首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the seismic attenuation of compressional (P‐) and converted shear (S‐) waves through stacked basalt flows using short‐offset vertical seismic profile (VSP) recordings from the Brugdan (6104/21–1) and William (6005/13–1A) wells in the Faroe‐Shetland Trough. The seismic quality factors (Q) were evaluated with the classical spectral ratio method and a root‐mean‐square time‐domain amplitude technique. We found the latter method showed more robust results when analysing signals within the basalt sequence. For the Brugdan well we calculated effective Q estimates of 22–26 and 13–17 for P‐ and S‐waves, respectively, and 25–33 for P‐waves in the William well. An effective QS/QP ratio of 0.50–0.77 was found from a depth interval in the basalt flow sequence where we expect fully saturated rocks. P‐wave quality factor estimates are consistent with results from other VSP experiments in the North Atlantic Margin, while the S‐wave quality factor is one of the first estimates from a stacked basalt formation using VSP data. Synthetic modelling demonstrates that seismic attenuation for P‐ and S‐waves in the stacked basalt flow sequence is mainly caused by one‐dimensional scattering, while intrinsic absorption is small.  相似文献   

2.
High-frequency filtering of strong-motion records   总被引:5,自引:3,他引:2  
The influence of noise in strong-motion records is most problematic at low and high frequencies where the signal to noise ratio is commonly low compared to that in the mid-spectrum. The impact of low-frequency noise (<1 Hz) on strong-motion intensity parameters such as ground velocities, displacements and response spectral ordinates can be dramatic and consequentially it has become standard practice to low-cut (high-pass) filter strong-motion data with corner frequencies often chosen based on the shape of Fourier amplitude spectra and the signal-to-noise ratio. It has been shown that response spectral ordinates should not be used beyond some fraction of the corner period (reciprocal of the corner frequency) of the low-cut filter. This article examines the effect of high-frequency noise (>5 Hz) on computed pseudo-absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency noise our analysis shows that filtering to remove high-frequency noise is only necessary in certain situations and that PSAs can often be used up to 100 Hz even if much lower high-cut corner frequencies are required to remove the noise. This apparent contradiction can be explained by the fact that PSAs are often controlled by ground accelerations associated with much lower frequencies than the natural frequency of the oscillator because path and site attenuation (often modelled by Q and κ, respectively) have removed the highest frequencies. We demonstrate that if high-cut filters are to be used, then their corner frequencies should be selected on an individual basis, as has been done in a few recent studies.  相似文献   

3.
The performances of the spectral ratio (SR), frequency centroid shift (FCS), and frequency peak shift (FPS) methods to estimate the effective quality factor Q are compared. These methods do not demand true amplitude data and their implementations were done following an “as simple as possible” approach to highlight their intrinsic potentials and limitations. We use synthetic zero-offset seismic data generated with a simple layer-cake isotropic model. The methods can be ranked from simple to complex in terms of automation as: FPS, FCS and SR. This is a consequence of: (i) peak identification consists basically of a sorting procedure, (ii) centroid estimation involves basically the evaluation of two well-behaved integrals, and (iii) implementation of the SR method involves at least choosing a usable frequency bandwidth and fitting a gradient. The methods can be ranked from robust to sensitive in the presence of noise content in the sequence SR, FCS, and FPS. This is consequence of: (i) the gradient estimate associated to the SR method averages out the noise content in the entire usable frequency bandwidth, (ii) in the presence of moderate-to-high noise level, the centroid estimation is biassed towards overestimating Q due to noise contribution in the tail of the amplitude spectrum, and (iii) peak identification is unstable due to local noise fluctuation in the amplitude spectrum around the peak frequency. Regarding the stability of the estimates relative to the attenuation amount, SR and FCS methods show similar behaviours, whereas FPS method presents an inferior performance. This fact is an indirect consequence of the sensitivity of FPS method to the noise content because the higher is the attenuation the lower is the signal-to-noise ratio. Finally, regarding the robustness of the methods to the presence of dipping layers, only SR and FCS methods provide good estimates, at least to typical dips in non-faulted sedimentary layers, with the estimates obtained with SR method being more accurate that those obtained with FCS method. Except in relation to the automation complexity, which is less important than the performances of the methods, SR method was superior or showed similar performance to FCS method in all scenarios we tried.  相似文献   

4.
Three‐dimensional seismic survey design should provide an acquisition geometry that enables imaging and amplitude‐versus‐offset applications of target reflectors with sufficient data quality under given economical and operational constraints. However, in land or shallow‐water environments, surface waves are often dominant in the seismic data. The effectiveness of surface‐wave separation or attenuation significantly affects the quality of the final result. Therefore, the need for surface‐wave attenuation imposes additional constraints on the acquisition geometry. Recently, we have proposed a method for surface‐wave attenuation that can better deal with aliased seismic data than classic methods such as slowness/velocity‐based filtering. Here, we investigate how surface‐wave attenuation affects the selection of survey parameters and the resulting data quality. To quantify the latter, we introduce a measure that represents the estimated signal‐to‐noise ratio between the desired subsurface signal and the surface waves that are deemed to be noise. In a case study, we applied surface‐wave attenuation and signal‐to‐noise ratio estimation to several data sets with different survey parameters. The spatial sampling intervals of the basic subset are the survey parameters that affect the performance of surface‐wave attenuation methods the most. Finer spatial sampling will reduce aliasing and make surface‐wave attenuation easier, resulting in better data quality until no further improvement is obtained. We observed this behaviour as a main trend that levels off at increasingly denser sampling. With our method, this trend curve lies at a considerably higher signal‐to‐noise ratio than with a classic filtering method. This means that we can obtain a much better data quality for given survey effort or the same data quality as with a conventional method at a lower cost.  相似文献   

5.
地层品质因子Q的可用于地震资料高分辨率处理,而从VSP资料下行直达波更容易获取准确的地层品质因子。通过对零偏移距VSP资料的监控子波和下行初至波的频谱进行综合分析,仿照Ricker子波频谱的表达式,本文提出了震源子波频谱新的表达式。在震源子波频谱新的表达式基础上,我们介绍了改进的频谱拟合法和改进的谱比法的层Q值反演方法及相应的处理流程。基于本文提出的层Q值反演方法,利用实际的零偏移距VSP资料的下行直达波,反演稳定的层Q值,并用于零偏移距VSP资料及井旁地面地震资料的反Q滤波振幅补偿处理,提高了地震资料的分辨率。  相似文献   

6.
7.
Amplitude spectra of input FM signals used in the vibratory source method of seismic exploration often show undesirable oscillations near the initial and terminal frequencies. These oscillations have an effect on the correlation background and distort the output signal. Considerable improvement in reducing the amplitude of these oscillations is obtained using a proper taper fuction. Attention is given to the relation between the tapering time and bandwidth of the spectrum. Analyses of the spectra of the received data from vibratory sources show considerable attenuation in comparison with the original field sweep. Since the matched filtering process will result in a series of waveforms which have the shape of the autocorrelation of the input signal, consideration is given to the autocorrelation function and its zero-lag coefficient of the FM signal in the presence of attenuation. A method has been developed which compensates for the attenuation and recovers the distortion of waveforms when the received data is correlated. The design of a waveform shaping filter for vibratory source data is given to reduce the influence of phase distortion on the received waveforms as well as to increase S/N ratio resolution. Parameters used for this filter are based on the properties of the FM signal and its autocorrelation function. Several examples from field data are presented to illustrate the methods. The results indicate that the use of the above techniques yields sections with good frequency resolution and improved S/N ratio.  相似文献   

8.
The advent of signal energy on a VSP or check-shot trace may be defined as the first break. An accurate pick of this first break would be possible in the absence of noise. However, real data traces are inevitably corrupted by noise and this leads to difficulty in identifying a break because the signal-to-noise ratio is low in its neighbourhood. Under such conditions, an obvious alternative is to pick “troughs” where the local signal-to-noise ratio is likely to be much higher. Although trough picking is an effective way to minimize the noise problem, it is sensitive to signal properties (such as absorption and multiple reflections) which have no effect upon the accuracy of break picks. Thus, trough picking is signal-sensitive and break picking is noise-sensitive. Clearly, an ideal first-arrival picking scheme would combine the noise-tolerant features of trough picking with the signal-tolerant features of break picking. This ideal may be approached by exploiting known properties of the VSP trace using conventional signal processing techniques. The result of such processing is to reduce the problem to that of picking a trough correctly centered about the true break time.  相似文献   

9.
Data from offshore Norway is used to study applications of elastic VSP modelling in detecting shear waves and observing the effects of successive mode conversion in field-recorded VSP data. The shear-wave velocities and densities from log data are used in conjunction with compressional wave velocities determined from surface seismic and log data in the VSP modelling. The time domain non-normal incidence elastic VSP modelling technique of Aminzadeh and Mendel is used as the modelling algorithm. Two surface seismograms are computed first. One is the vertical component and the other is the horizontal component for plane waves that have specified incident angles. A downward continuation method is then applied to generate seismograms at different depth points. The collection of these seismograms constitutes non-normal incidence VSPs. Both vertical and horizontal components of VSP data can be obtained by this procedure. In this paper non-normal incidence VSPs are generated for a 12.5° incident plane wave. The modelling results of layered earth systems of thin layers and thick layers are both compared with field data, and the effect of mode conversions in thin layers is observed. Several events in the field data can be explained by this elastic VSP modelling. Comparison of the model data and field data enabled a probable tube wave or out-of-plane event to be identified, the removal of which significantly improved the final VSP section. This study also shows how the VSP data helped the interpretation of the surface 3D data.  相似文献   

10.
The acoustical impedance distribution of the substratum, or equivalently, the reflection coefficient sequence, is determined from VSP data. This nonlinear inverse problem is solved by a least-squares method. As the wavelet is unknown, the impedance distribution and the Neumann boundary condition (which characterizes the excitation of the medium) are simultaneously identified. The inversion method is applied to synthetic and field VSP's; the result is satisfactory, even when strong noise corrupts the data, provided that a suitable constraint on the impedance distribution is introduced in order to ensure the stability of the inverse problem. The reliability of the inversion result in the case of field VSP, is confirmed. Some ways in which this result may be used are illustrated (calibration of the seismic surface data, multiple identification, prediction ahead of the bit).  相似文献   

11.
In land seismic surveys, the seismic data are mostly contaminated by ground-roll noise, high amplitude and low frequency. Since the ground-roll is coherent with reflections and depends on the source, the spectral band of seismic signal and ground-roll always overlap, which can be clearly seen in the spectral domain. So, separating them in time or frequency domain commonly causes waveform distortions and information missing due to cut-off effects. Therefore, the combination of these factors leads to search for alternative filtering methods or processes. We applied the conventional Wiener–Levinson algorithm to extract ground-roll from the seismic data. Then, subtracting it from the seismic data arithmetically performs the ground-roll suppression. To set up the algorithm, linear or nonlinear sweep signals are used as reference noise trace. The frequencies needed in creating a reference noise trace using analytical sweep signal can be approximately estimated in spectral domain. The application of the proposed method based on redesigning of Wiener–Levinson algorithm differs from the usual frequency filtering techniques since the ground-roll is suppressed without cutting signal spectrum. The method is firstly tested on synthetics and then is applied to a shot data from the field. The result obtained from both synthetics and field data show that the ground-roll suppression in this way causes no waveform distortion and no reduction of frequency bandwidth of the data.  相似文献   

12.
We introduce the signal dependent time–frequency distribution, which is a time–frequency distribution that allows the user to optimize the tradeoff between joint time–frequency resolution and suppression of transform artefacts. The signal‐dependent time–frequency distribution, as well as the short‐time Fourier transform, Stockwell transform, and the Fourier transform are analysed for their ability to estimate the spectrum of a known wavelet used in a tuning wedge model. Next, the signal‐dependent time–frequency distribution, and fixed‐ and variable‐window transforms are used to estimate spectra from a zero‐offset synthetic seismogram. Attenuation is estimated from the associated spectral ratio curves, and the accuracy of the results is compared. The synthetic consisted of six pairs of strong reflections, based on real well‐log data, with a modeled intrinsic attenuation value of 1000/Q = 20. The signal‐dependent time–frequency distribution was the only time–frequency transform found to produce spectra that estimated consistent attenuation values, with an average of 1000/Q = 26±2; results from the fixed‐ and variable‐window transforms were 24±17 and 39±10, respectively. Finally, all three time–frequency transforms were used in a pre‐stack attenuation estimation method (the pre‐stack Q inversion algorithm) applied to a gather from a North Sea seismic dataset, to estimate attenuation between nine different strong reflections. In this case, the signal‐dependent time‐frequency distribution produced spectra more consistent with the constant‐Q model of attenuation assumed in the pre‐stack attenuation estimation algorithm: the average L1 residuals of the spectral ratio surfaces from the theoretical constant‐Q expectation for the signal‐dependent time‐frequency distribution, short‐time Fourier transform, and Stockwell transform were 0.12, 0.21, and 0.33, respectively. Based on the results shown, the signal‐dependent time‐frequency distribution is a time–frequency distribution that can provide more accurate and precise estimations of the amplitude spectrum of a reflection, due to a higher attainable time–frequency resolution.  相似文献   

13.
The low-frequency response of the P400 watergun is an improvement over that of the S80 version. It has been further enhanced by deployment in a vertically staggered array. The notch in the amplitude spectrum at about 35 Hz due to the interference between the precursor and main implosion pulse has been virtually eliminated, and depth notches due to the free surface interface at the upper end of the spectrum have been greatly reduced. The spectral band is thus very broad and well-shaped and corresponds to an even shorter signature. After convolution with the streamer ghost, the amplitude of the implosion pulse from the composite far-field signature is more than 30 times the composite precursor amplitude. Thus the signal approaches the minimum-phase condition. Shot-generated noise scattered back by diffractors located at or near seabed is the single greatest impediment to increased penetration, especially in high resolution surveys. Such noise decays much less rapidly than signal, particularly so with broad band data. Furthermore, back-scattered interference coming from a cone of bearings between 15–45° with respect to the line is particularly damaging since in these directions the stack enhances the interference and confuses the primary velocity analysis. The watergun source patterns are therefore element-weighted to maximize directivity within these critical directions in the frequency band 50–155 Hz. When spatial aliasing is reduced by increased streamer spatial sampling and by discrete anti-alias filters during the record cycle,f-k filtering can be applied to the field records as an effective supplement to the source and receiver patterns without the aliased ‘wrapped around’ noise alignments destroying the upper end of the spectrum of genuine reflectors. Furthermore, increased spatial sampling is a pre-requisite in thef-k-migration process if the valuable higher frequencies of broad band data are to be migrated in steep-dip situations without aliasing. Thus, spatial resolution is a necessary complement to temporal resolution if maximum advantage of the broad-band P400 watergun source is to be realized.  相似文献   

14.
为探究地震观测中地震计检测到的噪声和信号强度均受其布设深度的影响,本文首先对CPUP和LPAZ两台站布设的不同深度地震计所得到的数据进行噪声水平和地震信号对比;其次采用对比功率谱密度的方法对两台站不同通道采集到的不同时段的噪声数据进行分析;最后比较两台站不同通道采集到的整月数据的噪声幅值、信号幅值、信噪比特征。结果显示:深度较大的通道,其噪声功率均值较小;当事件信号到来时,较深通道的地震计检测到的信号和噪声幅值比较浅通道均有所减小,在信号和噪声幅值均减小的共同影响下,信噪比有一定程度的变化,其中LPAZ台站的信噪比提高较为明显。   相似文献   

15.
When considering the search for discovery or amplitude estimation of a spectral line with a probabilistic approach, great attention must be paid to the meaning of each step. We give the probability law for the amplitude of a spectral peak in the presence of random noise appearing in a periodogram and discuss the effective probability of the existence of the corresponding wave. We find that the estimated amplitude of a spectral peak is biased and should be corrected when the signal-to-noise ratio is small. As a first application to gravity data, it results in a re-estimation of the gravimetric amplitude factors (delta factors) provided by least-squares tidal analysis. We also estimate the probability of observing a spectral line above a given level in the spectrum of a purely random noise. This allows us to compute for given spectrum the number of peaks expected to overcross the classical levels used in statistical analysis (like nσ, where σ is the standard deviation of the temporal noise distribution and n is an integer with typical values equal to 2 or 3). A specific application to real data is investigating the gravity spectrum derived from a 5 year record of the French superconducting gravimeter and we show that the predicted statistics are indeed in agreement with the observations. We also show the statistical consequence of using longer observing periods to obtain the spectral estimations. The problem of detecting translational motion of the Earth's solid inner core (Slichter modes) in a gravity spectrum is analyzed and the probabilities of having a triplet of random peaks thresholding specific levels in a given frequency window are computed. We show that, in the case of a typical gravity spectrum (1 year of hourly data and a frequency window of 0.03 cycle h−1), the probability of having a random set of three peaks exceeding a level of 3 σ, is very high. This emphasizes the need for a very careful analysis of spectral lines before inferring the existence of a true physical signal.  相似文献   

16.
Median filters may be used with seismic data to attenuate coherent wavefields. An example is the attenuation of the downgoing wavefield in VSP data processing. The filter is applied across the traces in the ‘direction’ of the wavefield. The final result is given by subtracting the filtered version of the record from the original record. This method of median filtering may be called ‘median filtering operated in subtraction’. The method may be extended by automatically estimating the slowness of coherent wavefields on a record. The filter is then applied in a time- and-space varying manner across the record on the basis of the slowness values at each point on the record. Median filters are non-linear and hence their behaviour is more difficult to determine than linear filters. However, there are a number of methods that may be used to analyse median filter behaviour: (1) pseudo-transfer functions to specific time series; (2) the response of median filters to simple seismic models; and (3) the response of median filters to steps that simulate terminating wavefields, such as faults on stacked data. These simple methods provide an intuitive insight into the behaviour of these filters, as well as providing a semiquantitative measurement of performance. The performance degradation of median filters in the presence of trace-to-trace variations in amplitude is shown to be similar to that of linear filters. The performance of median filters (in terms of signal distortion) applied obliquely across a record may be improved by low-pass filtering (in the t-dimension). The response of median filters to steps is shown to be affected by background noise levels. The distortion of steps introduced by median filters approaches the distortion of steps introduced by the corresponding linear filter for high levels of noise.  相似文献   

17.
多种岩石的Qp,Qs,Qc   总被引:2,自引:0,他引:2  
许昭永  段永康 《地震研究》1996,19(2):192-198
本采用脉冲传播谱振幅比法、能量法、尾波法分别测多种岩样的P波Q值、S波Q值及尾波Q值。结果表明,能量法所得Qp、Qs较小。谱振幅比法所得Qp一般居中,Qs较大。尾波Qc有的偏大,有的偏小。  相似文献   

18.
Local Site Effects in the Town of Benevento (Italy) from Noise Measurements   总被引:2,自引:0,他引:2  
— The study of ground motion amplification produced by surface geology is extremely interesting in the Benevento area, Southern Italy, as it is characterized by high seismic hazard. The present moderate-to-low seismicity makes the noise method appropriate to estimate the seismic site response in the area. The three components of seismic noise have been recorded in five sites in the Benevento metropolitan area characterized by different surface geology, in order to estimate the seismic site response. In evaluating site amplification effects we used the direct interpretation of amplitude spectra and standard spectral ratio techniques, evaluating sediment-to-bedrock, sediment-to-average and H/V spectral ratios. The temporal evolution of the noise spectra is analysed within one day, in order to assess the stationarity of the noise signal. The noise wavefield properties have been studied through polarization analyses in selected bands of frequency, where spectral peaks are observed to dominate, to better understand the real nature of those peaks. Results give evidence of low amplification levels, missing any correlation between spectral amplitudes and sediment thickness over the basement. We interpret this result as due to the poor impedance contrast between sediments and basement, which is characterized by low values of shear waves velocity. Moreover, sharp amplitude peaks are observed in the raw spectra of the sediment-sites, in the 2–4 Hz frequency band; a numerical simulation interprets this effect as possibly associated with a wide-scale structure, invoking the presence of a sharper impedance contrast at greater depth. At high frequencies the action of ambient noise sources, mainly active on horizontal components of motion, is retained dominant to generate the prominent peaks observed in the H/V spectral ratios; in some cases the presence of a near-surface low-velocity layer can contribute to amplify the seismic motion generated at these frequencies.  相似文献   

19.
A quantitative AVO algorithm suitable for media with slow lateral parameter variations is developed. The method is based on a target-oriented inversion scheme for estimation of elastic parameters in a locally horizontally stratified medium. The algorithm uses band-limited PP reflection coefficients in the τ-p domain to estimate P- and S-wave velocities, densities and layer thicknesses. To obtain these reflection coefficients, a pre-processing involving the Radon transform and multiple attenuation is necessary. Furthermore, a macromodel for the velocities above the target zone must be found prior to the inversion. Various inversion tests involving synthetic data with white Gaussian noise and modelling errors that are likely to occur in conjunction with real data have been performed. In general, the inversion algorithm is fairly robust, since it is able to reproduce the main features of the reference model: main interface locations and relative contrasts in the three unknown layer parameters are recovered. From a test combining the effect of source directivity, one thin layer and 20% white Gaussian noise, it was found that neglect of the source directivity in the inversion caused the largest errors in the estimates. This indicates that it is very important either to eliminate the source directivity in a preprocessing step, or to take the directivity into account in the present algorithm. Despite these problems it was concluded that the inversion algorithm was able to reproduce the main features of the reference model.  相似文献   

20.
Seismic reflection methods are being developed at the University of Manitoba to aid in determining fine crustal structure in the Precambrian of Manitoba and northwestern Ontario. Present-day environmental concern as well as mineshaft conditions necessitate the detonation of several smaller charges repeated, say, I times and followed by ‘vertical’ stacking. To obtain the familiar √I improvement in signal-to-noise (S:N) amplitude ratio applying the straight-sum (SS) method, one assumes, among other things, that both S:N ratio and signal variance are the same on all traces. Dropping these assumptions, as we must for our data, it becomes necessary to apply weighting coefficients to optimize the S:N ratio of the stacked trace. We still assume the signal shapes to be the same for repeated shots, so for the jth trace on the record of the ith shot we model the time series as: tij=ai (sj+nij); where ai is a scaling factor. The proper weights wi are then shown to be proportional to σsi2ni where σ2 is variance, or to γi/ai where γi is S:N power ratio. Applying the weighted-stack (WS) method gives S:N amplitude ratios which are, on average, 55% of the optimal ratios expected from WS theory compared with only 24% for the SS method. The 45% shortfall in WS performance is ascribed mainly to trace-alignment (or time-delay) errors. Varying noise levels on individual traces, slight dissimilarity of signal shape, and correlated noise may also contribute to a lesser extent (in decreasing order of significance). This WS method appears to strike a good practical balance between S:N improvement and processing efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号