首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six reef sites were chosen along the west coast of the southern islands of Singapore, at an increasing distance from the densely populated metropolitan area, to study the spatial patterns of coral reef communities on the upper reef slope ( approximately 4m) and the associated environmental conditions. Chronic exposure to high sediment load was the most obvious form of anthropogenic stress. Recruitment rates on ceramic tiles were low (1.4+/-1.0-20+/-14.7 recruits m(-2) yr(-1)) but decreased towards the main island of Singapore as did hard coral cover and coral density. Coral fauna consisted of genera generally found in deeper waters (e.g., fungiids, foliose Oxypora, Leptoseris, and Echinopora) or those well-adapted to turbid waters (e.g., Porites, Pectinia, Leptastrea, Montipora). Light extinction coefficient (K) and % live coral cover (%LCC) showed a strong and inverse curvilinear relationship (%LCC=13.60 *K(-3.40)). Similarly, the rate of sediment deposition (DFSPM) (RR=1.51-0.17 *DFSPM) and water clarity (RR=3.56-2.92 *K) exhibited strong and inverse relationships with recruitment rates (RR). Although measured levels of the downward flux of suspended particulate matter and suspended solids were well within "normal" levels recorded in the literature, it was the proportion of benthic space, generic coral composition, and site history that offered compelling evidence of chronic exposure to increased sediment load. Clearly a reduction in both water clarity and live-coral cover has taken place since monitoring efforts began in the early 1970s, in fact coral cover has more than halved at all sites examined since the 1980s and benthic space was predominantly occupied by dead corals covered with sediment and filamentous algae.  相似文献   

2.
In July 2001, the National Museum of Marine Biology and Aquarium, co-sponsored by the Kenting National Park Headquarters and Taiwan's National Science Council, launched a Long-Term Ecological Research (LTER) program to monitor anthropogenic impacts on the ecosystems of southern Taiwan, specifically the coral reefs of Kenting National Park (KNP), which are facing an increasing amount of anthropogenic pressure. We found that the seawater of the reef flats along Nanwan Bay, Taiwan's southernmost embayment, was polluted by sewage discharge at certain monitoring stations. Furthermore, the consequently higher nutrient and suspended sediment levels had led to algal blooms and sediment smothering of shallow water corals at some sampling sites. Finally, our results show that, in addition to this influx of anthropogenically-derived sewage, increasing tourist numbers are correlated with decreasing shallow water coral cover, highlighting the urgency of a more proactive management plan for KNP's coral reefs.  相似文献   

3.
The abnormally high surface temperatures in the world's oceans during 1997/1998 resulted in widespread coral bleaching and subsequent coral mortality. An experiment was performed to study the effects of this coral mortality as well as the influence of the structural complexity on fish communities on a Tanzanian coral reef. Changes in fish communities were investigated on plots of transplanted corals after 88% of these corals had died. A distinct shift in fish community composition was found, although diversity was not affected. Fish abundance rose by 39% mostly due to an increase in herbivores, which seemed to benefit from enhanced algal growth on the dead corals. Fish abundance, species diversity and community composition were also strongly influenced by the structural complexity provided by the live and dead corals. This suggests that a coral reef can support abundant and diverse fish populations also after the corals have died as long as the reef structure is sustained.  相似文献   

4.
Successful settlement and recruitment of corals is critical to the resilience of coral reefs. Given that many degraded reefs are dominated by benthic algae, recovery of coral populations after bleaching and other disturbances requires successful settlement amidst benthic algae. Algal turfs often accumulate sediments, sediments are known to inhibit coral settlement, and reefs with high inputs of terrestrial sediments are often dominated by turfs. We investigated the impacts of two algal turf assemblages, and of sediment deposits, on settlement of the coral Acropora millepora (Ehrenberg). Adding sediment reduced coral settlement, but the effects of different algal turfs varied. In one case, algal turfs inhibited coral settlement, whereas the other turf only inhibited settlement when combined with sediments. These results provide the first direct, experimental evidence of effects of filamentous algal turfs on coral settlement, the variability in those effects, and the potential combined effects of algal turfs and trapped sediments.  相似文献   

5.
A review of published literature on the sensitivity of corals to turbidity and sedimentation is presented, with an emphasis on the effects of dredging. The risks and severity of impact from dredging (and other sediment disturbances) on corals are primarily related to the intensity, duration and frequency of exposure to increased turbidity and sedimentation. The sensitivity of a coral reef to dredging impacts and its ability to recover depend on the antecedent ecological conditions of the reef, its resilience and the ambient conditions normally experienced. Effects of sediment stress have so far been investigated in 89 coral species (~10% of all known reef-building corals). Results of these investigations have provided a generic understanding of tolerance levels, response mechanisms, adaptations and threshold levels of corals to the effects of natural and anthropogenic sediment disturbances. Coral polyps undergo stress from high suspended-sediment concentrations and the subsequent effects on light attenuation which affect their algal symbionts. Minimum light requirements of corals range from <1% to as much as 60% of surface irradiance. Reported tolerance limits of coral reef systems for chronic suspended-sediment concentrations range from <10mgL(-1) in pristine offshore reef areas to >100mgL(-1) in marginal nearshore reefs. Some individual coral species can tolerate short-term exposure (days) to suspended-sediment concentrations as high as 1000mgL(-1) while others show mortality after exposure (weeks) to concentrations as low as 30mgL(-1). The duration that corals can survive high turbidities ranges from several days (sensitive species) to at least 5-6weeks (tolerant species). Increased sedimentation can cause smothering and burial of coral polyps, shading, tissue necrosis and population explosions of bacteria in coral mucus. Fine sediments tend to have greater effects on corals than coarse sediments. Turbidity and sedimentation also reduce the recruitment, survival and settlement of coral larvae. Maximum sedimentation rates that can be tolerated by different corals range from <10mgcm(-2)d(-1) to >400mgcm(-2)d(-1). The durations that corals can survive high sedimentation rates range from <24h for sensitive species to a few weeks (>4weeks of high sedimentation or >14days complete burial) for very tolerant species. Hypotheses to explain substantial differences in sensitivity between different coral species include the growth form of coral colonies and the size of the coral polyp or calyx. The validity of these hypotheses was tested on the basis of 77 published studies on the effects of turbidity and sedimentation on 89 coral species. The results of this analysis reveal a significant relationship of coral sensitivity to turbidity and sedimentation with growth form, but not with calyx size. Some of the variation in sensitivities reported in the literature may have been caused by differences in the type and particle size of sediments applied in experiments. The ability of many corals (in varying degrees) to actively reject sediment through polyp inflation, mucus production, ciliary and tentacular action (at considerable energetic cost), as well as intraspecific morphological variation and the mobility of free-living mushroom corals, further contribute to the observed differences. Given the wide range of sensitivity levels among coral species and in baseline water quality conditions among reefs, meaningful criteria to limit the extent and turbidity of dredging plumes and their effects on corals will always require site-specific evaluations, taking into account the species assemblage present at the site and the natural variability of local background turbidity and sedimentation.  相似文献   

6.
Emiko  Ikeda  Yasufumi  Iryu  Kaoru  Sugihara  Hideo  Ohba  Tsutomu  Yamada 《Island Arc》2006,15(4):407-419
Abstract Investigations were conducted on bathymetry, reef biota and sediments on the Hirota Reef, Tane‐ga‐shima, North Ryukyus, near the northern limit for coral‐reef formation. A bathymetric profile from shore to the reef edge was depicted along an approximately 420‐m transect on the Hirota Coast of this island. A total of 20 quadrats (1 m × 1 m) were analyzed along the profile at 10‐ or 20‐m intervals to clarify distribution of macrobenthos inhabiting the reef. The Hirota Reef is divided into four geomorphologic zones according to their depth, gradient, surface roughness, substrate and characteristic macrobenthos. They are, from shore to offshore, shallow lagoon, seaward reef flat, reef edge and reef slope. The shallow lagoon comprises a shoreward depression (∼160 m wide on the transect) with a sand/gravel bottom that inclines gently toward offshore, and a seaward patch zone (∼70 m wide). The patches (<2 m high) are covered with fleshy algae, coralline algae and hermatypic corals. The seaward reef flat (∼190 m wide) is a flat plane that is constructed by biogenic carbonates and is covered with turf algae, with hermatypic corals scattered. Although the seaward reef flat of the Hirota Reef cannot be differentiated into different geomorphologic zones, similar seaward reef flat areas in the Central and South Ryukyus can be clearly subdivided into inner reef flat, reef crest and outer reef flat. This difference may be attributed to a lower reef growth rate and/or the later reef formation of the Hirota Reef in Holocene time than the southern examples. The coral fauna on the Hirota Reef is delineated by low diversity and characterized by taxa typical of high‐latitude, non‐reefal communities. The algal flora consists of tropical to subtropical species associated with warm‐temperate species. These faunal and floral characteristics may be related largely to lower water temperature in Tane‐ga‐shima than those in typical coral‐reef regions.  相似文献   

7.
We studied the responses of algae, corals, and small fish to elevated inorganic fertilizer, organic matter, and their combination over a 49-day summer period in cages that simulated the coral reef in the remote Glovers reef atoll, Belize. The addition of organic matter reduced while fertilization had no effect on the numbers of herbivorous damsel and parrotfishes. All measures of algal biomass were influenced by fertilization. The combined inorganic and organic enrichment produced the highest algal biomass, which is most likely due to the combined effect of higher nutrients and lower herbivory. The cover of turf and total algae were influenced by all treatments and their interactions and most strongly and positively influenced by fertilization followed by organic matter and the combination of organic matter and inorganic fertilizer. The inorganic and combined treatments were both dominated by two turf algae, Enteromorpha prolifera and Digenia simplex, while the nonfertilized treatments were dominated by brown frondose algae Lobophora variegata, Padina sanctae, and Dictyota cervicornis. The organic matter treatment had greater cover of P. sanctae and D. cervicornis than the untreated control, which was dominated by Lobophora variegata, also the dominant algae on the nearby patch reefs. Crustose corallines grew slowly ( approximately 2.5 mm/49 days) and were not influenced by the treatments when grown on vertical surfaces but decreased on horizontal coral plates in the combined organic matter and fertilization treatment. No mortality occurred for the two coral species that were added to the cages. Porites furcata darkened in the fertilized cages while there was a mix of paling and darkening for a small amount of the coral tissue of Diploria labyrinthiformes. Inorganic fertilization stimulates small filamentous turf algae and Symbiodinium living in coral but inhibits brown frondose algae. Organic matter inhibits small herbivorous fish, L. variegata, and encrusting coralline algae when growing on horizontal surfaces.  相似文献   

8.
Keiichi  Sasaki  Akio  Omura  Tetsuo  Miwa  Yoshihiro  Tsuji  Hiroki  Matsuda  Toru  Nakamori  Yasufumi  Iryu  Tsutomu  Yamada  Yuri  Sato  Hiroshi  Nakagawa 《Island Arc》2006,15(4):455-467
Abstract   High-resolution seismic reflection profiles delineated the distribution of mound-shaped reflections, which were interpreted as reefs, beneath the insular shelf western off Irabu Island, Ryukyus, southwestern Japan. A sediment core through one of the mounded structures was recovered from the sea floor at a depth of −118.2 m by offshore drilling and was dated by radiometric methods. The lithology and coral fauna of the core indicate that the mounded structure was composed of coral–algal boundstone suggesting a small-scaled coral reef. High-precision α-spectrometric 230Th/234U dating coupled with calibrated accelerator mass spectrometric 14C ages of corals obtained reliable ages of this reef ranging from 22.18 ± 0.63 to 30.47 ± 0.98 ka. This proves that such a submerged reef was formed during the lowstand stage of marine oxygen isotope stages 3–2. The existence of low-Mg calcite in the aragonitic coral skeleton of 22.18 ± 0.63 ka provides evidence that the reef had once been exposed by lowering of the relative sealevel to at least −126 m during the last glacial maximum in the study area. There is no room for doubt that a coral reef grew during the last glacial period on the shelf off Irabu Island of Ryukyus in the subtropical region of western Pacific.  相似文献   

9.
10.
Six reef sites were chosen along the west coasts of Singapore's southern islands, to: (1) quantitatively assess and compare coral community composition and structure, and recruitment rates, (2) assess the relationship between the aforementioned patterns and the environmental conditions, and (3) provide insights on potential processes that incorporate history at these study sites. Chronic exposure to high sediment load was the most obvious form of anthropogenic stress. Recruitment rates on ceramic tiles were low (1.4+/-1.0-20+/-14.7 recruits m(-2)year(-1)) but decreased towards the main island of Singapore as did hard coral cover and coral density. Coral fauna consisted of genera generally found in deeper waters (e.g., fungiids, foliose Oxypora, Leptoseris, and Echinopora) or those well adapted to turbid waters (e.g., Porites, Pectinia, Leptastrea, Montipora). Light extinction coefficient (K) and % live coral cover (%LCC) showed a strong and inverse curvilinear relationship (%LCC=13.60 *K(-3.40)). Similarly, the rate of sediment deposition (DFSPM) (Recruitment rate, RR=1.51-0.17 *DFSPM) and water clarity (RR=3.56-2.92 *K) exhibited strong and inverse relationships with recruitment rates. Although measured levels of the down-ward flux of suspended particulate matter and suspended solids were well within "normal" levels recorded in the literature, it was the proportion of benthic space, generic coral composition, and site history that offered compelling evidence of chronic exposure to increased sediment load. Clearly a reduction in both water clarity and live-coral cover has taken place since monitoring efforts began in the early 1970s, in fact coral cover has more than halved at all sites examined since the 1980s and benthic space was predominantly occupied by dead corals covered with sediment and filamentous algae.  相似文献   

11.
A management proposal aims to partly remove a WWII military causeway at Palmyra Atoll to improve lagoon water circulation and alleviate sedimentation stress on the southeast backreef, an area of high coral cover and diversity. This action could result in a shift in sedimentation across reef sites. To provide management advice, we quantified the proximate environmental factors driving scleractinian coral cover and community patterns at Palmyra. The proportion of fine sedimentation was the optimal predictor of coral cover and changes in community structure, explaining 23.7% and 24.7% of the variation between sites, respectively. Scleractinian coral cover was negatively correlated with increases in fine sedimentation. Removing the causeway could negatively affect the Montipora corals that dominate the western reef terrace, as this genus was negatively correlated with levels of fine sedimentation. The tolerance limits of corals, and sediment re-distribution patterns, should be determined prior to complete removal of the causeway.  相似文献   

12.
The continuing degradation of coral reefs has serious consequences for the provision of ecosystem goods and services to local and regional communities. While climate change is considered the most serious risk to coral reefs, agricultural pollution threatens approximately 25% of the total global reef area with further increases in sediment and nutrient fluxes projected over the next 50 years. Here, we aim to inform coral reef management using insights learned from management examples that were successful in reducing agricultural pollution to coastal ecosystems. We identify multiple examples reporting reduced fluxes of sediment and nutrients at end-of-river, and associated declines in nutrient concentrations and algal biomass in receiving coastal waters. Based on the insights obtained, we recommend that future protection of coral reef ecosystems demands policy focused on desired ecosystem outcomes, targeted regulatory approaches, up-scaling of watershed management, and long-term maintenance of scientifically robust monitoring programs linked with adaptive management.  相似文献   

13.
The current state of health of the coral reefs in the northern Gulf of Aqaba (Red Sea), notably the Eilat reefs, is under debate regarding both their exact condition and the causes of degradation. A dearth of earlier data and unequivocal reliable indices are the major problems hinder a clear understanding of the reef state. Our research objective was to examine coral-algal dynamics as a potential cause and an indication of reef degradation. The community structure of stony corals and algae along the northern Gulf of Aqaba reveal non-seasonal turf algae dominancy in the shallow Eilat reefs (up to 72%), while the proximate Aqaba reefs present negligible turf cover (<6%). We believe that turf dominancy can indicate degradation in these reefs, based on the reduction in essential reef components followed by proliferation of perennial turf algae. Our findings provide further evidence for the severe state of the Eilat coral reefs.  相似文献   

14.
Fist-sized fragments of Porites cylindrica, Porites rus and Pavona frondifera were deployed in single-species (P. cylindrica) and mixed-species (all three) plots in a shallow reef area in the northwestern Philippines. After 6 months, the corals in half of the plots were broken into smaller pieces to simulate an episodic physical disturbance. The survival of all corals was monitored from March 2000 to July 2001 during which the corals experienced 2 typhoons and episodes of algal overgrowth. For both intact and broken treatments, there was significantly higher survival in the mixed-species plots than in the single-species treatments. Fragment mortality varied between disturbances of varying frequencies and magnitudes, namely: one-time fragmentation stress, seasonal overgrowth by cyanobacteria and macroalgae, short-term (1 day) and long-term (more than 1 week) burial. The mixed-species assemblages had higher fragment survivorship than the monospecific assemblages during small-scale perturbations (e.g., algal overgrowth), but not in the face of subsequent, larger scale disturbances. This study emphasizes that coral responses to disturbance are both species- and context-specific.  相似文献   

15.
Coral community structure is often governed by a suite of processes that are becoming increasingly influenced by land-use changes and related terrestrial discharges. We studied sites along a watershed gradient to examine both the physical environment and the associated biological communities. Transplanted corals showed no differences in growth rates and mortality along the watershed gradient. However, coral cover, coral richness, and coral colony density increased with increasing distance from the mouth of the bay. There was a negative relationship between coral cover and mean suspended solids concentration. Negative relationships were also found between terrigenous sedimentation rates and the richness of adult and juvenile corals. These results have major implications not only for Pacific islands but for all countries with reef systems downstream of rivers. Land development very often leads to increases in river runoff and suspended solids concentrations that reduce coral cover and coral diversity on adjacent reefs.  相似文献   

16.
A one-dimensional wave model was used to investigate the reef top wave dynamics across a large suite of idealized reef-lagoon profiles, representing barrier coral reef systems under different sea-level rise (SLR) scenarios. The modeling shows that the impacts of SLR vary spatially and are strongly influenced by the bathymetry of the reef and coral type. A complex response occurs for the wave orbital velocity and forces on corals, such that the changes in the wave dynamics vary reef by reef. Different wave loading regimes on massive and branching corals also leads to contrasting impacts from SLR. For many reef bathymetries, wave orbital velocities increase with SLR and cyclonic wave forces are reduced for certain coral species. These changes may be beneficial to coral health and colony resilience and imply that predicting SLR impacts on coral reefs requires careful consideration of the reef bathymetry and the mix of coral species.  相似文献   

17.
Survivorship of coral juveniles in a fish farm environment   总被引:1,自引:0,他引:1  
Intensive fish farming is an emerging coastal activity that can potentially enhance sedimentation and promote eutrophication in fringing coral reefs. Here, we investigate the effect of fish farm effluent on the juvenile survivorship of the reef-building coral Seriatopora caliendrum. One-month old juvenile corals (on terracotta tiles) were deployed in fish farm and reference (reef) sites in Bolinao, the Philippines at a depth of 2m. After forty days, no survivor was recovered in the fish farm, while survivorship was low (11%) in the reference site, with the survivors' growth rate at 3.3polypsmo(-1) or 1.3mm(2)mo(-1). The fish farm deployed tiles were covered with muddy sediment and were colonized by barnacles, whereas those in the reference site were overgrown by a short stand of filamentous macroalgae. Environmental monitoring revealed higher nutrient levels (ammonia and phosphate), sedimentation rate, and organic matter flux, as well as diminished water transparency and dissolved oxygen levels in the fish farm compared to the reference site. Hence, intensive fish farming offers a suite of physical, chemical and biological modifications of the coastal marine environment which have a detrimental effect on the survivorship of coral juveniles.  相似文献   

18.
Localized declines in coral condition are commonly linked to land-based sources of stressors that influence gradients of water quality, and the distance to sources of stressors is commonly used as a proxy for predicting the vulnerability and future status of reef resources. In this study, we evaluated explicitly whether proximity to shore and connections to coastal bays, two measures of potential land-based sources of disturbance, influence coral community and population structure, and the abundance, distribution, and condition of corals within patch reefs of the Florida Reef Tract. In the Florida Keys, long-term monitoring has documented significant differences in water quality along a cross-shelf gradient. Inshore habitats exhibit higher levels of nutrients (DIN and TP), TOC, turbidity, and light attenuation, and these levels decrease with increasing distance from shore and connections to tidal bays. In clear contrast to these patterns of water quality, corals on inshore patch reefs exhibited significantly higher coral cover, higher growth rates, and lower partial mortality rates than those documented in similar offshore habitats. Coral recruitment rates did not differ between inshore and offshore habitats. Corals on patch reefs closest to shore had well-spread population structures numerically dominated by intermediate to large colonies, while offshore populations showed narrower size-distributions that become increasingly positively skewed. Differences in size-structure of coral populations were attributed to faster growth and lower rates of partial mortality at inshore habitats. While the underlying causes for the favorable condition of inshore coral communities are not yet known, we hypothesize that the ability of corals to shift their trophic mode under adverse environmental conditions may be partly responsible for the observed patterns, as shown in other reef systems. This study, based on data collected from a uniform reef habitat type and coral species with diverse life-history and stress-response patterns from a heavily exploited reef system, showed that proximity to potential sources of stressors may not always prove an adequate proxy for assigning potential risks to reef health, and that hypothesized patterns of coral cover, population size-structure, growth, and mortality are not always directly related to water quality gradients.  相似文献   

19.
We propose a framework for spatially estimating a proxy for coral reef resilience using remote sensing. Data spanning large areas of coral reef habitat were obtained using the commercial QuickBird satellite, and freely available imagery (NASA, Google Earth). Principles of coral reef ecology, field observation, and remote observations, were combined to devise mapped indices. These capture important and accessible components of coral reef resilience. Indices are divided between factors known to stress corals, and factors incorporating properties of the reef landscape that resist stress or promote coral growth. The first-basis for a remote sensed resilience index (RSRI), an estimate of expected reef resilience, is proposed. Developed for the Red Sea, the framework of our analysis is flexible and with minimal adaptation, could be extended to other reef regions. We aim to stimulate discussion as to use of remote sensing to do more than simply deliver habitat maps of coral reefs.  相似文献   

20.
Corals are key members of the tropical reef communities, by providing habitat for other organisms and entering importantly into the overall metabolism of the reef community. Concern has been expressed several times at the collapse of the community that would result from damage to corals by oil pollution. So far relatively few experimental studies of the susceptibility of coral to oil have been carried out. In this study four Panamanian coral species have been exposed to marine diesel and bunker oil. These may cause delayed death, but probably more importantly interfere with feeding and metabolism at sub-lethal concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号