首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Longitudinal vibrations of concrete-faced rockfill dams may cause significant compressive stresses and joint openings in the slab panels. The behavior of such dams subjected to longitudinal and vertical vibrations is investigated, based on numerical simulation of the staged construction, reservoir impoundment and seismic shaking. The static analysis uses a hyperbolic model for the rockfill, whereas the seismic analysis uses a nonlinear hysteretic model which accounts for the dynamic properties. A damage plasticity model is used for the reinforced concrete and frictional contact behavior is considered at the base and vertical sides of the concrete panels. The seismic analysis takes into account the flexibility of the canyon rock and potential dynamic rockfill settlements. An existing 150 m–high dam is used to investigate the effect of longitudinal vibrations on the compressive stresses near the slab-to-slab vertical interfaces and the opening of the joints. The effect of dynamic settlements is examined and comparisons are made to the response from upstream/downstream and combined vibrations. The effectiveness of introducing 5 cm-wide cuts at selected vertical joints to reduce slab compression in existing CFRDs is demonstrated. The presented results offer useful insight into the effect of longitudinal vibrations on the seismic behavior of CFRDs.  相似文献   

2.
In this paper the seismic response of a well-documented Chinese rockfill dam, Yele dam, is simulated and investigated employing the dynamic hydro-mechanically (HM) coupled finite element (FE) method. The objective of the study is to firstly validate the numerical model for static and dynamic analyses of rockfill dams against the unique monitoring data on the Yele dam recorded before and during the Wenchuan earthquake. The initial stress state of the dynamic analysis is reproduced by simulating the geological history of the dam foundation, the dam construction and the reservoir impounding. Subsequently, the predicted seismic response of the Yele dam is analysed, in terms of the deformed shape, crest settlements and acceleration distribution pattern, in order to understand its seismic behaviour, assess its seismic safety and provide indication for the application of any potential reinforcement measures. The results show that the predicted seismic deformation of the Yele dam is in agreement with field observations that suggested that the dam operated safely during the Wenchuan earthquake. Finally, parametric studies are conducted to explore the impact of two factors on the seismic response of rockfill dams, i.e. the permeability of materials comprising the dam body and the vertical ground motion.  相似文献   

3.
Rockfill buttressing resting on the downstream face of masonry or concrete gravity dam is often considered as a strengthening method to improve the stability of existing dam for hydrostatic and seismic loads. Simplified methods for seismic stability analysis of composite concrete-rockfill dams are discussed. Numerical analyses are performed using a nonlinear rockfill model and nonlinear dam-rockfill interface behavior to investigate the effects of backfill on dynamic response of composite dams. A typical 35 m concrete gravity dam, strengthened by rockfill buttressing is considered. The results of analyses confirm that backfill can improve the seismic stability of gravity dams by exerting pressure on the dam in opposition to hydrostatic loads. According to numerical analyses results, the backfill pressures vary during earthquake base excitations and the inertia forces of the backfill are the main source for those variations. It is also shown that significant passive (or active) pressure cannot develop in composite dams with a finite backfill width. A simplified model is also proposed for dynamic analysis of composite dam by replacing the backfill with by a series of vertical cantilever shear beams connected to each other and to the dam by flexible links.  相似文献   

4.
The joint between concrete slab and rockfill is designed as welded contact in the classical modeling of concrete-faced rockfill (CFR) dams and earthquake response of the CFR dams is determined by this method. In this study, linear and nonlinear response of Torul CFR Dam including interface element between concrete slab and rockfill were investigated for the duration of strong seismic excitation. The finite element analyses were performed by employing both cases, empty and full reservoir, to research the effect of the reservoir water on the earthquake response of the dam. The reservoir water was modeled with fluid finite elements by the Lagrangian approach. The Drucker-Prager model was used in nonlinear analyses for concrete slab, rockfill and soil materials. According to finite element analyses, displacement and stress components were increased by hydrodynamic pressure. The nonlinear response of the concrete slab was monitored about the peak ground acceleration (pga). This study reveals that the size of sliding zone increases with increasing acceleration amplitudes.  相似文献   

5.
This discussion is based on the paper by Panos Dakoulas [1]. In this paper, the author has presented a comprehensive study on the seismic behavior of tall concrete face rockfill dams in narrow canyons, based on numerical simulation of the staged construction, creep settlements, reservoir impoundment and seismic shaking of the dam. This discussion presents some comments on the input motions for dynamic response analysis, numerical simulated dynamic deformation and the conclusions of that paper, which imply that some aspects need further clarification and/ or improvement.  相似文献   

6.
In this study, the nonlinear seismic analysis of a typical three-dimensional concrete faced rockfill dam is reported. Three components of the Loma Prieta (Gilroy 1 station) earthquake acceleration time history are used as input excitation. The dam under study is considered as if it were located in a prismatic canyon with a trapezoidal cross-section. A nonlinear model for the rockfill material is used, and contact elements with Coulomb friction law are utilized at the slab–rockfill interface. Vertical joints in the face slab are also considered in the finite element model. A substructure method, in which the unbounded soil is modelled by the scaled boundary finite element method (SBFEM), is used to obtain the scattered motion and interaction forces along the canyon. The dam is subjected to spatially variable P, SV, and SH waves, and the effect of dam–foundation interaction and the reservoir water effects are considered. The results are compared with the non-scattered input motion analysis. Results of the analyses indicate that due to applying the scattered motion to the canyon the response of the dam and concrete face slab significantly increases. The reservoir water pressure affects the tensile stresses induced in the face slab by reducing the uplift movement of the concrete panels.Large horizontal axial forces are induced in the face slab due to out-of-phase and out-of-plane motions of the abutments. Although the normal movements of vertical joints are reduced due to the reservoir water confinement, the opening movements are still significant, and the local failure of construction joints is inevitable.  相似文献   

7.
Suitable materials for use as shell of embankment dams are clean coarse-grained soils or natural rockfill. In some sites these materials may not be available at an economic distance from the dam axis. The use of in-situ cohesive soils reinforced with geotextiles as the shell is suggested in this study for such cases. Dynamic behavior of reinforced embankment dam is evaluated through fully coupled nonlinear effective stress dynamic analysis. A practical pore generation model has been employed to incorporate pore pressure build up during cyclic loading. Parametric analyses have been performed to study the effect of reinforcements on the seismic behavior of the reinforced dam. Results showed that reinforcements placed within the embankment reduce horizontal and vertical displacements of the dam as well as crest settlements. Maximum shear strains within the embankment also decreased as a result of reinforcing. Furthermore, it was observed that reinforcements cause amplification in maximum horizontal crest acceleration.  相似文献   

8.
为研究地震波斜入射对高面板坝地震反应的影响,根据地震波动入射理论,采用FORTRAN进行波动荷载的编程计算,并与大型通用有限元软件ADINA相结合,实现基于黏弹性人工边界的地震波斜入射,研究P波和SV波分别以不同角度入射对高面板堆石坝地震反应的影响。结果表明,地震波斜入射时大坝地震动反应与垂直入射时明显不同,常规垂直入射的结果偏于不安全,因此在高面板坝地震反应分析和抗震设计中应考虑地震波斜入射的影响。  相似文献   

9.
深厚库底回填料是影响面板堆石坝动力响应的重要因素之一。为深入研究深厚库底回填料对面板堆石坝动力响应的影响,基于某拟建抽水蓄能电站,采用三维动力有限元分析系统研究其上库面板坝的地震反应,主要包括坝体加速度、面板动力响应、接缝变位情况以及库底防渗土工膜的动应变等。计算结果表明:由于库底回填料的存在,坝体加速度放大效应被明显削弱;面板周边以受拉为主,中部大部分区域受压;垂直缝呈现出周边张开、中间闭合的趋势;土工膜的顺河向和坝轴向的动拉应变皆小于屈服应变,最大应变出现在库底材料分界处,为提高坝体渗透安全性,建议对主堆石区与连接板相接处的回填料进行适当范围换填的处理措施。研究成果可以为类似工程提供参考。  相似文献   

10.
A large mainshock may trigger numerous aftershocks within a short period, and large aftershocks have the potential to cause additional cumulative damage to structures. This paper investigates the effects and potential of aftershocks on the accumulated damage of concrete gravity dams. For that purpose, 30 as-recorded mainshock–aftershock seismic sequences are considered in this study, and a typical two-dimensional gravity dam model subjected to the selected as-recorded seismic sequences is modeled. A Concrete Damaged Plasticity (CDP) model including the strain hardening or softening behavior is selected for the concrete material. This model is used to evaluate the nonlinear dynamic response and the seismic damage process of Koyna dam under mainshock–aftershock seismic sequences. According to the characteristics of the cracking damage development, the local and global damage indices are both established to study the influence of strong aftershocks on the cumulative damage of concrete gravity dams. From the results of this investigation, it is found that the as-recorded sequences of ground motions have a significant effect on the accumulated damage and on the design of concrete gravity dams.  相似文献   

11.
China is a country of high seismicity with many hydropower resources. Recently,a series of high arch dams have either been completed or are being constructed in seismic regions,of which most are concrete dams. The evaluation of seismic safety often becomes a critical problem in dam design. In this paper,a brief introduction to major progress in the research on seismic aspects of large concrete dams,conducted mainly at the Institute of Water Resources and Hydropower Research(IWHR) during the past 60 years,is presented. The dam site-specific ground motion input,improved response analysis,dynamic model test verification,field experiment investigations,dynamic behavior of dam concrete,and seismic monitoring and observation are described. Methods to prevent collapse of high concrete dams under maximum credible earthquakes are discussed.  相似文献   

12.
In this study, failure probability of the concrete slab on concrete-faced rockfill (CFR) dams with welded and friction contact is investigated under earthquake effects by reliability analysis. For this purpose, Torul CFR dam is selected as an example and numerical solutions are performed by considering combination of reliability analysis–finite element method. 1992 Erzincan earthquake acceleration record is used in the finite element analysis considering deconvolved-base rock input model. In this model, the ground motion to be applied to the foundation base rock is obtained by deconvolution of the free-field surface record. In the materially nonlinear analysis, Drucker–Prager model is used for concrete slab and multi-linear kinematic hardening model is utilized for rockfill. Geometrically nonlinearity is also taken into account. Viscous boundary conditions are defined in the finite element model for both foundation soil and reservoir water. The hydrodynamic pressure of the reservoir water is considered using 2D fluid finite elements based on the Lagrangian approach. Both welded contact and friction contact based on the Coulomb’s friction law are defined in the structural connections. Improved Rackwitz–Fiessler method is used with response surface method in the reliability analysis. The tensile and compression strengths of the concrete slab are utilized in the implicit limit state functions considering various thicknesses. The probability of failure of the most critical points in the concrete slab is obtained. According to this study, the probabilities of failure obtained from the CFR dam including friction contact are lower. When the welded contact is considered in joints, the probability of failure of the concrete slab is 1 due to tensile stress limit state and compression stress limit state only if concrete slab is linear. The most critical probability of failure of the concrete slab appears in the case that the concrete slab is linear and rockfill is materially nonlinear. The probability of failure of the concrete slab decreases if the nonlinearity of the concrete is considered. Also, hydrodynamic pressure decreases the reliability of the concrete slab.  相似文献   

13.
The investigation on the seismic behavior of dams becomes crucial but is limited to lack of experimental or field data. This paper aims to experimentally simulate two major dam types of earth-core rock-fill dam and concrete-faced rock-fill dam by dynamic centrifuge tests to investigate the seismic response of the dam. A series of staged centrifuge tests was performed by applying real earthquake records from 0.05 to 0.5g. The distributions of amplification ratio differed depending on the magnitude of earthquake loading and the zoning condition. The amplification ratio at the crest increased in the bedrock acceleration that exceeds 0.3g and strongly influenced by the loosening behavior of the upper part. The residual settlements and horizontal displacement at the dam crest were small. Shallow surface sliding was dominant failure. The maximum tensile stress on the face slab by dynamic loading occurred at a height of around 4/5 near the upstream water level. Finally, two-dimensional numerical simulations were performed in an effort to simulate the centrifuge models. The centrifuge tests and numerical analysis obtained mostly comparable results, thus confirming that centrifuge modeling reasonably simulates the seismic behavior of dams.  相似文献   

14.
本文探讨了筑坝堆石料的空间变异性对土石坝坝坡动力稳定性的影响。以新疆某在建高面板堆石坝为例,在蒙特卡洛法的框架下,采用基于局部平均细分法的随机有限元法模拟考虑筑坝堆石料空间变异性时土石坝的地震响应及坝坡滑移情况,通过对比随机有限元法和常规确定性有限元法的计算结果,提出:在地震动作用下,考虑筑坝材料空间变异性时,坝坡滑动体的数量、规模以及滑移量和滑动历时都有不同程度的增大,因而坝坡整体危险程度显著高于不考虑材料空间变异性的情况。坝坡各项动力安全性指标对筑坝材料空间变异性非常敏感;因而,考虑筑坝材料空间变异性时,各项安全性指标的离散性较大。  相似文献   

15.
Dynamic response of dams is significantly influenced by foundation stiffness and dam-foundation interaction. This in turn, significantly effects the generation of hydrodynamic pressures on upstream face of a concrete dam due to inertia of reservoir water. This paper aims at investigating the dynamic response of dams on soil foundation using dynamic centrifuge modelling technique. From a series of centrifuge tests performed on model dams with varying stiffness and foundation conditions, significant co-relation was observed between the dynamic response of dams and the hydrodynamic pressures developed on their upstream faces. The vertical bearing pressures exerted by the concrete dam during shaking were measured using miniature earth pressure cells. These reveal the dynamic changes of earth pressures and changes in rocking behaviour of the concrete dam as the earthquake loading progresses. Pore water pressures were measured below the dam and in the free-field below the reservoir. Analysis of this data provides insights into the cyclic shear stresses and strains generated below concrete dams during earthquakes. In addition, the sliding and rocking movement of the dam and its settlement into the soil below are discussed.  相似文献   

16.
Concrete dams suffering from alkali-aggregate reaction (AAR) exhibit swelling and deterioration of concrete or even cracking over a long period. The deterioration of concrete may significantly affect the dynamic behavior of the structures, and it is necessary to estimate seismic safety of the deteriorated dams subjected to strong earthquakes. A unified approach is presented in this paper for long-term behavior and seismic response analysis of AAR-affected concrete dams by combining AAR kinetics, effects of creep and plastic-damage model in the finite element method. The proposed method is applied to a gravity dam and an arch dam. The long-term behavior of the AAR-affected dams is first predicted in terms of anisotropic swelling, spatially non-uniform deterioration of concrete, and cracking initiation and propagation with the development of AAR. The seismic response of the deteriorated dams is subsequently analyzed based on the state of the structures at the end of the long-term analysis. The AAR-induced expansion displacements obtained from the proposed method are in good agreement with the measured ones in the long-term operation. The simulated cracking patterns in the dams caused by the continuing AAR are also similar to the field observation. The results from the seismic analysis show that AAR-induced deterioration of concrete and cracking may lead to more severe damage cracking in the dams during earthquake. The dynamic displacements are also increased compared with the dams that are not suffering from AAR. The seismic safety of the AAR-affected concrete dams is significantly reduced because of the AAR-induced deterioration of concrete and cracking.  相似文献   

17.
易损性分析是评估不同强度地震作用下混凝土重力坝各级破坏概率的有效方法。目前重力坝易损性分析通常假定地震波为垂直入射,然而在近断层区域,地震波往往是倾斜入射的,地震波斜入射对重力坝地震响应有显著影响。从太平洋地震工程研究中心数据库选取16条地震动记录,采用黏弹性人工边界结合等效节点荷载实现SV波斜入射波动输入。采用增量动力分析方法对地震动峰值加速度进行调幅,以印度Koyna混凝土重力坝为研究对象,以坝顶相对位移为抗震性能指标,建立SV波斜入射下重力坝不同震损等级的易损性曲线。结果表明,与垂直入射相比,相同震损等级和相同地震动强度下,斜入射时重力坝破坏概率减小;当PGA接近重力坝实际遭受的地震动强度时,入射角为15°和30°时破坏概率与垂直入射相比最大减小率分别为27.3%和68.2%;各地震强度下,15°和30°斜入射相对于垂直入射的破坏概率差异值最大分别达36.6%、83.9%。因此,混凝土重力坝抗震性能分析应考虑地震波斜入射的影响。研究结果也可为近断层区域混凝土重力坝安全风险评估提供参考。  相似文献   

18.
In this study, the earthquake damage response of the concrete gravity dams is investigated with considering the effects of dam–reservoir interaction. A continuum damage model which is a second-order tensor and includes the strain softening behavior is selected for the concrete material. The mesh-dependent hardening technique is adopted such that the fracture energy dissipated is not affected by the finite element mesh size. The dynamic equilibrium equations of motion are solved by using the improved form of the HHT-α time integration algorithm. Two dimensional seismic analysis of Koyna gravity dam is performed by using the 1967 Koyna earthquake records. The effects of damage on the earthquake response of concrete gravity dams are discussed. Comparison of the Westergaard and Lagrangian dam–reservoir interaction solutions is made. The effects of viscous damping ratio on the damage response of the dam are also studied.  相似文献   

19.
Earthquake safety assessment of concrete arch and gravity dams   总被引:9,自引:1,他引:8  
Based on research studies currently being carried out at Dalian University of Technology, some important aspects for the earthquake safety assessment of concrete dams are reviewed and discussed. First, the rate-dependent behavior of concrete subjected to earthquake loading is examined, emphasizing the properties of concrete under cyclic and biaxial loading conditions. Second, a modified four-parameter Hsieh-Ting-Chen viscoplastic consistency model is developed to simulate the rate-dependent behavior of concrete. The earthquake response of a 278m high arch dam is analyzed, and the results show that the strain-rate effects become noticeable in the inelastic range. Third, a more accurate non-smooth Newton algorithm for the solution of three-dimensional frictional contact problems is developed to study the joint opening effects of arch dams during strong earthquakes. Such effects on two nearly 300m high arch dams have been studied. It was found that the canyon shape has great influence on the magnitude and distribution of the joint opening along the dam axis. Fourth, the scaled boundary finite element method presented by Song and Wolf is employed to study the dam-reservoir-foundation interaction effects of concrete dams. Particular emphases were placed on the variation of foundation stiffness and the anisotropic behavior of the foundation material on the dynamic response of concrete dams. Finally, nonlinear modeling of concrete to study the damage evolution of concrete dams during strong earthquakes is discussed. An elastic-damage mechanics approach for damage prediction of concrete gravity dams is described as an example. These findings are helpful in understanding the dynamic behavior of concrete dams and promoting the improvement of seismic safety assessment methods.  相似文献   

20.
This paper discusses the local approach of fracture using damage mechanics concepts to evaluate the seismic response of concrete gravity dams. A constitutive model for plain concrete, subjected to tensile stresses, is presented. The mesh-dependent hardening technique is adopted such that the fracture energy dissipated is not affected by the finite element mesh size. The model is implemented in conjunction with the Hilber, Hughes Taylor alpha algorithm for time marching. Koyna dam is utilized to validate the proposed formulation. The importance of initial damage prior to the advent of an earthquake is also investigated. A 60 m concrete gravity dam is therefore selected and subjected to ground motion typical of eastern North America. Five scenarios of initial damage are presented and the results confirm the importance of accounting for the initial state for the seismic safety evaluation of an existing dam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号