首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, located on the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone had dislocated gully terrace of the first order, forming fault-scarp in front of the loess mesa. It has been discovered in many places in ground surface and trenches that Holocene deposits were dislocated. The latest activity was the 1303 Hongdong earthquake M=8, the fault appeared as right-lateral strike-slip with normal faulting. During that earthquake, the Taigu fault together with the Mianshan western-side fault on the Lingshi upheaval and the Huoshan pediment fault on the eastern boundary of the Linfen basin was being active, forming a surface rupture belt of 160 km in length. Moreover, the Taigu fault were active in the mid-stage of Holocene and near 7 700 aB.P. From these we learnt that, in Shanxi fault-depression system, the run-through activity of two boundary faults of depression-basins might generate great earthquake with M=8.  相似文献   

2.
The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, located on the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone had dislocated gully terrace of the first order, forming fault-scarp in front of the loess mesa. It has been discovered in many places in ground surface and trenches that Holocene deposits were dislocated. The latest activity was the 1303 Hongdong earthquake M=8, the fault appeared as right-lateral strike-slip with normal faulting. During that earthquake, the Taigu fault together with the Mianshan western-side fault on the Lingshi upheaval and the Huoshan pediment fault on the eastern boundary of the Linfen basin was being active, forming a surface rupture belt of 160 km in length. Moreover, the Taigu fault were active in the mid-stage of Holocene and near 7 700 aB.P. From these we learnt that, in Shanxi fault-depression system, the run-through activity of two boundary faults of depression-basins might generate great earthquake with M=8. Foundation item: Chinese Joint Seismological Science Foundation (201017). Contribution No. 2003A004, Institute of Crust Dynamics, China Earthquake Administration.  相似文献   

3.
最新调查结果表明,太谷断裂断错山前冲沟Ⅰ级阶地以及在黄土台地前缘形成断坎,在地表及探槽中多处见到断裂断错全新世地层,断裂的最新活动是1303年洪洞8级地震,活动方式为右旋走滑兼正倾滑活动. 在该次地震中,太谷断裂与灵石隆起上的绵山西侧断裂、临汾盆地东边界的霍山山前断裂一起活动,形成长约160 km的地表破裂带. 除此之外,该断裂曾在全新世中期及距今7 700年以后有过活动. 由此得到,在山西断陷系,两个断陷盆地边界断裂的贯通活动发生8级特大大震.   相似文献   

4.
Surface rupture zone of the 1303 Hongtong M=8 earthquake, Shanxi Province   总被引:1,自引:0,他引:1  
Introduction The 1303 Shanxi Hongtong M=8 earthquake is the earliest M=8 event determined in histori-cal records in China and the largest recorded in Shanxi fault-depression system in history. Some researchers have discussed the tectonic environment of this earthquake (DENG, et al, 1973; DENG, 1984; DENG, XU, 1994, 1995; Seismo-geological Brigade, State Seismological Bureau, Depart-ment of Geology and Geography, Peking University, 1979; LIU, XIAO, 1982; ZHANG, JIA, 1986; SU, …  相似文献   

5.
Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990‘s up to the present, the characteristics of distribution and displacement of surface rupture zone of the 1303 Hongtong M = 8 earthquake, Shanxi Province are synthesized and discussed in the paper. If Taigu fault, Mianshan west-side fault and Huoshan piedmont fault were contemporarily active during the 1303 Hongtong M = 8 earthquake, the surface rupture zone would be 160 km long and could be divided into 3 segments, that is, the 50-km-long Huoshan piedmont fault segment, 35-km-long Mianshan west-side fault segment and 70-km-long Taigu fault segment, respectively. Among them, there exist 4 km and 8 km step regions. The surface rupture zone exhibits right-lateral features. The displacements of northern and central segments are respectively 6~7 m and the southern segment has the maximum displacement of 10 m. The single basin-boundary fault of Shanxi fault-depression system usually corresponds to M ≈ 7 earthquake, while this great earthquake (M = 8) broke through the obstacle between two basins. It shows that the surface rupture scale of great earthquake is changeable.  相似文献   

6.
新疆伊宁盆地活动断裂新活动特征研究   总被引:3,自引:0,他引:3  
新疆伊宁盆地主要分布有巩留南、喀什河、雅马特等6条活动断裂,断裂走向近东西向与北酉一北北西向。其中巩留南断裂、喀什河断裂、雅马特断裂等在晚更新世一全新世时期有过多次显著的新活动,切错了晚更新世一全新世堆积物。在喀什河断裂上1812年发生了8级大展,形成长约100km的地震形变带。在巩留南断裂、雅马特断裂、伊宁断裂上也有受控于断裂近代新活动的中等地震发生。  相似文献   

7.
The Tan-Lu Fault Zone(TLFZ), a well-known lithosphere fault zone in eastern China, is a boundary tectonic belt of the secondary block within the North China plate, and its seismic risk has always been a focus problem. Previous studies were primarily conducted on the eastern graben faults of the Yishu segment where there are historical earthquake records, but the faults in western graben have seldom been involved. So, there has been no agreement about the activity of the western graben fault from the previous studies. This paper focuses on the activity of the two buried faults in the western graben along the southern segment of Yishu through combination of shallow seismic reflection profile and composite drilling section exploration. Shallow seismic reflection profile reveals that the Tangwu-Gegou Fault(F4)only affects the top surface of Suqian Formation, therefore, the fault may be an early Quaternary fault. The Yishui-Tangtou Fault(F3)has displaced the upper Pleistocene series in the shallow seismic reflection profile, suggesting that the fault may be a late Pleistocene active fault. Drilling was implemented in Caiji Town and Lingcheng Town along the Yishui-Tangtou Fault(F3)respectively, and the result shows that the latest activity time of Yishui-Tangtou Fault(F3)is between(91.2±4.4)ka and(97.0±4.8)ka, therefore, the fault belongs to late Pleistocene active fault. Combined with the latest research on the activity of other faults along TLFZ, both faults in eastern and western graben were active during the late Pleistocene in the southern segment of the Yishu fault zone, however, only the fault in eastern graben was active in the Holocene. This phenomenon is the tectonic response to the subduction of the Pacific and Philippine Sea Plate and collision between India and Asian Plate. The two late Quaternary active faults in the Yishu segment of TLFZ are deep faults and present different forms on the surface and in near surface according to studies of deep seismic reflection profile, seismic wave function and seismic relocation. Considering the tectonic structure of the southern segment of Yishu fault zone, the relationship between deep and shallow structures, and the impact of 1668 Tancheng earthquake(M=8(1/2)), the seismogenic ability of moderate-strong earthquake along the Yishui-Tangtou Fault(F3)can't be ignored.  相似文献   

8.
郯庐断裂带莒县胡家孟晏地震破裂带的发现   总被引:4,自引:3,他引:1       下载免费PDF全文
郯庐断裂带是中国东部最主要的一条活动断裂带。在该断裂带中部,沂沭断裂东地堑的潍坊—嘉山段中发育了1条长360km的全新世活动断裂带(F5),在该全新世断裂带的北段和中段分别发生了公元70年的安丘地震和公元1668年的郯城地震。2003年底我们考察沭河断裂带时,在莒县境内发现了1条长约7km的地震破裂带,作为活动断层应该归属于F5断裂带,但其是一条独立的地震破裂段还是归属于1668年郯城8.5级地震破裂带有待于进一步的研究。尽管如此,探槽揭示出的上覆未经破坏的地层的14C年代表明,该破裂带在(2140±190)aBP以来没有过活动,因此我们认为其作为1条独立破裂段的可能性较大  相似文献   

9.
郯庐断裂带是中国东部重要的活动断裂带和边界构造带,其鲁苏段全新世活动断层的空间展布和古地震序列是地学关注的焦点问题,也是准确评价区域地震危险性的重要参数.以往研究工作多集中在郯庐断裂带地表地貌现象明显且有强震记录的山东段,而江苏段则研究程度相对较低,有关郯庐断裂带江苏段全新世活动断层范围和古地震序列问题存在争议.本文利用野外地质地貌调查、浅层地震勘探、钻孔联合剖面以及古地震探槽等多层次综合方法,重点开展郯庐断裂带江苏段全新世活动断层的分布和古地震序列研究.结果显示全新世时期,安丘-莒县断裂是郯庐断裂带江苏段的主要活动断层,且江苏全段该断层都是全新世活动断层.通过对比宿迁闸-皂河镇断裂南北安丘-莒县断裂的断层地貌和断层最新活动时间,并结合宿迁闸-皂河镇断裂在第四纪没有活动过等证据,推测该断层在全新世时期并不是区域阻碍破裂的断层.探槽揭示郯庐断裂带江苏段全新世两次古地震事件,事件Ⅰ限定在(6.2±0.3)-(13.4±0.7)ka B.P.之间,而事件Ⅱ限定在(2.5±0.1)ka B.P.到现今,全新世两次古地震间隔较长.基于构造类比法,安丘-莒县断裂具有深部孕震的构造特点,是区域未来强震的潜在发震构造.  相似文献   

10.
通过断错地貌调查和探槽开挖,获得了临汾盆地西界罗云山山前断裂带龙祠-峪口段的最新活动信息:该段山前洪积扇后缘断断续续存在高2.5m、5.2m、8m左右的地表地貌陡坎;附近冲沟的Ⅰ级阶地热释光测年为距今7500a左右;在NW向的席坊沟内存在拔沟3.5m、8m、18m左右的3级阶地,与地貌陡坎有对应关系;席坊沟探槽揭示罗云...  相似文献   

11.
东昆仑活动断裂带及其强震活动   总被引:17,自引:0,他引:17  
刘光勋 《中国地震》1996,12(2):119-126
本文在简述东昆仑活动断裂带的构造背景与演化历史的基础上,重点叙述了该活动断裂带的展布,几何结构,第四纪运动和强震活动等特征,指出,这是一条具有长期演化历史,深部构造背景和第四纪乃至全新强烈活动的断裂带。因而在我国大地构造演化,尤其在青藏高原隆起形成,占有重要地位,同时,它还是我国西部地区一条主要的强震活动构造带,根据现代强震活动记录和在全带新发现的多期全新世古地震及其地表破裂带,分析了大震在断裂带  相似文献   

12.
INTRODUCTIONThe Lajishan Mountainlies onthe northeastern margin of Qinghai_Xizang(Tibet)plateau.It is ageomorphic gradient zone,separatingthe hinterland of Tibetfromthe Loess plateau.The Lajishanfaultis a product of Caledonian movement,havingexperienced m…  相似文献   

13.
天祝盆地边缘断层的全新世活动及盆地的演化与形成   总被引:3,自引:0,他引:3  
根据作者1/50,000活断层地质填图的资料,讨论了天祝盆地内断层的全新世活动及盆地的形成与演化历史。结果表明,天祝盆地内断层的全新世活动强烈,上窑洞沟深槽揭示3980±50aB.P.曾发生过一次古地震事件,天祝盆地是一个典型的拉分盆地,其形成及演化与断裂活动密切相关.  相似文献   

14.
Bayan Hara Block is one of the most representative active blocks resulting from the lateral extrusion of Tibet Plateau since the Cenozoic. Its southern and northern boundary faults are characterized by typical strike-slip shear deformation. Its eastern boundary is blocked by the Yangze block and its horizontal movement is transformed into the vertical movement of the Longmen Shan tectonic belt, leading to the uplift of the Longmen Shan Mountains and forming a grand geomorphic barrier on the eastern margin of the Tibet Plateau. A series of large earthquakes occurred along the boundary faults of the Bayan Hara Block in the past twenty years, which have attracted attention of many scholars. At present, the related studies of active tectonics on Bayan Hara Block are mainly concentrated on the boundary faults, such as Yushu-Ganzi-Xianshuihe Fault, East Kunlun Fault and Longmen Shan Fault. However, there are also some large faults inside the block, which not only have late Quaternary activity, but also have tectonic conditions to produce strong earthquake. These faults divide the Bayan Hara Block into some secondary blocks, and may play important roles in the kinematics and dynamics mechanism of the Bayan Hara Block, or even the eastern margin of the Tibet Plateau. The Dari Fault is one of the left-lateral strike-slip faults in the Bayan Hara Block. The Dari Fault starts at the eastern pass of the Kunlun Mountains, extends eastward through the south of Yalazela, Yeniugou and Keshoutan, the fault strike turns to NNE direction at Angcanggou, then turns to NE direction again at Moba town, Qinghai Province, and the fault ends near Nanmuda town, Sichuan Province, with a total length of more than 500km. The fault has been considered to be a late Quaternary active fault and the 1947 M73/4 Dari earthquake was produced by its middle segment. But studies on the late Quaternary activity of the Dari Fault are still weak. The previous research mainly focused on the investigation of the surface rupture and damages of the 1947 M73/4 Dari earthquake. However, there were different opinions about the scale of the M73/4 earthquake surface rupture zone. Dai Hua-guang(1983)thought that the surface rupture of the earthquake was about 150km long, but Qinghai Earthquake Agency(1984)believed that the length of surface rupture zone was only 58km. Based on interpretation of high-resolution images and field investigations, in this paper, we studied the late Quaternary activity of the Dari Fault and the surface rupture zone of the 1947 Dari earthquake. Late Quaternary activity in the central segment of the Dari Fault is particularly significant. A series of linear tectonic landforms, such as fault trough valley, fault scarps, fault springs and gully offsets, etc. are developed along the Dari Fault. And the surface rupture zone of the 1947 Dari earthquake is still relatively well preserved. We conducted a follow-up field investigation for the surface rupture zone of the 1947 Dari earthquake and found that the surface rupture related to the Dari earthquake starts at Longgen village in Moba town, and ends near the northwest of the Yilonggounao in Jianshe town, with a length of about 70km. The surface rupture is primarily characterized by scarps, compressional ridges, pull-apart basins, landslides, cleavage, and the coseismic offset is about 2~4m determined by a series of offset gullies. The surface rupture zone extends to the northwest of Yilonggounao and becomes ambiguous. It is mainly characterized by a series of linear fault springs along the surface rupture zone. Therefore, we suggest that the surface rupture zone of the 1947 Dari earthquake ends at the northwest of Yilonggounao. In summary, the central segment of the Dari Fault can be characterized by strong late Quaternary activity, and the surface rupture zone of the 1947 Dari earthquake is about 70km long.  相似文献   

15.
The 2008 Wenchuan earthquake occurred along the Longmen Shan fault zone, only five years later, another M7 Lushan earthquake struck the southern segment where its seismic risk has been highly focused by multiple geoscientists since this event. Through geological investigations and paleoseismic trenching, we suggest that the segment along the Shuangshi-Dachuan Fault at south of the seismogenic structure of the Lushan earthquake is active during Holocene. Along the fault, some discontinuous fault trough valleys developed and the fault dislocated the late Quaternary strata as the trench exposed. Based on analysis of historical records of earthquakes, we suggest that the epicenter of the 1327 Tianquan earthquake should be located near Tianquan and associated with the Shuangshi-Dachuan Fault. Furthermore, we compared the ranges of felt earthquakes(the 2013 M7 Lushan earthquake and the 1970 MS6.2 Dayi earthquake)and suggest that the magnitude of the 1327 Tianquan earthquake is more possible between 6½ and 7. The southern segment of the Longmen Shan fault zone behaves as a thrust fault system consisting of several sub-paralleled faults and its deep structure shows multiple layers of decollement, which might disperse strain accumulation effectively and make the thrust system propagate forward into the foreland basin, creating a new decollement on a gypsum-salt bed. The soft bed is thick and does not facilitate to constrain fault deformation and accumulate strain, which produces a weak surface tectonic expression and seismic activity along the southern segment, this is quite different from that of the middle and northern segments of the Longmen Shan fault zone.  相似文献   

16.
Complex geometrical structures on strike-slip faults would likely affect fault behavior such as strain accumulation and distribution, seismic rupture process, etc. The Xianshuihe Fault has been considered to be a Holocene active strike-slip fault with a high horizontal slip rate along the eastern margin of the Tibetan plateau. During the past 300 years, the Xianshuihe Fault produced 8 earthquakes with magnitude≥7 along the whole fault and showed strong activities of large earthquakes. Taking the Huiyuansi Basin as a structure boundary, the northwestern and southeastern segments of the Xianshuihe Fault show different characteristics. The northwestern segment, consisting of the Luhuo, Daofu and Qianning sections, shows a left-stepping en echelon pattern by simple fault strands. However, the southeastern segment(Huiyuansi-Kangding segment)has a complex structure and is divided into three sub-faults: the Yalahe, Selaha and Zheduotang Faults. To the south of Kangding County, the Moxi segment of the Xianshuihe Fault shows a simple structure. The previous studies suggest that the three sub-faults(the Yalahe, Selaha and Zheduotang Faults of the Huiyuansi-Kangding segment)unevenly distribute the strain of the northwestern segment of the Xianshuihe Fault. However, the disagreement of the new activity of the Yalahe Fault limits the understanding of the strain distribution model of the Huiyuansi-Kangding segment. Most scholars believed that the Yalahe Fault is a Holocene active fault. However, Zhang et al.(2017)used low-temperature thermochronology to study the cooling history of the Gongga rock mass, and suggested that the Yalahe Fault is now inactive and the latest activity of the Xianshuihe Fault has moved westward over the Selaha Fault. The Yalahe Fault is the only segment of the Xianshuihe Fault that lacks records of the strong historical earthquakes. Moreover, the Yalahe Fault is located in the alpine valley area, and the previous traffic conditions were very bad. Thus, the previous research on fault activity of the fault relied mainly on the interpretation of remote sensing, and the uncertainty was relatively large. Through remote sensing and field investigation, we found the geological and geomorphological evidence for Holocene activity of the Yalahe Fault. Moreover, we found a well-preserved seismic surface rupture zone with a length of about 10km near the Yariacuo and the co-seismic offsets of the earthquake are about 2.5~3.5m. In addition, we also advance the new active fault track of the Yalahe Fault to Yala Town near Kangding County. In Wangmu and Yala Town, we found the geological evidence for the latest fault activity that the Holocene alluvial fans were dislocated by the fault. These evidences suggest that the Yalahe Fault is a Holocene active fault, and has the seismogenic tectonic condition to produce a large earthquake, just like the Selaha and Zheduotang Faults. These also provide seismic geological evidence for the strain distribution model of the Kangding-Huiyuansi segment of the Xianshuihe Fault.  相似文献   

17.
Tanlu fault zone is the largest strike-slip fault system in eastern China. Since it was discovered by aeromagnetics in 1960s, it has been widely concerned by scholars at home and abroad, and a lot of research has been done on its formation and evolution. At the same time, the Tanlu fault zone is also the main seismic structural zone in China, with an obvious characteristic of segmentation of seismicity. Major earthquakes are mostly concentrated in the Bohai section and Weifang-Jiashan section. For example, the largest earthquake occurring in the Bohai section is M7.4 earthquake, and the largest earthquake occurring in the Weifang-Jiashan section is M8.5 earthquake. Therefore, the research on the active structure of the Tanlu fault zone is mainly concentrated in these two sections. With the deepening of research, some scholars carried out a lot of research on the middle section of Tanlu fault zone, which is distributed in Shandong and northern Jiangsu Province, including five nearly parallel fault systems, i.e. Changyi-Dadian Fault(F1), Baifenzi-Fulaishan Fault(F2), Yishui-Tangtou Fault(F3), Tangwu-Gegou Fault(F4) and Anqiu-Juxian Fault(F5). They find that the faults F3 and F5 are still active since the late Quaternary. In recent years, we have got a further understanding of the geometric distribution, active age and active nature of Fault F5, and found that it is still active in Holocene. At the same time, the latest research on the extension of F5 into Anhui suggests that there is a late Pleistocene-Holocene fault existing near the Huaihe River in Anhui Province. The Tanlu fault zone extends into Anhui Province and the extension section is completely buried, especially in the Hefei Basin south of Dingyuan. At present, there is little research on the activity of this fault segment, and it is very difficult to study its geometric structure and active nature, and even whether the fault exists has not been clear. Precisely determining the distribution, active properties and the latest active time of the hidden faults under urban areas is of great significance not only for studying the rupture behavior and segmentation characteristics of the southern section of the Tanlu fault zone, but also for providing important basis for urban seismic fortification. By using the method of shallow seismic prospecting and the combined drilling geological section, this paper carries out a detailed exploration and research on the Wuyunshan-Hefei Fault, the west branch fault of Tanlu fault zone buried in Hefei Basin. Four shallow seismic prospecting lines and two rows of joint borehole profiles are laid across the fault in Hefei urban area from north to south. Using 14C, OSL and ESR dating methods, ages of 34 samples of borehole stratigraphic profiles are obtained. The results show that the youngest stratum dislocated by the Wuyunshan-Hefei Fault is the Mesopleistocene blue-gray clay layer, and its activity is characterized by reverse faulting, with a maximum vertical offset of 2.4m. The latest active age is late Mesopleistocene, and the depth of the shallowest upper breaking point is 17m. This study confirms that the west branch of Tanlu fault zone cuts through Hefei Basin and is still active since Quaternary. Its latest activity age in Hefei Basin is late of Middle Pleistocene, and the latest activity is characterized by thrusting. The research results enrich the understanding of the overall activity of Tanlu fault zone in the buried section of Hefei Basin and provide reliable basic data for earthquake monitoring, prediction and earthquake damage prevention in Anhui Province.  相似文献   

18.
The 2014 Jinggu M6.6 earthquake attacked the Jinggu area where few historical earthquakes had occurred and little study has been conducted on active tectonics. The lack of detailed field investigation on active faults and seismicity restricts the assessment of seismic risk of this area and leads to divergent view points with respect to the seismotectonics of this earthquake, so relevant research needs to be strengthened urgently. In particular, some studies suggest that this earthquake triggered the activity of the NE-trending faults which have not yet been studied. By the approaches of remote sensing image interpretation, structural geomorphology investigation and trench excavation, we studied the late Quaternary activity of the faults in the epicenter area, which are the eastern margin fault of Yongping Basin and the Yixiang-Zhaojiacun Fault, and drew the conclusions as follows: (1)The eastern margin fault of Yongping Basin originates around the Naguai village in the southeastern margin of Yongping Basin,extending northward across the Qiandong, Tianfang, and ending in the north of Tiantou. The fault is about 43km long, striking near SN. The linear characteristic of the fault is obvious in remote sensing images. Structural geomorphological phenomena, such as fault troughs, linear ridges and gully dislocations, have developed along the faults. There are several dextral-dislocated gullies near Naguai village, with displacements of 300m, 220m, 146m, 120m and 73m, respectively, indicating that the fault is a dextral strike-slip fault with long-term activity. In order to further study the activity of the fault, a trench was excavated in the fault trough, the Naguai trench. The trench reveals many faults, and the youngest strata offseted by the faults are Holocene, with 14C ages of(1 197±51)a and(1 900±35)a, respectively. All those suggest that it is a Holocene active fault. (2)The Yixiang-Zhaojiacun Fault starts at the southeast of the Jinggu Basin, passes through Xiangyan, Yixiang, Chahe, and terminates at the Zhaojiacun. The total length of the fault is about 60km, and is a large-scale NE-trending fault in the Wuliangshan fault zone. Four gullies are synchronously sinistrally dislocated at Yixiang village, with the displacements of 340m, 260m, 240m and 240m, indicating that the fault is a long-term active sinistral strike-slip fault. A trench was excavated in a fault trough in Yixiang village. The trench reveals a small sag pond and a fault. The fault offsets several strata with clear dislocation and linear characteristic. The thickness of strata between the two walls of fault does not match, and the gravels are oriented along fault plane. The offset strata have the 14C age of(2 296±56)a, (3 009±51)a, and(4 924±45)a, respectively, and another two strata have the OSL age of(1.8±0.1)ka, (8.6±0.5)ka respectively, by which we constrained the latest paleoearthquake between(1.8±0.1)ka(OSL-Y01)and(378±48)a BP(CY-07). This again provides further evidence that the fault is a Holocene fault with long-term activity. (3)Based on the distribution of aftershocks and the predecessor research results, the 2014 Jinggu M6.6 earthquake and the M5.8, M5.9 strong aftershocks are regarded as being caused by the eastern margin fault of Yongping Basin, which is part of the Wuliangshan fault zone. The seismogenic mechanism is that the stress has been locked, concentrated and accumulated to give rise to the quakes in the wedge-shaped area near the intersection of the SN and NE striking faults, which is similar to the seismogenic mechanism in the southwest of Yunnan Province.  相似文献   

19.
祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定   总被引:14,自引:0,他引:14  
何文贵  袁道阳  葛伟鹏  罗浩 《地震》2010,30(1):131-137
冷龙岭活动断裂是青藏高原东北缘祁连山断裂带的重要组成部分, 位于祁连山断裂带中东段。 根据野外考察结果认为, 该断裂全新世以来活动强烈, 主要表现为左旋走滑运动, 并伴有正倾滑性质, 断错地貌特征明显。 通过高分辨率SPOT卫星数字影像和大比例尺航空照片处理确定断层的位置, 利用断错地貌测图、 热释光(TL)和碳十四(14C)测年方法, 厘定了冷龙岭断裂的晚第四纪滑动速率, 冷龙岭断裂晚更新世以来的平均水平滑动速率为(4.3±0.7)mm/a, 全新世晚期以来的平均水平滑动速率为(3.9±0.36)mm/a。  相似文献   

20.
深井盆地南缘断裂特征与活动性研究   总被引:1,自引:0,他引:1  
深井盆地是山西断陷盆地带北段内部一个规模很小的次级盆地,为中更新世以来发育的三角型山间小型盆地。盆地附近断裂发育,构造复杂,深井盆地南缘断裂为主控边界断裂,控制着盆地的发展演化。本文通过对地形地貌、断裂剖面、地层测年及地震活动等方面的分析和研究,获得了断裂活动时代和活动速率等参数,综合阐述了断裂的空间展布及活动特征。研究表明:深井盆地南缘断裂晚第四纪期间仍在活动,最新活动时代为晚更新世晚期;断裂具有分段性,西段长约6km,多处可见断裂错断晚更新世地层剖面,属正断倾滑性质;东段表现为盆地与黄土斜坡直接接触,由西向东断裂地貌表现逐渐减弱,未见明显的断裂剖面,止于NW向构造,附近发生的4次4 3/4级地震与该段断裂关系密切。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号