首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The linear response of idealized dam cross-sections to harmonic horizontal or vertical ground motion is presented for a range of the important system parameters characterizing the properties of the dam, foundation rock and impounded water. Based on these frequency response functions, the separate effects of interaction between the dam and water and interaction between the dam and foundation, and the combined effects of the two sources of interaction, on dynamic response of dams are investigated.  相似文献   

2.
The arch dam–foundation rock dynamic interaction and the nonlinear opening and closing effects of contact joints on arch dam are important to the seismic response analysis of arch dams. Up to date, there is not yet a reasonable and rigorous procedure including the two factors in seismic response analysis. The methods for the analysis of arch dam–foundation rock dynamic interaction in frequency domain are not suitable to the problem with nonlinear behaviors, in this paper, so an analysis method in time domain is proposed by combining the explicit finite element method and the transmitting boundary, and the dynamic relaxation technique is adopted to obtain the initial static response for dynamic analysis. Moreover, the influence of arch dam–foundation dynamic interaction with energy dispersion on seismic response of designed Xiaowan arch dam in China is studied by comparing the results of the proposed method and the conventional method with the massless foundation, and the local material nonlinear and nonhomogeneous behaviors of foundation rock are also considered. The reservoir water effect is assumed as Westergaard added mass model in calculation. The influence of the closing–opening effects of contact joints of arch dam on the seismic response will be studied in another paper.  相似文献   

3.
The linear response of a selected arch dam to harmonic upstream, vertical or cross-stream ground motion is presented for a wide range of the important system parameters characterizing the properties of the dam, foundation rock, impounded water and reservoir boundary materials. Based on these frequency-response functions, the dam-foundation rock interaction effects in the dynamic response of arch dams are investigated.  相似文献   

4.
The available substructure method and computer program for earthquake response analysis of arch dams, including the effects of dam–water–foundation rock interaction and recognizing the semi‐unbounded size of the foundation rock and fluid domains, are extended to consider spatial variations in ground motions around the canyon. The response of Mauvoisin Dam in Switzerland to spatially varying ground motion recorded during a small earthquake is analyzed to illustrate the results from this analysis procedure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The linear response of an idealized concrete gravity dam monolith to harmonic horizontal or vertical ground motion is presented for a range of the important system parameters that characterize the properties of the dam, foundation rock, impounded water and reservoir bottom materials. Based on these frequency response functions, the effects of alluvium and sediments at the reservoir bottom on the response of the dam, including its interaction with the impounded water and foundation rock, are investigated. It is shown that the partial absorption of hydrodynamic pressure waves by the reservoir bottom materials has an important effect on the dynamic response of concrete gravity dams.  相似文献   

6.
The overall damping of linear arch dam-water-foundation rock systems depends on the material damping of dam concrete, the material and radiation damping of semi-unbounded foundation rock, and the dam-water interaction. In this paper, the effective damping ratio of these factors is separately evaluated for Mauvoisin arch dam in Switzerland to quantitatively discuss their contributions, and to guide the damping selection in the numerical analysis. This paper also aims to investigate if the material and radiation damping of the foundation rock can be replaced by increasing the material damping of the dam to simplify numerical analysis models. The seismic responses of Mauvoisin arch dam are analyzed using the semi-unbounded and massless foundation models, respectively. The results show that the overall effective damping ratio of the system can be approximately expressed as the summation of the individual effective damping and thus the increased material damping of the dam can approximate the material and radiation damping of the semi-unbounded foundation rock.  相似文献   

7.
A numerical method, the hybrid frequency-time domain (HFTD) procedure, is used to compute the earthquake response of concrete gravity dams, including sliding along the interface between the dam base and the foundation rock. The solution procedure accounts for the non-linear base sliding behaviour and the frequency-dependent response of the impounded water and flexible foundation rock. A Coulomb friction model represents the force-displacement relationship for sliding at the base interface. Using the solution procedure, an analysis of a typical dam (122 m high) shows that base sliding will occur during a moderate earthquake but the sliding displacement will be a tolerable amount when dam-foundation rock interaction is considered.  相似文献   

8.
A gravity foundation submerged in the water is subject to the buoyancy force and is hence vulnerable to sliding at the base when it is subjected to a large lateral load. The effects of sliding on the earthquake response were investigated for this type of foundation on soft rock, considering the friction characteristics at the contact between concrete and soft rock. Shake table tests were conducted to observe the behavior of a submerged foundation on soft rock which slid during the excitation. Large-scale cyclic direct shear tests were conducted to examine in detail the friction characteristics at the contact between the concrete and soft rocks. Based on the results obtained in shake table and cyclic shear tests, a numerical model was established for simulating the earthquake response behavior of a submerged gravity foundation on soft rock. Numerical parametric studies were conducted by using this model and selected earthquake ground motion records. Various important features were observed in the earthquake response of this foundation.  相似文献   

9.
The response of two arch dams to spatially varying ground motions recorded during earthquakes is computed by a recently developed linear analysis procedure, which includes dam–water–foundation rock interaction effects and recognizes the semi‐unbounded extent of the rock and impounded water domains. By comparing the computed and recorded responses, several issues that arise in analysis of arch dams are investigated. It is also demonstrated that spatial variations in ground motion, typically ignored in engineering practice, can have profound influence on the earthquake‐induced stresses in the dam. This influence obviously depends on the degree to which ground motion varies spatially along the dam–rock interface. Thus, for the same dam, this influence could differ from one earthquake to the next, depending on the epicenter location and the focal depth of the earthquake relative to the dam site. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The dynamics of a coupled concrete gravity dam-intake tower–reservoir water–foundation rock system is numerically studied considering two hollow slender towers submerged in reservoir of gravity dam. The system is investigated in the frequency-domain using frequency response functions of the dam and the towers, and in the time-domain using time-history seismic analysis under a real earthquake ground motion. The analyzes are separately conducted under horizontal and vertical ground motions. The coupled system is three-dimensionally modeled using finite elements by Eulerian–Lagrangian approach. It is shown that presence of the dam significantly influences the dynamic response of the towers under both horizontal and vertical excitations; however the dam is not affected by the towers. When the dam is present in the model, the water contained inside the towers has different effects if the foundation is rigid, but it alleviates the towers motion if the foundation is flexible. It is concluded that the effects of foundation interaction are of much importance in the response of tall slender towers when they are located near concrete gravity dams.  相似文献   

11.
A nonlinear finite element model for earthquake response analysis of arch dam–water–foundation rock systems is proposed in this paper. The model includes dynamic dam–water and dam–foundation rock interactions, the opening of contraction joints, the radiation damping of semi‐unbounded foundation rock, the compressibility of impounded water, and the upstream energy propagating along the semi‐unbounded reservoir. Meanwhile, a new equivalent force scheme is suggested to achieve free‐field input in the model. The effects of the earthquake input mechanism, joint opening, water compressibility, and radiation damping on the earthquake response of the Ertan arch dam (240 m high) in China are investigated using the proposed model. The results show that these factors significantly affect the earthquake response of the Ertan arch dam. Such factors should therefore be considered in the earthquake response analysis and earthquake safety evaluation of high arch dams. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
On the basis of some simplifying assumptions, a parametric analysis is made of the interaction effects on the effective period and damping of structures with embedded foundation in a soil layer. A simplified three-dimensional interaction model is used, in which the depth of a cylindrical foundation, the degree of contact between the ground and the footing walls and the depth of a homogeneous stratum over rigid rock are considered variable. The soil is replaced with impedance functions that are taken from a data base obtained with an appropriate numerical technique, so that suitable springs and -pots dependent on the excitation frequency are used. The system period and system damping are determined from the steady-state response of an equivalent single oscillator with flexible base subjected to a harmonic motion with constant amplitude, by equating its resonant response with that of a replacement oscillator with rigid base excited with the same motion. The influence of the foundation embedment and soil layer is investigated for several depths of both the footing and the stratum.It is confirmed that the system period decreases and the system damping increases with the foundation embedment only for sidewalls extending along the entire foundation depth. For embedded footings without sidewall or with sidewall in null contact with the surrounding soil, the effective system parameters behave opposite to those corresponding to the interface condition of total contact. Also, the system damping increases significantly with the layer depth, while the system period is practically insensitive to variations of this characteristic parameter. Finally, introducing additional permissible simplifications, an improved approximate solution for the effective period and damping of coupled systems is presented, which differs from previous analogous approximations in that damping factors of second order are not neglected and the foundation depth is explicitly considered.  相似文献   

13.
采用ABAQUS有限元分析软件,分别对基于刚性地基假定的环板基础、考虑土-结构动力相互作用的环板基础和桩基础超大型冷却塔模型进行了模态分析、弹性和弹塑性时程分析,研究了土-结构动力相互作用和基础形式对超大型冷却塔结构动力特性和地震反应的影响。结果表明:当考虑相同阶数的振型时,刚性地基模型的振型参与质量系数最小。地震作用下,刚性地基模型和桩基础模型的加速度响应、支柱内力、塔壳混凝土主应力等一般比考虑土-结构动力相互作用的环板基础模型偏大,但塔顶水平位移偏小。土-结构动力相互作用比基础形式对冷却塔动力特性以及地震反应的影响更大,且二者对冷却塔竖向振动的影响比水平向大。三种模型计算所获得的冷却塔薄弱部位均集中于支柱,且支柱最大侧移角相差不大。  相似文献   

14.
The linear response of a selected arch dam to harmonic upstream, cross-stream or vertical ground motion is presented for a wide range of the important system parameters characterizing the properties of the dam, impounded water, reservoir boundary materials and foundation rock. Based on these frequency response functions, the hydrodynamic and foundation flexibility effects in the dynamic response of arch dams are investigated.  相似文献   

15.
Several significant parameters that could affect interaction in a dam-foundation system are discussed. These parameters are: (1) Fundamental periods of the dam and the foundation layer. (2) Lateral extent of the dam. (3) The material properties of the dam and the foundation layer. Five cases are analysed to illustrate the influence of these parameters on interaction. An interaction ratio, R1, relating the response of the dam-foundation system at the base of the dam to the free field response is introduced and interaction effects are expressed in terms of this ratio; the smaller this ratio, the less are the interaction effects. For very small values of R1, it is shown that the dam-foundation system could be decoupled The results of the studies presented in the paper suggest that the interaction effects cannot be uniquely related to either the ratio of the period of the dam to the period of the foundation layer, or to the material properties of the dam and foundation layer. However, for the limited number of cases investigated, the interaction effects were found to be uniquely related to the ratio D/B, where D is the depth of the foundation layer and B is the width of the dam section. For values of D/B less than unity, strong interaction effects were obtained and the dam-foundation system could only be analysed as a coupled system. For values of D/B greater than unity, the interaction appeared negligible and the dam and its foundation layer could be decoupled. It should be noted, however, that for very small values of D/B the interaction effects would decrease becaase as D approaches zero, there would be no interaction The use of the interaction ratio, R1, and the parameter D/B should aid in assessing the need for analysing the response of the dam-foundation as a coupled or as a decoupled system.  相似文献   

16.
地基条件和墙高是影响挡土墙地震响应特征的重要因素。建立不同地基条件的仰斜式挡土墙有限元时程分析模型,以墙身外倾最大危险状态为最不利时刻,研究地基条件和墙高对挡墙动力响应及墙-土相互作用的影响特征,并以满足力学检算和墙身位移限值为出发点,提出同时考虑地基条件和地震峰值加速度PGA的仰斜式挡墙墙高控制建议。结果表明:岩质地基挡墙墙背动土压力沿墙高呈中部大、上下小的凸形分布,大震下土压力较中震时有小幅减小;基底反力呈墙踵为0、墙趾集中的三角形图式,且随PGA和墙高的增加踵部脱空趋势更为明显;土质地基挡墙因墙底地基土变形对墙后填土的牵连作用,填土跟随墙身运动的趋势加剧,墙背动土压力与PGA呈正相关并沿墙高近似呈线性分布,于墙底处最大;墙身往复摆动使踵趾端地基土体塑性变形较基底中部明显,基底反力峰值向中部转移;根据最不利时刻稳定性、承载力检算,考虑对墙身位移合理限制,提出地震区仰斜式挡墙的允许墙高在设防PGA不超过0.2g时为8 m, 0.4g大震下硬质岩地基挡墙可达8 m,软质岩地基挡墙不宜超过6 m,碎石土、砂质黏土地基挡墙不宜超过4 m。  相似文献   

17.
A direct finite element method for nonlinear earthquake analysis of 2‐dimensional dam–water–foundation rock systems has recently been presented. The analysis procedure uses standard viscous‐damper absorbing boundaries to model the semi‐unbounded foundation‐rock and fluid domains and specifies the seismic input as effective earthquake forces at these boundaries. Presented in this paper is a generalization of the direct finite element method with viscous‐damper boundaries to 3‐dimensional dam–water–foundation rock systems. Step‐by‐step procedures for determining the effective earthquake forces starting from a ground motion specified at a control point on the foundation‐rock surface is developed, and several numerical examples are computed and compared with independent benchmark solutions to demonstrate the effectiveness of the analysis procedure for modeling 3‐dimensional systems.  相似文献   

18.
设计并完成了野外大比例(1:2)土-箱形基础-框架结构相互作用系统顶部小幅激振试验.通过改变上部结构质量和基础侧限埋深,激振试验得到了同一基础不同上部结构质量与同一上部结构不同基础侧限埋深等5种工况下相互作用对系统自振频率及箱形基础阻抗函数的影响.由试验结果分析可知,当上部结构质量增加时,上部结构与土体间的相对刚度降低,相互作用对系统自振频率的影响减弱;同时由于上部结构和基础间惯性相互作用的影响,基础阻抗函数随上部结构质量的增加而增加.随着基础侧限埋深的减小,基础刚度降低,相互作用体现得更加明显.与理论结果相比,无侧限埋深基础的平动和转动基础阻抗值和理论值吻合较好.由于基础侧边回填土剪切模量小于基础底部土体剪切模量,所以同理论值相比试验得到的基础侧限埋深对基础阻抗影响系数相对较小.  相似文献   

19.
设计并完成了野外大比例(1∶2)土-箱形基础-框架结构相互作用系统顶部小幅激振试验。通过改变上部结构质量和基础侧限埋深,激振试验得到了同一基础不同上部结构质量与同一上部结构不同基础侧限埋深等5种工况下相互作用对系统自振频率及箱形基础阻抗函数的影响。由试验结果分析可知,当上部结构质量增加时,上部结构与土体间的相对刚度降低,相互作用对系统自振频率的影响减弱;同时由于上部结构和基础间惯性相互作用的影响,基础阻抗函数随上部结构质量的增加而增加。随着基础侧限埋深的减小,基础刚度降低,相互作用体现得更加明显。与理论结果相比,无侧限埋深基础的平动和转动基础阻抗值和理论值吻合较好。由于基础侧边回填土剪切模量小于基础底部土体剪切模量,所以同理论值相比试验得到的基础侧限埋深对基础阻抗影响系数相对较小。  相似文献   

20.
The available substructure method for the earthquake analysis of concrete gravity dams, including the dynamic effects of the impounded water and the flexible foundation rock, is extended to include the effects of alluvium and sediments invariably present at the bottom of actual reservoirs. Modelled approximately by a reservoir bottom that partially absorbs incident hydrodynamic pressure waves, these effects are incorporated into the continuum solution for the hydrodynamic pressure. The dam-water-foundation rock system is idealized as a two-dimensional system and analysed under the assumption of linear behaviour. An example earthquake analysis is presented to demonstrate the results obtained from the analytical procedure. Computation times for several cases illustrate the efficiency of the analytical procedure. In particular, the additional computation time required to include reservoir bottom absorption is shown to be very small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号