首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vegetation in arid and semi-arid regions is affected by intermittent water availability. We discuss a simple stochastic model describing the coupled dynamics of soil moisture and vegetation, and study the effects of rainfall intermittency. Soil moisture dynamics is described by a ecohydrological box model, while vegetation is represented by site occupancy dynamics in a spatially-implicit model. We show that temporal rainfall intermittency allows for vegetation persistence at low values of annual rainfall volume, whereas it would go extinct if rainfall were constant. Rainfall intermittency also generates long-term fluctuations in vegetation cover, even in the absence of significant inter-annual variations in the statistical properties of precipitation.  相似文献   

2.
Soil moisture data of 45 years from European Center for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and the in situ observational data are used to study the temporal and spatial characteristics of the soil moisture in boreal spring in the area to the east of 100°E in China. Results show that ERA-40 soil moisture well reproduces the temporal and spatial features of observations. ERA-40 data capture the spatial pattern that the soils in Northeast China and Southwest China are wetter than those...  相似文献   

3.
NIR-red spectral space based new method for soil moisture monitoring   总被引:4,自引:0,他引:4  
Drought is a complex natural disaster that occurs frequently. Soil moisture has been the main issue in remote monitoring of drought events as the most direct and important variable describing the drought. Spatio-temporal distribution and variation of soil moisture evidently affect surface evapotranspiration, agricultural water demand, etc. In this paper, a new simple method for soil moisture monitoring is de- veloped using near-infrared versus red (NIR-red) spectral reflectance space. First, NIR-red spectral reflectance space is established using atmospheric and geometric corrected ETM data, which is manifested by a triangle shape, in which different surface covers have similar spatial distribution rules. Next, the model of soil moisture monitoring by remote sensing (SMMRS) is developed on the basis of the distribution characteristics of soil moisture in the NIR-red spectral reflectance space. Then, the SMMRS model is validated by comparison with field measured soil moisture data at different depths. The results showed that satellite estimated soil moisture by SMMRS is highly accordant with field measured data at 5 cm soil depth and average soil moisture at 0―20 cm soil depths, correlation coef- ficients are 0.80 and 0.87, respectively. This paper concludes that, being simple and effective, the SMMRS model has great potential to estimate surface moisture conditions.  相似文献   

4.
Investigating the spatial and temporal variance in productivity along natural precipitation gradients is one of the most efficient approaches to improve understanding of how ecosystems respond to climate change. In this paper, by using the natural precipitation gradient of the Inner Mongolian Plateau from east to west determined by relatively long-term observations, we analyzed the temporal and spatial dynamics of aboveground net primary productivity (ANPP) of the temperate grasslands covering this region. Across this grassland transect, ANPP increased exponentially with the increase of mean annual precipitation (MAP) (ANPP=24.47e0.005MAP, R2=0.48). Values for the three vegetation types desert steppe, typical steppe, and meadow steppe were: 60.86 gm-2a-1, 167.14 gm-2a-1 and 288.73 gm-2a-1 respectively. By contrast, temperature had negative effects on ANPP. The moisture index (K ), which takes into ac- count both precipitation and temperature could explain the spatial variance of ANPP better than MAP alone (ANPP=2020.34K1.24, R2=0.57). Temporally, we found that the inter-annual variation in ANPP (cal- culated as the coefficient of variation, CV) got greater with the increase of aridity. However, this trend was not correlated with the inter-annual variation of precipitation. For all of the three vegetation types, ANPP had greater inter-annual variation than annual precipitation (PPT). Their difference (ANPP CV/PPT CV) was greatest in desert steppe and least in meadow steppe. Our results suggest that in more arid regions, grasslands not only have lower productivity, but also higher inter-annual variation of production. Climate change may have significant effects on the productivity through changes in precipitation pattern, vegetation growth potential, and species diversity.  相似文献   

5.
Soil water depletion depth by planted vegetation on the Loess Plateau   总被引:4,自引:0,他引:4  
Evapotranspiration of much planted vegetation exceeds precipitation, and this can deplete soil water and cause a deep dry layer in the soil profile, which is a serious obstacle to sustainable land use on the Loess Plateau, China. This study aimed to determine water depletion depth of planted grassland, shrub, and forest in a semiarid area on the Loess Plateau. Soil moisture of five vegetation types was measured to >20 m in depth. The vegetation types were crop, natural grasse, seven-year-old planted alfalfa (Medicago sativa L.), 23-year-old planted caragana (Caragana microphylla Lam.) shrub, and 23-year-old planted pine (Pinus tabulaeformis L) forest land. Through comparing moisture of planted alfalfa grass, caragana shrub, and pine forest to crop and natural grassland, the depth and amount of soil water consumed by grassland, caragana brush and pine forest was determined. The depth of soil water depleted by alfalfa, caragana brush, and pine forest reached 15.5, 22.4 and 21.5 m, respectively. Supported by National Basic Research Program of China (Grant No. 2007CB407204) and National Natural Science Foundation of China (Grant No. 40471082)  相似文献   

6.
Using China's ground observations, e.g., forest inventory, grassland resource, agricultural statistics, climate, and satellite data, we estimate terrestrial vegetation carbon sinks for China's major biomes between 1981 and 2000. The main results are in the following: (1) Forest area and forest biomass car- bon (C) stock increased from 116.5×106 ha and 4.3 Pg C (1 Pg C = 1015 g C) in the early 1980s to 142.8×106 ha and 5.9 Pg C in the early 2000s, respectively. Forest biomass carbon density increased form 36.9 Mg C/ha (1 Mg C = 106 g C) to 41.0 Mg C/ha, with an annual carbon sequestration rate of 0.075 Pg C/a. Grassland, shrub, and crop biomass sequestrate carbon at annual rates of 0.007 Pg C/a, 0.014― 0.024 Pg C/a, and 0.0125―0.0143 Pg C/a, respectively. (2) The total terrestrial vegetation C sink in China is in a range of 0.096―0.106 Pg C/a between 1981 and 2000, accounting for 14.6%―16.1% of carbon dioxide (CO2) emitted by China's industry in the same period. In addition, soil carbon sink is estimated at 0.04―0.07 Pg C/a. Accordingly, carbon sequestration by China's terrestrial ecosystems (vegetation and soil) offsets 20.8%―26.8% of its industrial CO2 emission for the study period. (3) Considerable uncertainties exist in the present study, especially in the estimation of soil carbon sinks, and need further intensive investigation in the future.  相似文献   

7.
Carbonates in loess-red clay sequences consist mainly of calcite and dolomite. The EDTA analysis of carbonates in different size fractions and magnetic susceptibility reveal that calcite is a sensitive index of summer monsoon. The chemical analysis of carbonates and calcite from an 8.1 Ma loess-red clay sequence at Chaona on the Chinese central Loess Plateau shows that the evolution of the Asian summer monsoon experienced four stages, namely 8.1―5.5 Ma, 5.5―2.8 Ma, 2.8―1.5 Ma and 1.5―0 Ma, with increasing intensification and fluctuation, suggesting a possible combining impacts of uplift of the Tibetan Plateau and global changes on the Asian summer monsoon.  相似文献   

8.
The reduction of soil moisture content during droughts lowers the plant water potential and decreases transpiration; this in turn causes a reduction of cell turgor and relative water content which brings about a sequence of damages of increasing seriousness. A review of the literature on plant physiology and water stress shows that vegetation water stress can be assumed to start at the soil moisture level corresponding to incipient stomatal closure and reach a maximum intensity at the wilting point. The mean crossing properties of these soil moisture levels crucial for water stress are derived analytically for the stochastic model of soil moisture dynamics described in Part II (F. Laio, A. Porporato, L. Ridolfi, I. Rodriguez-Iturbe. Adv. Water Res. 24 (7) (2001) 707–723). These properties are then used to propose a measure of vegetation water stress which combines the mean intensity, duration, and frequency of periods of soil water deficit. The characteristics of vegetation water stress are then studied under different climatic conditions, showing how the interplay between plant, soil, and environment can lead to optimal conditions for vegetation.  相似文献   

9.
During the past 1000 years, there had been sev-eral widespread climate events on the earth, such asthe ‘Medieval Warm Period’, the ‘Little Ice Age’ andthe recent warming from the later part of the nine-teenth century onward[1,2]. To better understand thedetails of climatic history on a regional scale, morehigh-resolution, millennia-length climate reconstruc-tions are needed by intensive, multiproxy investigationof ice cores, sediments of loess and lakes, corals andtree-rings. Since …  相似文献   

10.
A stochastic model for soil moisture dynamics at a point is studied in detail. Rainfall is described as a marked Poisson process, producing a state-dependent infiltration into the soil. Losses due to leakage and evapotranspiration also depend on the existing level of soil moisture through a simplifying but realistic representation of plant physiological characteristics and soil properties. The analytic solution of the steady-state probability distributions is investigated to assess the role of climate, soil, and vegetation in soil moisture dynamics and water balance.  相似文献   

11.
Occurrence of rainstorm events can be characterized by the number of events, storm duration, rainfall depth, inter-event time and temporal variation of rainfall within a rainstorm event. This paper presents a Monte-Carlo based stochastic hourly rainfall generation model considering correlated non-normal random rainstorm characteristics, as well as dependence of various rainstorm patterns on rainfall depth, duration, and season. The proposed model was verified by comparing the derived rainfall depth–duration–frequency relations from the simulated rainfall sequences with those from observed annual maximum rainfalls based on the hourly rainfall data at the Hong Kong Observatory over the period of 1884–1990. Through numerical experiments, the proposed model was found to be capable of capturing the essential statistical features of rainstorm characteristics and those of annual extreme rainstorm events according to the available data.  相似文献   

12.
Present-day crustal movement and tectonic deformation in China continent   总被引:9,自引:3,他引:6  
Velocity field of China continent constrained by Global Positioning System (GPS) reveals both continuous and block-like styles of deformation. Continuous deformation commonly characterizes actively deforming mountain ranges such as the Tianshan Mountain, Qilian Mountain, and Tibet. The block-like movement often represents deformation in the tectonically stable regions such as Ordos, South China and Tarim blocks. GPS measurements indicate 5.1±2.5 mm/a left-lateral strike-slip rate along the Altun fault. Eastward convergence along the Longmenshan fault is less than 6.7 ± 3.0 mm/a. South China moves 11–14 mm/a eastward compared with the stable Eurasia. These low slip rates do not imply rapid eastward extrusion of China continent predicted by the model of “continental extrusion”. It appears that “crustal thickening” model more properly describes both continuous and block-like styles of deformation in China continent.  相似文献   

13.
Carbon fluxes in temperate grassland ecosystems are characterized by large inter-annual variations due to fluctuations in precipitation and land water availability. Since an eddy flux tower has been in operation in the Xilin Gol grassland, which belongs to typical temperate grassland in North China, in this study, observed eddy covariance flux data were used to critically evaluate the biophysical per- formance of different remote sensing vegetation indices in relation to carbon fluxes. Furthermore, vegetation photosynthesis model (VPM) was introduced to estimate gross primary production (GPP) of the grassland ecosystem for assessing its dependability. As defined by the input variables of VPM, Moderate Resolution Imaging Spectroradimeter (MODIS) and standard data product MOD09A1 were downloaded for calculating enhanced vegetation index (EVI) and land surface water index (LSWI). Measured air temperature (Ta) and photosynthetically active radiation (PAR) data were also included for model simulating. Field CO2 flux data, during the period from May, 2003 to September, 2005, were used to estimate the "observed" GPP (GPPobs) for validation. The seasonal dynamics of GPP predicted from VPM (GPPVPM) was compared quite well (R2=0.903, N=111, p<0.0001) with the observed GPP. The ag- gregate GPPVPM for the study period was 641.5 g C·m?2, representing a ~6% over-estimation, compared with GPPobs. Additionally, GPP predicted from other two typical production efficiency model (PEM) represents either higher overestimation or lower underestimation to GPPobs. Results of this study demonstrate that VPM has potential for estimating site-level or regional grassland GPP, and might be an effective tool for scaling-up carbon fluxes.  相似文献   

14.
In this paper the temporal behaviour of soil moisture is modelled and statistically characterized by use of the zero‐dimensional model for soil moisture dynamics and the rectangular pulses Poisson process model for rainfall forcing. The mean, covariance and spectral density function of soil moisture (both instantaneous and locally averaged cases) are analytically derived to evaluate its sensitivity to the model parameters. Finally, the probability density function of soil moisture is derived to evaluate the effect of rainfall forcing. All the model parameters used have been tuned to the Monsoon '90 data. Results can be summarized as follows. (1) Only the soil moisture model parameters (η and nZr) are found to affect the autocorrelation function in a distinguishable manner. On the other hand, both the rainfall model parameter (θ) and the effective soil depth (nZr) are found to be of impact to the soil moisture spectrum. However, as the smoothing (or damping) effect of soil is so dominant, about ±20% variation of one parameter seems not to affect significantly the second‐order statistics of soil moisture. (2) More difference can be found by applying a longer averaging time, which is found to obviously decrease the variance but increase the correlation even though no overlapping between neighbouring soil moisture data was allowed. (3) Among rainfall model parameters, the arrival rate (λ) was found to be most important for the soil moisture evolution. When increasing the arrival rate of rainfall, the histogram of soil moisture shifts its peak to a certain value as well as becomes more concentrated around the peak. However, by decreasing the arrival rate of rainfall, a much smaller (almost to zero) mean value of soil moisture was estimated, even though the total volume of rainfall remained constant. This indicates that desertification may take place without decreasing the total volume of rainfall. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
The Chinese Loess Plateau (CLP) is a unique Critical Zone with deep loess deposits, where soil moisture is primarily replenished by seasonal monsoon rainfall. However, the role of vegetation, coupled with complex topography, on rainwater infiltration on the CLP, especially after long‐term revegetation for controlling erosion, is inadequately quantified. Over the growing season of 2016, we monitored soil moisture at the 30‐min interval at 5 depths (10, 20, 40, 60, and 100 cm) in an afforested catchment and a nearby catchment with natural regrowth of grasses. Two monitoring sites were established in each catchment, one in the downhill gully and the other in the uphill slope. We found that vegetation, topography, and rainfall attributes together determined rainwater infiltration and soil moisture replenishment. An accumulated rainfall amount of 9 mm was required to trigger soil moisture response at 10‐cm depth at the 2 grassland sites and the forestland uphill‐slope site whereas 14 mm of rainfall was required for the forestland gully site covered by dense undergrowth and trees. Rainfall events with larger sums and higher peak intensities permitted rainwater infiltration to deeper soil depths. However, no rain recharged soil moisture to 100‐cm depth during the monitoring period. The forestland uphill‐slope site showed the deepest wetting depth (up to 60‐cm depth), fastest wetting‐front velocity (up to 4 cm/hr below 10‐cm depth), and the most significant soil moisture increase (up to 15% cm 3 cm?3 increase at 10‐cm depth) after rainfall in the growing season. The grassland gully site had the highest soil water storage, whereas soil moisture was depleted the most at the forestland gully site. Findings of this study reveal the transient dynamics of soil moisture after rainfall on the CLP, which signifies the role of revegetation on rainwater infiltration in the loess Critical Zone.  相似文献   

16.
Precipitation δ 18O at Yushu, eastern Tibetan Plateau, shows strong fluctuation and lack of clear seasonality. The seasonal pattern of precipitation stable isotope at Yushu is apparently different from either that of the southwest monsoon region to the south or that of the inland region to the north. This different seasonal pattern probably reflects the shift of different moisture sources. In this paper, we present the spatial comparison of the seasonal patterns of precipitation δ 18O, and calculate the moisture transport flux by using the NCAR/NCEP reanalysis data. This allows us to discuss the relation between moisture transport flux and precipitation δ 18O. This study shows that both the southwest monsoon from south and inland air mass transport from north affected the seasonal precipitation δ 18O at Yushu, eastern Tibetan Plateau. Southwest monsoon brings the main part of the moisture, but southwest transport flux is weaker than in the southern part of the Tibetan Plateau. However, contribution of the inland moisture from north or local evaporation moisture is enhanced. The combined effect is the strong fluctuation of summer precipitation δ 18O at Yushu and comparatively poor seasonality.  相似文献   

17.
Spatiotemporal variations of Chinese Loess Plateau vegetation cover during 1981–2006 have been investigated using GIMMS and SPOT VGT NDVI data and the cause of vegetation cover changes has been analyzed, considering the climate changes and human activities. Vegetation cover changes on the Loess Plateau have experienced four stages as follows: (1) vegetation cover showed a continued increasing phase during 1981–1989; (2) vegetation cover changes came into a relative steady phase with small fluctuations during 1990–1998; (3) vegetation cover declined rapidly during 1999–2001; and (4) vegetation cover increased rapidly during 2002–2006. The vegetation cover changes of the Loess Plateau show a notable spatial difference. The vegetation cover has obviously increased in the Inner Mongolia and Ningxia plain along the Yellow River and the ecological rehabilitated region of Ordos Plateau, however the vegetation cover evidently decreased in the hilly and gully areas of Loess Plateau, Liupan Mountains region and the northern hillside of Qinling Mountains. The response of NDVI to climate changes varied with different vegetation types. NDVI of sandy land vegetation, grassland and cultivated land show a significant increasing trend, but forest shows a decreasing trend. The results obtained in this study show that the spatiotemporal variations of vegetation cover are the outcome of climate changes and human activities. Temperature is a control factor of the seasonal change of vegetation growth. The increased temperature makes soil drier and unfavors vegetation growth in summer, but it favors vegetation growth in spring and autumn because of a longer growing period. There is a significant correlation between vegetation cover and precipitation and thus, the change in precipitation is an important factor for vegetation variation. The improved agricultural production has resulted in an increase of NDVI in the farmland, and the implementation of large-scale vegetation construction has led to some beneficial effect in ecology. Supported by the National Natural Science Foundation of China (Grant No. 40671019) and the Knowledge Innovation Project of the Institute of Geographical Sciences and Natural Resources Research of Chinese Academy of Sciences  相似文献   

18.
《水文科学杂志》2013,58(6):1079-1093
Abstract

A time series analysis of 152 VV-polarized Advanced Synthetic Aperture Radar (ASAR) Wide Swath Mode (WSM) images collected over the central part of the Tibetan Plateau is presented for the period from April 2005 to September 2007. The signatures of a grassland and a wetland are studied to identify the impact of three land-surface states on the backscatter (σ°). The considered land-surface states are soil moisture, soil temperature and vegetation biomass represented by Système Pour l'Observation de la Terre (SPOT) Normalized Difference Vegetation Index (NDVI). Comparison of the σ° time series with these land-surface states via a multivariate regression shows that the grassland σ° are well represented by the soil moisture dynamics, while the wetland σ° also has a strong correlation with soil temperature. Further, we found that the contribution of the NDVI to the explanation of the temporal σ° variability is limited for both the grassland and wetland.  相似文献   

19.
In situ soil moisture data from the Bibeschbach experimental catchment in Luxembourg are used to evaluate relative surface soil moisture observed with the MetOp‐A Advanced Scatterometer (ASCAT). Filtered and bias‐corrected surface soil wetness indices (SWIs) derived from coarse‐resolution (25 km) C‐band scatterometer observations are shown to be highly correlated (r = 0.86) with catchment‐averaged soil moisture measured in the field. The combination of ASCAT and ENVISAT Advanced Synthetic Aperture Radar (ASAR) data sets yields high‐resolution (1 km) relative surface soil moisture that is equally well correlated with in situ measurements. It is concluded that for soil moisture monitoring applications at a catchment scale, the two soil moisture products are equivalent. The best correlation between the SWI derived from ASCAT and ASCAT‐ASAR with in situ soil moisture observations at ca. 5 cm depth is obtained with a characteristic time length parameter T equal to 288 h. These results suggest that satellite‐derived surface soil wetness may serve as proxy for soil storage that enables the monitoring of abrupt switches in river system dynamics to appear when an effective field capacity is exceeded and rapid subsurface stormflow is initiated. In catchments where soil moisture is the main controlling factor of rapid subsurface flow, MetOp ASCAT–derived SWI has the potential to monitor how a river system approaches a critical threshold. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This study addresses estimation of net irrigation requirement over a growing season under climate uncertainty. An ecohydrological model, building upon the stochastic differential equation of soil moisture dynamics, is employed as a basis to derive new analytical expressions for estimating seasonal net irrigation requirement probabilistically. Two distinct irrigation technologies are considered. For micro irrigation technology, probability density function of seasonal net irrigation depth (SNID) is derived assessing transient behavior of a stochastic process which is time integral of dichotomous Markov process. Probability mass function of SNID which is a discrete random variable for traditional irrigation technology is also presented using a marked renewal process with quasi-exponentially-distributed time intervals. Comparing the results obtained from the presented models with those resulted from a Monte Carlo approach verified the significance of the probabilistic expressions derived and assumptions made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号