首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
核电站设备的振动台试验   总被引:2,自引:0,他引:2  
本文进行了核电站设备(IS型单级单吸清水离心泵)的动力特性测试和振动台试验,使用自由振动衰减法、白噪声激振法和半功率点法分别测出了水泵在三个方向上的自振频率和阻尼比。给出了楼板加速度时程的模拟方法。根据本文给出的模拟方法和楼板反应谱,模拟了楼板加速度时程,并进行了水泵的振动台试验。振动台试验是在水泵工作状态下进行的。  相似文献   

2.
多层选煤厂房的受振层楼板振动分析   总被引:1,自引:0,他引:1  
非设备层楼板的振动问题是工程中一种易发的振动事故,本文就多层选煤厂的非设备层楼板振动问题进行了研究,探讨了楼板振动产生的机理。文中提出了非设备层楼板振动分析的两步骤法:(1)通过对局部楼板有限元模型的模态分析,来定性判断楼板是否在设备的共振区,从而对楼板是否出现共振进行初步判断;(2)采用结构-设备复合系统三维动力有限元分析模型,对非设备层楼板的动力响应进行分析。实际工程算例的分析证明了该方法的有效性和合理性,该方法为选煤厂的非设备层的楼板振动研究提供了思路。最后,本文对多层选煤厂的非设备层楼板的设计提出了一些参考建议。  相似文献   

3.
反应谱及其标定方法是抗震设计研究领域的基本问题。简要介绍了反应谱的概念,总结了20世纪以来反应谱的研究历程和最新进展;总结了反应谱在工程抗震中的应用,对比分析了我国不同时期各行业抗震规范中设计反应谱的相关规定。详细介绍了目前反应谱标定的主要方法、存在的问题及演进历程,最后对反应谱及其标定方法需要继续研究的问题进行了讨论。该项工作对开展反应谱理论研究和抗震设计研究有一定的参考意义。  相似文献   

4.
文俊  蒋友宝 《地震工程学报》2020,42(2):326-331,367
为测试高层钢结构建筑抗震性能,在有限元模型中以某高层钢框架结构办公大厦作为研究对象,测试其横向支撑地震动力响应状况。选取地震峰值加速度为200 cm/s^2的El-Centro波作为地震波输入,采用瞬态动力方法分析不同楼板厚度下建筑地震模拟响应,得到建筑顶层位移时程曲线;在SAP2000结构软件中分析建筑工程添加横向支撑前后的反应谱,记录各楼层垂直与水平方向位移与层间位移角。得到如下结果:高层钢结构建筑在地震响应下产生的位移不随楼板厚度的增加而增大,楼板厚度为100 mm、170 mm时位移波动显著;添加横向支撑后,建筑水平刚度显著提升,同理,添加横向支撑后横向层间位移角的最大值变化较大,且低于1/250,符合相关建筑标准。  相似文献   

5.
设计反应谱及其标定方法的研究是工程抗震研究领域的基本问题之一。在现有研究成果的基础上,归纳和总结了设计反应谱及其标定方法的研究历史和现状;评述了研究进程中的若干节点问题;介绍了设计反应谱的标定原理和当前几种有代表性的设计反应谱的标定方法;分析了设计反应谱标定参数的影响因素。在此基础上,对设计反应谱及其标定方法研究中的强震资料积累问题、谱形状问题、标定参数的确定问题以及标定方法等问题进行了讨论并提出了改进和进一步研究的建议。  相似文献   

6.
对户内狭窄的传统民居进行加固与改造使其满足现代商业使用,需要研究安全、适用、经济的结构加固方法以及快速的施工技术。本文介绍一种梁柱装配式连接节点,钢管内衬栓管连接方法,可拆卸楼板梁连接做法;以工程实例在户内新加装配式钢框架,植入钢筋混凝土楼板,加固承重结构部件;最终新结构满足新荷载下的使用要求,施工速度得到提升,不改变外立面墙、屋面,保留了传统建筑风貌。该技术适用于非文物古建筑、老旧建筑的修缮加固与更新改造,可以有效地延长旧建筑安全使用寿命,减少拆除重建,大量节约社会建设资源。  相似文献   

7.
冷弯薄壁型钢结构因其轻质高强且易装配的优点而被广泛应用于工程建筑领域,但由于结构轻质、阻尼小的特性,横向人致振动就可能会导致舒适度问题。文中根据横向步行荷载模型中各随机因素的概率分布,结合Monte Carlo模拟法获得荷载样本曲线,基于荷载样本曲线的反应谱分析作出横向步行荷载加速度反应谱包络线,采用振型分解法研究冷弯薄壁型钢活动板房的“糖葫芦串”模型,给出冷弯薄壁型钢活动板房楼板在横向步行荷载作用下加速度响应的反应谱计算方法。并通过工程实例现场测试,验证反应谱分析法的可行性,其中基于峰值反应谱95%保证率和均方根反应谱75%保证率的计算结果与实测结果较为接近。实测结果和计算结果均表明,轻钢结构板房在振动舒适度设计中需要考虑横向人致振动的影响。  相似文献   

8.
抗震设计反应谱的标定方法   总被引:3,自引:0,他引:3  
抗震设计反应谱是结构抗震设计的主要依据,设计反应谱的标定是确定地震动输入的重要环节。文中详细地总结了设计反应谱标定的基本原理和几种常用的设计反应谱标定方法,介绍了我国建筑抗震设计反应谱参数的确定方法和统一抗震设计反应谱的研究现状及应用前景;对不同设计反应谱标定方法中存在的问题进行了评述;提出抗震设计反应谱标定方法中有待进一步研究的问题。  相似文献   

9.
建立了考虑楼板变形时的隔震结构动力计算方法,并针对非规则结构中几种需要考虑楼板变形的情况,进行了隔震前后的动力性能计算分析研究。  相似文献   

10.
底部弱层非规则布置隔震结构的计算研究   总被引:1,自引:0,他引:1  
提出了层单元方法,将楼板视为剪切弯曲深梁,用二次位移函数和一次转角函数描述楼面运动。同时建立了平面非规则房屋隔震结构动力反应的计算模型,用反应谱方法和时程分析方法计算分析了U型和L型底部弱层非规则布置隔震结构的局部变形的基本动力性能。  相似文献   

11.
针对核电厂结构,在考虑土-结构相互作用(SSI)的情况下进行随机地震反应分析,探讨地基岩土参数的不确定性对反应堆厂房楼层反应谱(FRS)的影响。运用ANSYS软件模块建立核电厂(NPP)结构有限元模型,通过设置边界弹簧单元和阻尼装置来考虑SSI效应;并且通过设置具有概率意义的弹簧刚度和阻尼系数,来模拟土特性参数的不确定性。随机响应分析与确定性分析的结果对比,揭示了岩性地基条件下SSI效应对核电厂FRS的影响以及地基岩土参数不确定性对FRS的影响程度。研究表明,在岩性地基条件下,亦不应忽略SSI效应;考虑SSI效应的随机分析模型同确定性模型相比,二者的分析结果较为接近,两方法都可用于NPP的FRS敏感性分析评估之中,并可进行相互比照。  相似文献   

12.
应急指挥中心是核电厂应为紧急核事故而专设的指挥中心,本文对某核电厂应急指挥中心进行基础隔震设计,分析了隔震效果;建立了各楼层的楼层反应谱,对比分析了隔震前后结构楼层反应谱与目标反应谱的关系。结果表明,隔震后结构明显降低了应急指挥中心的地震反应,同时,其楼层反应谱也大大降低,确保核电厂应急指挥中心在应急抢险中充分发挥其功能作用。  相似文献   

13.
为研究AP1000核电厂基底隔震性能,设计了缩尺比为1/40的AP1000核电厂模型结构,进行了AP1000核电厂模型基底隔震振动台试验。试验中采用铅芯橡胶隔震支座进行隔震,并选取RG1.60人工波、El Centro波和Kobe波作为地震动输入。本文从加速度响应、楼层加速度反应谱、加速度峰值放大系数、减震率等方面对隔震与非隔震核电厂结构的地震响应特性进行了研究。试验结果表明:隔震能明显减小上部结构水平向加速度响应和加速度反应谱峰值,而在隔震频率处隔震模型加速度反应谱有所增加;隔震模型由于摇摆效应在隔震频率处的水平向楼层加速度反应谱随楼层高度的升高先减小后增大;在三向输入地震动作用下,隔震和非隔震AP1000模型各楼层在竖向基频附近的竖向加速度反应谱较竖向输入的地震动放大较为明显。  相似文献   

14.
For a proper response spectrum analysis of a secondary system with multiple supports, the seismic inputs are required to be defined in terms of the auto and cross floor response spectra. If no feed-back or interaction effect from the secondary system to its supporting primary structure is suspected, these inputs can be developed by a direct analysis of the supporting structure alone. However, sometimes the effect of the interaction on the secondary system response can be quite significant. Herein, a method is developed to incorporate the feed-back effect, through proper modification of the interaction-free floor spectrum inputs. The interaction coefficients are used to effect such modifications in different floor spectral quantities. A procedure for the calculation of the interaction coefficients is proposed. The modified floor spectra when used as inputs to the secondary system do introduce the interaction effect in the secondary system response. A successful application of this method is demonstrated by numerical examples of secondary systems with three different secondary-to-primary system mass ratios.  相似文献   

15.
A suite of reinforced‐concrete frame buildings located on hill sides, with 2 different structural configurations, viz step‐back and split‐foundation, are analyzed to study their floor response. Both step‐back and split‐foundation structural configurations lead to torsional effects in the direction across the slope due to the presence of shorter columns on the uphill side. Peak floor acceleration and floor response spectra are obtained at each storey's center of rigidity and at both its stiff and flexible edges. As reported in previous studies as well, it is observed that the floor response spectra are better correlated with the ground response spectrum. Therefore, the floor spectral amplification functions are obtained as the ratio of spectral ordinates at different floor levels to the one at the ground level. Peaks are observed in the spectral amplification functions corresponding to the first 2 modes in the upper portion of the hill‐side buildings, whereas a single peak corresponding to a specific kth mode of vibration is observed on the floors below the uppermost foundation level. Based on the numerical study for the step‐back and split‐foundation hill‐side buildings, simple floor spectral amplification functions are proposed and validated. The proposed spectral amplification functions take into account both the buildings' plan and elevation irregularities and can be used for seismic design of acceleration‐sensitive nonstructural components, given that the supporting structure's dynamic characteristics, torsional rotation, ground‐motion response spectrum, and location of the nonstructural components within the supporting structure are known, because current code models are actually not applicable to hill‐side buildings.  相似文献   

16.
现阶段基于性能的抗震设计思想不仅关注结构自身体系的安全,而且保护非结构构件在地震作用下使用功能完好。对于工业建筑结构,生产设备在地震作用下受损会影响震后功能恢复。加速度敏感型非结构构件一般采用楼层加速度指标来量化其地震损伤程度。以三个不同高度的钢抗弯框架规则结构体系为研究对象,采用与竖向目标谱匹配的近断层非脉冲和脉冲地震动作为竖向地震输入,考察不同质量不规则程度下,楼层竖向绝对加速度随建筑高度的变化趋势,并从反应谱角度分析不规则质量分布对楼层加速度响应的影响。结果表明:4层结构在非脉冲地震作用下楼层顶层处竖向绝对加速度是地面竖向峰值加速度的5倍之多,某一层质量的突变会引起该层及其他楼层竖向绝对加速度的明显变化。另外,对现有计算楼层竖向加速度响应的经验公式进行验证,发现美国ASCE 7-16规范的估计结果偏于保守。  相似文献   

17.
A response spectrum procedure is developed for seismic analysis of multiply supported secondary systems. The formulation is based on the random vibration analysis of structural systems subjected to correlated inputs applied at several supports. For a proper response spectrum analysis of a multiple support system, the support inputs are required to be defined in terms of the auto and cross pseudo-acceleration and relative velocity floor response spectra. Also information about the floor displacements and velocities as well as their correlations is required. The response of the secondary system is expressed as a combination of the dynamic and pseudo-static response components. The dynamic component is associated with the inertial effects of the support accelerations, whereas the pseudo-static component is due to the displacement of the supports relative to each other. Herein, the correlation between these two parts of the response is included through a term called the cross response component. Each of these components of the response can be calculated by a response spectrum method. The application of the proposed method is demonstrated by numerical examples.  相似文献   

18.
Nonstructural components (NSCs) should be subjected to a careful and rational seismic design, in order to reduce the economic loss and to avoid threats to the life safety, as well as what concerns structural elements. The design of NSCs is based on the evaluation of the maximum inertia force, which is related to the floor spectral accelerations. The question arises as to whether Eurocode 8 is able to predict actual floor response spectral accelerations occurring in structures designed according to Eurocode 8. A parametric study is conducted on five RC frame structures in order to evaluate the floor response spectra. The structures, designed according to Eurocode 8, are subjected to a set of earthquakes, compatible with the design response spectrum. Time-history analyses are performed both on elastic and inelastic models of the considered structures. Eurocode formulation for the evaluation of the seismic demand on NSCs does not well fit the numerical results. Some comments on the target spectrum provided by AC 156 for the seismic qualification of NSC are also included.  相似文献   

19.
为研究核电站结构-设备相互作用的地震反应,针对某高温气冷堆核电站反应堆进行结构与设备相互作用的地震反应分析研究,通过对考虑与不考虑结构-设备相互作用的模型进行对比,开展模态分析、设计基准地震动下和超设计基准地震动下的动力特性分析以及楼层反应谱分析,结果表明:考虑剪力墙主体结构与设备的相互作用后,结构的地震反应减小,层间剪力最大减小60%,水平向楼层反应谱峰值减小为不考虑相互作用时的40%,提高了结构与设备的安全性,并为设备抗震设计提供依据。但竖向楼层反应谱在结构竖向周期附近有放大作用,建议在设备抗震设计时予以注意。  相似文献   

20.
Response parameters used to estimate nonstructural damage differ depending on whether deformation‐sensitive or acceleration‐sensitive components are considered. In the latter case, seismic demand is usually represented through floor spectra, that is response spectra in terms of pseudo‐acceleration, which are calculated at the floor levels of the structure where the nonstructural components are attached to. Objective of this paper is to present a new spectrum‐to‐spectrum method for calculating floor acceleration spectra, which is able to explicitly account for epistemic uncertainties in the modal properties of the supporting structure. By using this method, effects on the spectra of possible variations from nominal values of the periods of vibration of the structure can be estimated. The method derives from the extension of closed‐form equations recently proposed by the authors to predict uniform hazard floor acceleration spectra. These equations are built to rigorously account for the input ground motion uncertainty, that is the record‐to‐record variability of the nonstructural response. In order to evaluate the proposed method, comparisons with exact spectra obtained from a standard probabilistic seismic demand analysis, as well as spectra calculated using the Eurocode 8 equation, are finally shown. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号