首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
One of the most serious problems caused by eutrophication of shallow lakes is the disappearance of submerged macrophytes and the switch to a turbid, phytoplankton-dominated state. The reduction of external nutrient loads often does not result in a change back to the macrophyte-dominated state because stabilising mechanisms that cause resilience may delay a response. Additional internal lake restoration measures may therefore be needed to decrease the concentration of total phosphorus and increase water clarity. The re-establishment of submerged macrophytes required for a long-term stability of clear water conditions, however, may still fail, or mass developments of tall-growing species may cause nuisance for recreational use. Both cases are often not taken into account when restoration measures are planned in Germany, and existing schemes to reduce eutrophication consider the topic inadequately. Here we develop a step-by-step guideline to assess the chances of submerged macrophyte re-establishment in shallow lakes. We reviewed and rated the existing literature and case studies with special regard on (1) the impact of different internal lake restoration methods on the development of submerged macrophytes, (2) methods for the assessment of natural re-establishment, (3) requirements and methods for artificial support of submerged macrophyte development and (4) management options of macrophyte species diversity and abundance in Germany. This guideline is intended to help lake managers aiming to restore shallow lakes in Germany to critically asses and predict the potential development of submerged vegetation, taking into account the complex factors and interrelations that determine their occurrence, abundance and diversity.  相似文献   

2.
We propose and validate a new sampling method to assess the presence, abundance and distribution of macrophytes in circular-shaped lakes according to the requirements of the Water Framework Directive (WFD2000/60/EC). The results of the macrophyte survey, and in particular of macrophyte diversity, obtained using this method are also discussed.The sampling is based on randomly selected transects homogeneously distributed around the perimeter of the lake. The number of transects is proportional to the lake's size. The method was validated on six Italian volcanic lakes using computational resampling procedures on a total of 126 transects.Using resampling procedures, we show that the proposed approach identifies more than 75% of the overall species richness through a moderate sampling effort. According to our results, Charophytes dominate aquatic vegetation in Italian volcanic lakes. Species diversity is highest at shallow depths, whereas the most abundant species, such as Chara polyacantha, are located at an intermediate depth between the shoreline and the maximum growing depth.  相似文献   

3.
Temperate and tropical shallow lakes differ in several fundamental aspects with respect to management of eutrophication. High altitude tropical shallow lakes are a special case, showing similarities with temperate and tropical lakes. We studied the ecology of the eutrophic high-altitude tropical lake Yahuarcocha in the Ecuadorian Andes and evaluated the potential of biomanipulation to control eutrophication. With a toxin-producing Cylindrospermopsis bloom, low Secchi depth and low submerged macrophyte cover, Yahuarcocha is clearly in a turbid ecosystem state. Relatively low nutrient concentrations should theoretically allow for a shift to a clear water state through biomanipulation. Top-down control of phytoplankton by zooplankton, however, is complicated by the (1) absence of predatory fish, (2) fish community dominated by small poecelid species, (3) lack of a refuge for zooplankton from fish predation within the macrophytes, and (4) persistent, grazing resistant bloom of the cyanobacterium Cylindrospermopsis. In these aspects, lake Yahuarcocha is more similar to tropical shallow lakes, probably because water temperature is high relative to the mean air temperature and because of the absence of a cold season. The fish and macrophyte communities consisted almost entirely of exotic species. The exotic fish species probably stabilized the turbid state in the lake.  相似文献   

4.
自1960s以来,抚仙湖沿岸带沉水植物群落发展迅速,而监测频率相对不足.为了解抚仙湖沉水植物群落现状及过去60年内的变化趋势,于2016年7月,对抚仙湖全湖沉水植物进行调查,并结合以往多次调查数据进行趋势分析.本次调查设置了36条样带共41个样点.在实测数据验证后,使用卫星多光谱相机数据基于归一化植被指数(NDVI)计算全湖沉水植物分布面积.此外,计算了物种在沿岸带植被区的平均生物量、优势度和群落多样性指数.结果表明:抚仙湖沉水植物2016年夏季分布面积为5.14 km2,平均生物量(鲜重)密度为9.8 kg/m2,最高48.7 kg/m2,全湖总现存量(鲜重)5.02×104t;共采集到沉水植物13种(类),隶属于5科6属.其中,生物量最高的物种是金鱼藻(Ceratophyllum demersum),其次是黑藻(Hydrilla verticillata)和穗花狐尾藻(Myriophyllum spicatum);出现频度最高的物种是穗花狐尾藻,其次是苦草(Vallisneria natans)和篦齿眼子菜(Potamogeton pectinatus);物种优势度最大的物种是穗花狐尾藻,其次是金鱼藻和黑藻;抚仙湖各样点沉水植物香农-威纳多样性指数介于0.05~1.28之间,全湖平均值为0.75;除轮藻类外,沉水植物群丛的冠层在1.5~4 m之间,其中金鱼藻群丛冠层最高.丝状附着藻大量出现,附着在高大的沉水植物冠层上的生物量远远多于附着在基质上的;丝状附着藻主要附着在群落上层沉水植物100 cm以内的植冠上.在过去的60年来,抚仙湖沉水植物分布面积、全湖总生物量和物种丰富度呈增加的趋势;低矮的草甸型物种如轮藻类、苦草等优势度下降,高大的冠层型沉水植物如穗花狐尾藻、金鱼藻等成为优势种;外来物种伊乐藻在最近几年出现并成为次优势种;丝状附着藻生物量增加.以上结果表明,目前抚仙湖沉水植物群落处于生物量、分布面积和多样性最高的阶段,是维持和保护的关键时期.但相比于国外类似湖泊,抚仙湖沉水植物丰富度一直较低,目前冠层型植物占优势、外来物种快速发展和丝状附着藻增殖的态势,将会引起群落结构不稳定,如果不加以保护和管理,可能会朝着富营养化湖泊的群落结构方向发展,进而对沿岸带水质产生不利影响.除了进一步控制抚仙湖入湖营养负荷外,我们建议对群落上层高大的冠层型沉水植物进行收割,收割深度为100 cm,从而控制冠层型沉水植物以及附着在其上的丝状附着藻,为草甸型沉水植物的发展创造条件,引导抚仙湖沉水植物群落向贫营养化湖泊的群落结构方向发展,但其可行性尚需开展研究.  相似文献   

5.
Inlay Lake is the second largest natural lake in Myanmar. Located in Shan State, in the eastern part of the country, it is a known biodiversity hotspot. The lake is negatively affected by an increasing local human population and rapid growth in both agriculture and tourism. In recent decades, several studies have listed faunistic and floristic groups in Inlay Lake, but there is still a general lack of knowledge about the aquatic macrophyte and phytoplankton community composition and abundance, and their interactions. To fill this knowledge gap, field surveys of biological and physical and chemical parameters were carried out in the period 2014–2017. They show that Inlay Lake is a shallow, clear water and calcareous lake, with nutrient concentrations indicating mesotrophic-eutrophic conditions. However, close to the shore, nutrient concentrations are generally higher, reflecting pollution from inflowing rivers, shoreline villages and floating gardens. Both the richness and abundance of aquatic macrophytes in Inlay Lake were high, with several species forming extensive stands in most of the lake over the whole survey period. Total phytoplankton and cyanobacterial biomass were low, but cyanobacteria included toxin-producing strains of Microcystis, suggesting that cyanobacterial and total phytoplankton biomass need to be kept low to avoid potentially harmful cyanobacterial blooms. Submerged macrophyte abundance and phytoplankton biomass were inversely correlated in the heavily vegetated northern lake area. Our survey suggests a great importance of the submerged macrophytes to the general water quality and the clear water state in Inlay Lake. Maintaining high macrophyte abundances should therefore be a goal in management strategies, both for Inlay Lake and other lakes in Myanmar. It is highly desirable to include macrophytes and phytoplankton in the lake monitoring in Myanmar.  相似文献   

6.
沉水植物是维持浅水湖泊清水稳态以及湖泊生态系统结构与功能的关键生物类群.近年来,气候变化和人类活动的双重作用造成湖泊水文情势的明显改变,对沉水植物的生长、繁殖和演替有着较大的影响.本文选取2个水位波动幅度与2个波动频率(逐渐改变水位),以恒定水位作为对照,研究湿地中具有重要生态功能的沉水植物刺苦草(Vallisneria spinulosa)的生物量及地上和地下营养器官形态结构对水位波动的响应.结果表明,相对于恒定水位,波动水位(低幅度低频率、低幅度高频率、高幅度低频率、高幅度高频率)对刺苦草的总生物量和获取限制资源相关器官有显著影响.相比于对照组,水位波动能够显著降低刺苦草分株数、叶片数、根数、根长、匍匐茎数、总匍匐茎长以及叶、根、地上和地下生物量,但会显著增加其株高和比叶面积.不同波动频率(低频率和高频率)和幅度(低幅度和高幅度)对光合器官的形态特征都没有显著影响,但叶和地上部分的生物量积累均受到波动幅度的显著影响.水位波动幅度显著改变了刺苦草的根数和根长,而波动频率的影响不显著.因此,对浅水湖泊受损刺苦草群落进行重建时,应避免较大幅度的水位波动,从而有利于增强植株快速恢复的能力.  相似文献   

7.
Phytoplankton and zooplankton were monitored during 2 years in four eutrophic shallow lakes (two turbid and two clear water) from two wetland reserves in Belgium. In each wetland, phytoplankton biomass was significantly higher in the turbid lake than in the clear water lake. Although total macrozooplankton biomass and the contribution of daphnids to total zooplankton biomass was comparable in the clear water and the turbid lakes, the grazing pressure of macrozooplankton on phytoplankton as estimated from zooplankton to phytoplankton biomass ratios was higher in the clear water lakes. Estimated grazing by daphnids in the clear water lakes was always high in spring. In summer, however, daphnid biomass was low or daphnids were even absent during prolonged periods. During those periods phytoplankton was probably controlled by smaller macrozooplankton or by submerged macrophytes through nutrient competition, allelopathic effects or increased sedimentation rates in the macrophyte vegetation.  相似文献   

8.
巢湖沉水植物现状(2010年)及其与环境因子的关系   总被引:6,自引:1,他引:5  
任艳芹  陈开宁 《湖泊科学》2011,23(3):409-416
在对巢湖2010年沉水植物和环境因子调查的基础上,分析了巢湖沉水植物群落特征、分布规律,应用冗余分析探讨了沉水植物与环境因子之间的关系.结果表明,现场观测到的沉水植物共计4科5属6种,全湖生物量约为8077.8t,分布面积仅占巢湖总面积的1.54%.其中马来眼子菜(Potamogeton malaianus Miq.)...  相似文献   

9.
种植水生植物,尤其是沉水植物,是目前广泛应用于受损水体的最主要的生态修复方法之一. 研究不同生长型沉水植物组合对水体理化因子的影响及营养物质的去除效率可为受损水生生态系统修复提供重要的科学依据. 本研究以我国水体修复中常用的3种不同生长型沉水植物苦草(Vallisneria natans)、黑藻(Hydrilla verticillata)和穗状狐尾藻(Myriophyllum spicatum)为研究对象,采用1种生长型种植和2种生长型及3种生长型混种模式,研究不同生长型沉水植物组合及其不同生长阶段对实验系统水质指标及氮、磷等营养物质去除率的影响. 结果表明,所有植物组合处理均显著提高了系统中总氮、总磷和氨氮去除率; 在实验前中期总氮、总磷和氨氮去除率最高. 从本实验受试物种组合来看,1种和2种生长型组合比3种生长型组合具有更高的生物量累积量和总氮去除率. Pearson相关性分析显示,实验系统中的pH、DO浓度与植物总生物量呈显著正相关,总氮、总磷、氨氮浓度均与植物总生物量呈显著负相关. 建议在受损浅水水生态系统修复过程中,根据生态修复不同阶段考虑不同生活型、生长型和功能群的水生植物组合; 在生态修复过程中需加强管理,如水生植物收割等,才能达到最好的修复效果.  相似文献   

10.
Since 2008, water level differences between Upper and Lower Lake Constance have increased after they decreased significantly in the 20th century. Questioning the causes leads to the hypothesis that the significant changes in the submerged macrophyte vegetation due to eutrophication and subsequent oligotrophication have played an essential role over the past decades. To clarify whether macrophyte vegetation is the cause of the changed water levels, the spatial distribution of Swiss pondweed Potamogeton helveticus (syn. Stuckenia helvetica) and the other submerged macrophytes was mapped in 2017. Swiss pondweed, in particular plays a key role as a perennial plant type in flow channels. Shoot densities and lengths of this species were recorded by diving. The investigations were supplemented by hydrodynamic modeling of the effects of macrophyte flow resistance on lake water level relationships.The results show that P. helveticus has indeed increased significantly over the past decade. The species colonizes the bottom of flow channels in the Seerhein up to 6 m deep with up to 1000 shoots per square meter and a length of up to 5 m, whereas in the previous decades it only occurred at the edges of flow channels as small stands with shoot lengths of less than 1 m. In the shallow water zones outside the flow channels, stoneworts in particular have spread in the Seerhein over the past decade. The hydrodynamic modeling supports the hypothesis that aquatic plants are the cause of the changed lake water level conditions and illustrate the related changes in the flow velocity field.  相似文献   

11.
水生高等植物-浮游植物关系和湖泊营养状态   总被引:29,自引:5,他引:24  
章宗涉 《湖泊科学》1998,10(4):83-86
本文根据中国一些湖泊的资料,从湖泊营养化角度分析了水生高等植物的生物量,分布和优势种以及浮游植物,透明度和湖泊营养状态的关系,表明高等植物和浮游藻类这两种初级生产者的生产在浅水湖泊中呈负相关,并反映在水质指标和湖泊营养状态下,同是,简要讨论了光限制,营养供给和生化抑制作用在浮游植物与水生高等植物关系中的作用。  相似文献   

12.
Our investigation on macrophytes in Lake Qattieneh, a large, shallow reservoir in western Syria, is a first assessment of ecological status of this lake. We studied spatial distribution patterns of aquatic macrophyte vegetation and heavy metal concentrations to determine if they can be used as indicators of point sources of pollution. Industrial and municipal point sources at the lake shore increase nutrient load and contamination by heavy metals. Water analyses revealed high concentrations of some heavy metals at some littoral sites: Ni 88.7 μg L−1, Cr 49.99 μg L−1, Co 14.38 μg L−1, and Cu 11.65 μg L−1. Despite hypertrophic conditions and high heavy metal contamination, we recorded several submerged macrophyte species with heterogeneous spatial distribution patterns. Whereas Potamogeton pectinatus L. dominates in the eastern part of the lake, near industrial point sources, both Myriophyllum spicatum L. and Potamogeton lucens L. form extended patches in the western part of the lake. The shallow, littoral areas near villages are dominated by Ranunculus trichophyllus Chaix in Villars and Ceratophyllum demersum L. The west-east gradient in nutrient and heavy metal concentrations in waters and sediments are reflected by the spatial distribution of submersed species. While the heavy metal concentrations of the water body vary considerably in different seasons, the contents in submersed macrophytes integrate seasonal variations of longer time periods. Spatial distribution and tissue accumulation of littoral macrophyte species reflect the environmental conditions at respective sites such as heavy metal contents in water and sediment.  相似文献   

13.
To test if phytobenthic algae provide additional important information to macrophytes and phytoplankton for lake monitoring, we sampled two large lakes in Norway. In each lake, we analyzed water chemistry and phytoplankton above the deepest site, recorded macrophytes and non-diatom phytobenthic algae at 20 sites around the shoreline and estimated site-specific nutrient input from land cover. Since no ready-to-use phytobenthos index exists for lakes in Norway, we tested the PIT index developed for rivers, commonly perceived signs of disturbance such as high algal cover, and taxon richness as well as similarity patterns. Both lakes were nutrient poor, but had potential local nutrient inputs (villages, agriculture). In neither of the lakes did phytobenthos indicate a worse overall ecological status than macrophytes and phytoplankton. Our data therefore, did not suggest that it would be useful to add phytobenthos into surveillance monitoring of lakes in Norway. There was a loose correlation between macrophyte and phytobenthic site-specific taxon richness and similarities. This means that macrophytes and phytobenthos do indeed give partly redundant information. High algal cover was found at sites with both high and low phosphorus input. Using algal cover as indicator of site-specific nutrient input is therefore overly simplistic. Urban and cultivated areas were associated with a more eutrophic PIT. This indicates that the PIT, despite being developed for lotic waters, may be used to detect site specific nutrient input in lakes.  相似文献   

14.
湖北长湖水生植物多样性及群落演替   总被引:4,自引:0,他引:4  
在2011年的调查基础上,结合已有资料,研究长湖水生植物多样性、群落特征、水生植被分布现状及水生植物多样性的动态变化和群落演替规律,探讨驱动水生植物群落演替的主导因素.结果显示长湖现有水生植物95种,水生植物优势群落12个.与1985年相比,长湖水生植物无论是在优势种还是优势群落上均发生了巨大变化,从原来以沉水植物为主的优势群落逐步演替为以挺水植物+漂浮浮叶植物为优势的水生植物群落.同时水生植被分布面积急剧缩小,生物量显著下降,2011年全湖水生植被覆盖率仅为4.2%,单位面积平均生物量只有2001年的10%,全湖生物总量相比于2006年下降了88.5%.分析表明,大规模围网养殖等人为干扰活动及水体富营养化是致使长湖水生植物多样性显著下降和群落发生逆向演替的主要原因.  相似文献   

15.
沉水植物附植生物群落生态学研究进展   总被引:6,自引:4,他引:2  
在高等水生植物表面经常附着生长着藻类、真菌和细菌等,这些有机群体组成附植生物群落,在大中型浅水湖泊中普遍存在.附植生物群落具有特定的物种组成和空间结构,并随季节推移和沉水植物生长表现出一定的动态变化特征.附植生物群落与宿主植物及周围水体环境联系密切,不仅能够表征水体营养盐、光照、温度等环境因子特征,与沉水植物、食草动物、浮游植物等水生生物类群也存在不同的相互作用.水生生态系统中,附植生物群落参与水体营养物质转化,在草-藻型湖泊生态系统的相互转化过程中起重要作用;其较高的初级生产力作为水生动物重要的食物来源,增加了食物网的多样性;同时,附植生物群落因其独特的生理生态特征正逐渐被应用于水质净化和水环境质量监测.本文在综述近年来附植生物群落研究进展的基础上,分析了附植生物群落的组成结构和动态变化特征,阐述了附植生物群落在水生生态系统中的功能,可为湖泊富营养化治理,尤其是沉水植被的生态修复和管理提供科学依据.  相似文献   

16.
The aquatic vegetation of ?í?ov Lake in the Danube floodplain, which is listed in the Ramsar Convention, was investigated to address three main questions: (1) how have landscape composition and the structures of the lake and its buffer zone changed from the mid-20th century; (2) how have species richness and the abundance of the aquatic macrophyte assemblage in this lake ecosystem changed over the last 34 years; and (3) which landscape metrics can best explain these temporal changes for floating-leaved macrophytes? Two methodological approaches, remote sensing and botanical field surveys, were applied. Historical (1949, 1970, 1990) and contemporary (2006) aerial photographs were analysed to determine land cover. Landscape configuration and structure were analysed using eight landscape metrics selected in advance to measure spatio-temporal changes and the fragmentation of the lake ecosystem and its corresponding buffer zone. The species diversity, abundance and distribution of true aquatic macrophytes were surveyed eleven times in five survey stretches between 1973 and 2007.At the landscape level, a decrease in the area covered by floating-leaved macrophytes, as well as an increase in open water surface and fragmentation of the land cover classes in the lake ecosystem, were recorded from 1949 to 2006. Overall, 30 true aquatic macrophytes were found from 1973 to 2007. Species richness did not change considerably, but the abundance of aquatic species fluctuated over the years. Three groups of true aquatic vegetation, based on common structural characteristics, were found in 1973–1983, 1989–2002, and 2004–2007 over the last 34 years. The landscape metrics NP, PD, LPI, and SHDI, which all express patterns of landscape fragmentation mostly indicate temporal changes in floating-leaved macrophytes.  相似文献   

17.
水深是影响浅水湖泊沉水植物生长的主要因素之一.莲座型苦草(Vallisneria natans)和冠层型穗花狐尾藻(Myriophyllum spicatum)是我国长江中下游浅水湖泊中常见的沉水植物种类,二者在形态特征上具有较大的差异.在自然水体中,水深变化对这两种植物的生长以及竞争格局的影响还有待研究.本文设计了3个水深梯度(水深0.5、1.5、2.5 m),探讨混栽条件下苦草和穗花狐尾藻生长和竞争格局对水深变化的响应.结果显示在实验系统内,中水深(1.5 m)处理组对两种植物的生长均最有利,表现为两种植物的相对生长率和生物量均最高.低水深(0.5 m)处理组苦草的生物量和相对生长率均显著低于高水深(2.5 m)处理组;穗花狐尾藻则相反,高水深对其生长的抑制作用更大.2种沉水植物在高水深胁迫时均表现出地上部分(叶长或茎长)增加,地下部分(根长)减少的形态响应特征.此外,随着水深由高到低,苦草与穗花狐尾藻生物量之比逐渐减小,表明苦草在两种植物中的竞争优势逐渐降低.研究表明湖泊水深变化不仅能够影响沉水植物的丰度,同时还可能会影响沉水植物的群落结构,而在我国浅水湖泊的生态修复实践中,在通过水位调控恢复沉水植物时,调控范围应考虑目标植物(如苦草)的光合特征.  相似文献   

18.
Kettle holes are small, pond-like, depressional wetlands in young moraine landscapes. They mostly undergo a wet-dry cycle and have a high potential for biological species diversity. However, their biodiversity and habitat function is often greatly impacted by surrounding intensive agricultural land use practices.In this study, we used statistical analysis of a large data set from the federal state of Brandenburg (Northeast Germany) to characterise the macrophyte species richness of kettle holes in an interregional context and to determine the factors that influence macrophyte occurrence. We proposed that (1) specific environmental factors, (2) hydrogeomorphic kettle hole types and (3) the regional topography have a major impact on macrophyte species richness. The evaluation of the data was performed using the General Linear Model (GLM) and Canonical Correspondence Analysis (CCA). Each of the analysed factors addresses different parts of the macrophyte species richness, including the target variables overall species richness, plant life and growth forms as well as Red List species.None of the analysis showed effects of the tested environmental factors on overall macrophytes species richness, but on the richness of plant life and growth forms as well as on Red List species. We identified hydroperiod, depth, shore width, kettle hole area, pH, electric conductivity, carbonate hardness and oxygen as key factors for the prediction of species richness of plant life and growth forms. Furthermore, we demonstrate that hydrogeomorphic kettle hole types account for relevant parts of variation in species richness and are useful interregional and integrative indicators to identify kettle holes with protection priority for macrophytes.  相似文献   

19.
Susanne Schneider   《Limnologica》2007,37(4):281-289
Ecological optima and ranges of submerged macrophytes are, amongst other factors, assumed to be influenced by ecoregion and flow velocity. In order to test the influence of ecoregion within Europe, species indicator values of three European macrophyte river trophic indices were compared to each other. Species indicator values of the United Kingdom (UK), French and German bioindication methods are significantly correlated with each other. The most obvious difference between the three indicator systems is the number of included indicator taxa. Two species exhibit major differences in indicator values: Callitriche hamulata has a broader ecological amplitude in Germany and France than in the UK, where it is restricted to oligotrophic rivers, while Ranunculus fluitans has a broad ecological amplitude in the UK, whereas the species is restricted to eutrophic rivers in Germany and France.

In order to test if current velocity has an influence on macrophyte trophic indicator qualities, species indicator values of a river (Trophic Index of Macrophytes, TIM) and a lake macrophyte trophic index (Macrophyte Index, MI), both of them applicable in Bavaria, Germany, were compared to each other. Species indicator values are significantly correlated. The most important difference is that different species are included in lake and river indicator lists. Only approximately 60% of the total species are used in both TIM and MI. Three species exhibit a major difference in ecological optima between rivers and lakes: Ranunculus circinatus has a broader ecological amplitude in rivers whereas the species is restricted to eutrophic lakes, Myriophyllum spicatum and Nuphar lutea show the opposite reaction.  相似文献   


20.
考虑生活史的太湖沉水植物优势种遥感监测   总被引:2,自引:1,他引:1  
王琪  周兴东  罗菊花  陈冲 《湖泊科学》2015,27(5):953-961
水生植物是浅水湖泊的重要类群,也是湖泊环境变化的指示物,快速监测水生植物的时空分布对湖泊生态修复和管理具有重要的指导意义.基于多时相环境星影像,构建太湖水生植物分类决策树模型,将太湖水生植物分成挺水、浮叶和沉水植物3种类别,结合沉水植物优势种生活史特征,提出了一种考虑生活史信息的太湖沉水植物优势种遥感监测方法,并对太湖7大沉水植物优势种进行时空监测.通过2013年7、8和9月野外调查样点验证,3期遥感影像分类后总的精度分别为83.04%、81.82%和85.47%,2013年太湖沉水植物优势种总体识别精度为62.20%.提出的水生植物遥感分类及沉水植物优势种识别方法为太湖管理部门开展水草打捞和生态修复提供依据和参考,同时为研究太湖沉水植物的历史变迁奠定基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号