General Circulation Model (AOGCM) simulations to the satellite altimeter observations along the subject coastlines. Using the assimilated AOGCM projections, the sea level around the Peninsular Malaysia coastline is projected to rise with a mean in the range of 0.066 to 0.141 m in 2040 and 0.253 m to 0.517 m in 2100. Using the assimilated AOGCM projections, the sea level around Sabah–Sarawak coastlines is projected to rise with a mean in the range of 0.115 m to 0.291 m in 2040 and 0.432 m to 1.064 m in 2100. The highest sea level rise occurs at the northeast and northwest regions in Peninsular Malaysia and at north and east sectors of Sabah in Sabah–Sarawak coastline. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
This paper provides estimates of rates of change in mean sea level around the English Channel, based on an extensive new hourly sea level data set for the south coast of the UK, derived from data archaeology. Mean sea level trends are found to vary by between 0.8 and 2.3 mm/yr around the Channel. The rates of mean sea level change are calculated by removing the coherent part of the sea level variability from the time series of annual mean sea level before fitting linear trends. The improvement in accuracy gained by using this approach is assessed by comparing trends with those calculated using the more traditional method, in which linear trends are fitted directly to the original records. Removal of the coherent part of the sea level variability allows more precise trends to be calculated from records spanning 30 years. With the traditional approach 50 years is required to obtain the same level of accuracy. Rates of vertical land movement are approximated by subtracting the mean sea level trends from the most recent regional estimate of change in sea level due to oceanographic processes only. These estimated rates are compared to measurements from geological data and advanced geodetic techniques. There is good agreement around most of the UK. However, the rates estimated from the sea level records imply that the geological data suggest too much submergence along the western and central parts of the UK south coast. Lastly, the paper evaluates whether the high rates of mean sea level rise of the last decade are unusual compared to trends observed at other periods in the historical record and finds that they are not.  相似文献   

8.
Sea-Level Rise from the Late 19th to the Early 21st Century   总被引:9,自引:1,他引:8  
We estimate the rise in global average sea level from satellite altimeter data for 1993?C2009 and from coastal and island sea-level measurements from 1880 to 2009. For 1993?C2009 and after correcting for glacial isostatic adjustment, the estimated rate of rise is 3.2 ± 0.4 mm year?1 from the satellite data and 2.8 ± 0.8 mm year?1 from the in situ data. The global average sea-level rise from 1880 to 2009 is about 210 mm. The linear trend from 1900 to 2009 is 1.7 ± 0.2 mm year?1 and since 1961 is 1.9 ± 0.4 mm year?1. There is considerable variability in the rate of rise during the twentieth century but there has been a statistically significant acceleration since 1880 and 1900 of 0.009 ± 0.003 mm year?2 and 0.009 ± 0.004 mm year?2, respectively. Since the start of the altimeter record in 1993, global average sea level rose at a rate near the upper end of the sea level projections of the Intergovernmental Panel on Climate Change??s Third and Fourth Assessment Reports. However, the reconstruction indicates there was little net change in sea level from 1990 to 1993, most likely as a result of the volcanic eruption of Mount Pinatubo in 1991.  相似文献   

9.
Sea level change is an important consequence of climate change due to its impact on society and ecosystems. Analyses of tide-gauge data have indicated that the global sea level has risen during the 20th century and several studies predict that the mean sea level will continue to rise during the 21st century, intensifying coastal hazards worldwide. In Portugal, the Ria de Aveiro is expected to be one of the regions most affected by sea level change.The main aim of this study is to evaluate the potential impacts of the mean sea level change on the hydrodynamics and morphodynamics of the Ria de Aveiro. With this purpose, local mean sea level change was projected for the period 2091-2100 relative to 1980-1999, for different Special Report on Emission Scenarios (SRES) scenarios developed by the Intergovernmental Panel on Climate Change (IPCC). These projections revealed an increase in the mean sea level between 0.28 m under scenario B1 and 0.42 m under scenario A2.The results obtained for sea level rise scenario A2 projection were used to force the morphodynamic model MORSYS2D, previously implemented for the Ria de Aveiro. The modelling results were compared with model forecasts for the present sea level. The residual sediment transport and its balance at the lagoon inlet were computed and analysed for both situations. While the residual sediment transport is generally seaward, sediments tend to deposit inside the inlet due to the weak sediment transport at its mouth. The direction of the residual flux will not change with the sea level rise, but sediment fluxes will intensify, and accretion inside the inlet will increase.The rise in mean sea level will also affect the lagoon hydrodynamics. The tidal prism at the lagoon mouth will increase by about 28% in spring tide. In the lower lagoon only a slight increase of the tidal asymmetry is predicted.  相似文献   

10.
For the purpose of coastal planning and management, especially under changing climatic conditions, enhanced knowledge about the evolution of extreme sea levels in the past, present, and future is required. This paper presents statistical analyses of high seasonal water level percentiles of 13 tide gauges in the German Bight, spanning over a period of up to 109 years throughout the twentieth and twenty-first centuries. Seasonal and annual high percentile time series of water levels were investigated in comparison to the mean sea level (MSL) for changes on seasonal, inter-annual, and decadal timescales. While throughout the first half of the twentieth century extreme water levels generally followed changes in MSL, during the second half of the century, linear extreme sea level trends exceeded those in MSL in the order of 9–64 cm per century. The largest, although insignificant, contribution to the magnitude of these trends occurs in the winter season (January to March), while smaller but, due to the generally lower atmospheric variability, significant changes are observed during spring (April to June). The observed multi-decadal trends are generally in good agreement with multi-decadal trends in the corresponding percentiles of local zonal surface winds. Only small parts of the trends remain unexplained. It is suggested that these remaining trends result from modifications in the local tidal regime. For the aspects of coastal planning, the findings clarify that in the German Bight, in addition to changes in MSL, potential changes in storminess and in the tidal regime significantly contribute to the development of extreme water levels. Since these factors have influenced the characteristic of extremes throughout the recent past, they also have to be taken into account when estimating design water levels for, e.g., dikes (in a warming climate) under changing greenhouse gas emissions.  相似文献   

11.
In this review article, we summarize observations of sea level variations, globally and regionally, during the 20th century and the last 2 decades. Over these periods, the global mean sea level rose at rates of 1.7 mm/yr and 3.2 mm/yr respectively, as a result of both increase of ocean thermal expansion and land ice loss. The regional sea level variations, however, have been dominated by the thermal expansion factor over the last decades even though other factors like ocean salinity or the solid Earth's response to the last deglaciation can have played a role. We also present examples of total local sea level variations that include the global mean rise, the regional variability and vertical crustal motions, focusing on the tropical Pacific islands. Finally we address the future evolution of the global mean sea level under on-going warming climate and the associated regional variability. Expected impacts of future sea level rise are briefly presented.  相似文献   

12.
A recently extended and spatially rich English Channel sea level dataset has been used to evaluate changes in extreme still water levels throughout the 20th century. Sea level records from 18 tide gauges have been rigorously checked for errors and split into mean sea level, tidal and non-tidal components. These components and the interaction between surge and tide have been analysed separately for significant trends before determining changes in extreme sea level. Mean sea level is rising at 0.8–2.3 mm/year, depending on location. There is a small increase (0.1–0.3 mm/year) in the annual mean high water of astronomical tidal origin, relative to mean sea level, and an increase (0.2–0.6 mm/year) in annual mean tidal range. There is considerable intra- and inter-decadal variability in surge intensity with the strongest intensity in the late 1950s. Storm surges show a statistically significant weak negative correlation to the winter North Atlantic Oscillation index throughout the Channel and a stronger significant positive correlation at the boundary with the southern North Sea. Tide–surge interactions increase eastward along the English Channel, but no significant long-term changes in the distribution of tide–surge interaction are evident. In conclusion, extreme sea levels increased at all of the 18 sites, but at rates not statistically different from that observed in mean sea level.  相似文献   

13.
Global mean sea level is a sensitive factor of climate change. Global warming will contribute to worldwide sea‐level rise from thermal expansion of ocean water, melting of glaciers and polar ice. Consideration of global soil erosion, water vapor cycle, and hydraulic actions suggests that soil erosion is another important factor contributing to sea‐level rise in addition to global warming. Much terrestrial sediment flows into the rivers each year but cannot be replenished, resulting in land surface declines. Moreover, sediment flow into rivers and oceans contributes to rising sea level. Ecological protection measure was proposed to prevent rising sea levels caused by soil erosion. This commentary should be useful to attract attention on rising sea levels caused by soil erosion.  相似文献   

14.
The surface mass balance for Greenland and Antarctica has been calculated using model data from an AMIP-type experiment for the period 1979?C2001 using the ECHAM5 spectral transform model at different triangular truncations. There is a significant reduction in the calculated ablation for the highest model resolution, T319 with an equivalent grid distance of ca 40?km. As a consequence the T319 model has a positive surface mass balance for both ice sheets during the period. For Greenland, the models at lower resolution, T106 and T63, on the other hand, have a much stronger ablation leading to a negative surface mass balance. Calculations have also been undertaken for a climate change experiment using the IPCC scenario A1B, with a T213 resolution (corresponding to a grid distance of some 60?km) and comparing two 30-year periods from the end of the twentieth century and the end of the twenty-first century, respectively. For Greenland there is change of 495?km3/year, going from a positive to a negative surface mass balance corresponding to a sea level rise of 1.4?mm/year. For Antarctica there is an increase in the positive surface mass balance of 285?km3/year corresponding to a sea level fall by 0.8?mm/year. The surface mass balance changes of the two ice sheets lead to a sea level rise of 7?cm at the end of this century compared to end of the twentieth century. Other possible mass losses such as due to changes in the calving of icebergs are not considered. It appears that such changes must increase significantly, and several times more than the surface mass balance changes, if the ice sheets are to make a major contribution to sea level rise this century. The model calculations indicate large inter-annual variations in all relevant parameters making it impossible to identify robust trends from the examined periods at the end of the twentieth century. The calculated inter-annual variations are similar in magnitude to observations. The 30-year trend in SMB at the end of the twenty-first century is significant. The increase in precipitation on the ice sheets follows closely the Clausius-Clapeyron relation and is the main reason for the increase in the surface mass balance of Antarctica. On Greenland precipitation in the form of snow is gradually starting to decrease and cannot compensate for the increase in ablation. Another factor is the proportionally higher temperature increase on Greenland leading to a larger ablation. It follows that a modest increase in temperature will not be sufficient to compensate for the increase in accumulation, but this will change when temperature increases go beyond any critical limit. Calculations show that such a limit for Greenland might well be passed during this century. For Antarctica this will take much longer and probably well into following centuries.  相似文献   

15.
The vulnerability to short-term and long-term sea-level rises is particularly high in subsiding deltaic areas, especially in microtidal seas, when surges (the differences between the observed sea heights and the simultaneous astronomical tide) are frequent. At the Grau-de-la-Dent tide-gauge in the Camargue (Rhone delta, France), daily sea-level records are available since 1905. Hourly tide data spanning the period 1979–1995 were obtained through the digitisation of the original paper records: the local harmonic constants and the surges for the whole 20th century have been computed from these hourly observations. It appears that the annual maximum observed sea-level height increases by 4 mm/yr at a rate that is two times faster than the average observed relative sea level. The increasing trend of the annual maximum positive sea surges (+1.9 mm/yr), which is equal to the average relative sea-level rise, is thus responsible for this difference. The most important meteorological factor associated with local sea-surge occurrences is wind blowing from 100° to 120° sectors, which tends to push the water toward the coasts. Since 1961, the frequency and the speed of wind from this sector increased, although with some variability, thus contributing in part to the increase in the frequency and intensity of the surges. Due to the changing hydrodynamics phenomenon in the Camargue, a positive feedback mechanism between extreme marine events and shoreline regression is another factor to explain the sea-surge rise over the long term. The increase in sea-surge frequency and height during the last century is especially of concern in the deltaic area if the near-future global sea-level rise predicted by climate models is also taken into account.  相似文献   

16.
The main regularities in the interaction of tides and storm surges at river mouths are discussed. A study of the Elbe River mouth area is used to describe the processes of interaction of the eustatic sea level rise, tides, surges, and river flow and special features of formation of maximum water levels. As shown, the intensification of cyclonic activity over the Northern Atlantic in the second half of the XX century resulted in more frequent extremely high storm surges at the Elbe River mouth. An assessment is given for possible changes in the regime of tides and surges at the Elbe River mouth in the XXI century, which may be caused by the acceleration of the eustatic sea level rise. The impact of local hydraulic engineering works (diking, dredging, and channel straightening) on maximum water levels within the town of Hamburg is analyzed.  相似文献   

17.
Surge modelling in the eastern Irish Sea: present and future storm impact   总被引:1,自引:0,他引:1  
It is believed that, in the future, the intensity and frequency of extreme coastal flooding events may increase as a result of climate change. The Natural Environment Research Council (NERC) Flood Risk from Extreme Events (FREE) project, Coastal Flooding by Extreme Events and EU FP7 Morphological Impacts and Coastal Risks Induced by Extreme Storm Events project are investigating the flood risks in the eastern Irish Sea, an area that includes most of England’s coastal types. Using a previously modelled and validated historical extreme surge event, in November 1977, we now investigate the changes in peak surge as a result of possible future climate conditions. In order to simulate the surge, we have set up a one-way nested approach, using the Proudman Oceanographic Laboratory Coastal Ocean Modelling System 3D baroclinic model, from a domain covering the whole NW European continental shelf, through to a 1.85 km Irish Sea model; both areas are forced by tides, atmospheric pressure and winds. We use this modelling system to investigate the impact of enhanced wind velocities and increased sea levels on the peak surge elevation and residual current pattern. The results show that sea level rise has greater potential to increase surge levels than increased wind speeds.  相似文献   

18.
The TOPEX/POSEIDON (T/P) satellite altimeter mission has provided estimates of global mean sea level since late 1992 with a precision of approximately 4 mm. Over the first 3.5 years of the mission, T/P has observed a mean sea level rise of +0.5 mm/year when on-board estimates of the instrument drift are employed (and after correcting for a recently discovered software error), and +2.8 mm/year when an additional external tide gauge-based calibration estimate is used. A preliminary estimate of the error in the latter estimate is 1.3 mm/year, however this issue requires more research. Characterization of the observed sea level variations using Empirical Orthogonal Functions (EOFs) indicates that most of the mean sea level rise can be described by a single mode of the EOF expansion. The spatial characteristics of this mode suggests it is related to the El Nino Southern Oscillation (ENSO) phenomena. EOF analysis of sea level variations from the Semtner/Chervin ocean circulation model reveal a nearly identical mode, although its effect on mean sea level is unknown due to a constant volume constraint used in the model. EOF analysis of measured sea surface temperature (SST) variations also show a mode with similar temporal and spatial structure. However, the concentration of the observed sea level rise in this mode does not preclude the possibility that multiple phenomena have contributed to this mode, thus a link between the observed sea level rise and the ENSO phenomena is only weakly suggested. The absolute value of the observed mean sea level rise will depend on refinements currently being made in the instrument calibration techniques. In addition, the possibility of interannual and decadal variations of global mean sea level requires that a much longer time series of satellite altimetry be collected before variations caused by climate change can be unambiguously detected.  相似文献   

19.
Sea surface temperature 1871-2099 in 14 cells around the United Kingdom   总被引:1,自引:0,他引:1  
Monthly sea surface temperature is provided for 14 locations around the UK for a 230 year period. These series are derived from the HadISST1 data set for historical time (1871-1999) and from the HadCM3 climate model for predicted SST (1950-2099). Two adjustments of the forecast data sets are needed to produce confluent SST series: the 50 year overlap is used for a gross adjustment, and a statistical scaling on the forecast data ensures that annual variations in forecast data match those of historical data. These monthly SST series are available on request. The overall rise in SST over time is clear for all sites, commencing in the last quarter of the 20th century. Apart from expected trends of overall warmer mean SST with more southerly latitudes and overall cooler mean SST towards the East, more interesting statistically significant general trends include a greater decadal rate of rise from warmer starting conditions. Annual temperature variation is not affected by absolute temperature, but is markedly greater towards the East. There is no correlation of annual range of SST with latitude, or with present SST values.  相似文献   

20.
The effect of large-scale atmospheric pressure changes on regional mean sea level projections in the German Bight in the twenty-first century are considered. A developed statistical model is applied to climate model data of sea level pressure for the twenty-first century to assess the potential contribution of large-scale atmospheric changes to future sea level changes in the German Bight. Using 78 experiments, an ensemble mean of 1.4-cm rise in regional mean sea level is estimated until the end of the twenty-first century. Changes are somewhat higher for realisations of the special report on emission scenarios (SRES) A1B and A2, but generally do not exceed a few centimeters. This is considerably smaller than the changes expected from steric and self-gravitational effects. Large-scale changes in sea level pressure are thus not expected to provide a substantial contribution to twenty-first century sea level changes in the German Bight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号