首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
A numerical method, the hybrid frequency-time domain (HFTD) procedure, is used to compute the earthquake response of concrete gravity dams, including sliding along the interface between the dam base and the foundation rock. The solution procedure accounts for the non-linear base sliding behaviour and the frequency-dependent response of the impounded water and flexible foundation rock. A Coulomb friction model represents the force-displacement relationship for sliding at the base interface. Using the solution procedure, an analysis of a typical dam (122 m high) shows that base sliding will occur during a moderate earthquake but the sliding displacement will be a tolerable amount when dam-foundation rock interaction is considered.  相似文献   

2.
The dynamics of a coupled concrete gravity dam-intake tower–reservoir water–foundation rock system is numerically studied considering two hollow slender towers submerged in reservoir of gravity dam. The system is investigated in the frequency-domain using frequency response functions of the dam and the towers, and in the time-domain using time-history seismic analysis under a real earthquake ground motion. The analyzes are separately conducted under horizontal and vertical ground motions. The coupled system is three-dimensionally modeled using finite elements by Eulerian–Lagrangian approach. It is shown that presence of the dam significantly influences the dynamic response of the towers under both horizontal and vertical excitations; however the dam is not affected by the towers. When the dam is present in the model, the water contained inside the towers has different effects if the foundation is rigid, but it alleviates the towers motion if the foundation is flexible. It is concluded that the effects of foundation interaction are of much importance in the response of tall slender towers when they are located near concrete gravity dams.  相似文献   

3.
Centrifuge modeling of seismic response of layered soft clay   总被引:1,自引:0,他引:1  
Centrifuge modeling is a valuable tool used to study the response of geotechnical structures to infrequent or extreme events such as earthquakes. A series of centrifuge model tests was conducted at 80g using an electro-hydraulic earthquake simulator mounted on the C-CORE geotechnical centrifuge to study the dynamic response of soft soils and seismic soil–structure interaction (SSI). The acceleration records at different locations within the soil bed and at its surface along with the settlement records at the surface were used to analyze the soft soil seismic response. In addition, the records of acceleration at the surface of a foundation model partially embedded in the soil were used to investigate the seismic SSI. Centrifuge data was used to evaluate the variation of shear modulus and damping ratio with shear strain amplitude and confining pressure, and to assess their effects on site response. Site response analysis using the measured shear wave velocity, estimated modulus reduction and damping ratio as input parameters produced good agreement with the measured site response. A spectral analysis of the results showed that the stiffness of the soil deposits had a significant effect on the characteristics of the input motions and the overall behavior of the structure. The peak surface acceleration measured in the centrifuge was significantly amplified, especially for low amplitude base acceleration. The amplification of the earthquake shaking as well as the frequency of the response spectra decreased with increasing earthquake intensity. The results clearly demonstrate that the layering system has to be considered, and not just the average shear wave velocity, when evaluating the local site effects.  相似文献   

4.
A direct finite element method is presented for nonlinear earthquake analysis of interacting dam–water–foundation rock systems. The analysis procedure applies viscous damper absorbing boundaries to truncate the semi‐unbounded fluid and foundation‐rock domains and specifies at these boundaries effective earthquake forces determined from the design ground motion defined at a control point on the free surface. The analysis procedure is validated numerically by computing the frequency response functions and transient response of an idealized dam–water–foundation rock system and comparing with results from the substructure method. Because the analysis procedure is applicable to nonlinear systems, it allows for modeling of concrete cracking, as well as sliding and separation at construction joints, lift joints, and at concrete–rock interfaces. Implementation of the procedure is facilitated by commercial finite element software with nonlinear material models that permit modeling of viscous damper boundaries and specification of effective earthquake forces at these boundaries. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, failure probability of the concrete slab on concrete-faced rockfill (CFR) dams with welded and friction contact is investigated under earthquake effects by reliability analysis. For this purpose, Torul CFR dam is selected as an example and numerical solutions are performed by considering combination of reliability analysis–finite element method. 1992 Erzincan earthquake acceleration record is used in the finite element analysis considering deconvolved-base rock input model. In this model, the ground motion to be applied to the foundation base rock is obtained by deconvolution of the free-field surface record. In the materially nonlinear analysis, Drucker–Prager model is used for concrete slab and multi-linear kinematic hardening model is utilized for rockfill. Geometrically nonlinearity is also taken into account. Viscous boundary conditions are defined in the finite element model for both foundation soil and reservoir water. The hydrodynamic pressure of the reservoir water is considered using 2D fluid finite elements based on the Lagrangian approach. Both welded contact and friction contact based on the Coulomb’s friction law are defined in the structural connections. Improved Rackwitz–Fiessler method is used with response surface method in the reliability analysis. The tensile and compression strengths of the concrete slab are utilized in the implicit limit state functions considering various thicknesses. The probability of failure of the most critical points in the concrete slab is obtained. According to this study, the probabilities of failure obtained from the CFR dam including friction contact are lower. When the welded contact is considered in joints, the probability of failure of the concrete slab is 1 due to tensile stress limit state and compression stress limit state only if concrete slab is linear. The most critical probability of failure of the concrete slab appears in the case that the concrete slab is linear and rockfill is materially nonlinear. The probability of failure of the concrete slab decreases if the nonlinearity of the concrete is considered. Also, hydrodynamic pressure decreases the reliability of the concrete slab.  相似文献   

6.
Dynamic response of dams is significantly influenced by foundation stiffness and dam-foundation interaction. This in turn, significantly effects the generation of hydrodynamic pressures on upstream face of a concrete dam due to inertia of reservoir water. This paper aims at investigating the dynamic response of dams on soil foundation using dynamic centrifuge modelling technique. From a series of centrifuge tests performed on model dams with varying stiffness and foundation conditions, significant co-relation was observed between the dynamic response of dams and the hydrodynamic pressures developed on their upstream faces. The vertical bearing pressures exerted by the concrete dam during shaking were measured using miniature earth pressure cells. These reveal the dynamic changes of earth pressures and changes in rocking behaviour of the concrete dam as the earthquake loading progresses. Pore water pressures were measured below the dam and in the free-field below the reservoir. Analysis of this data provides insights into the cyclic shear stresses and strains generated below concrete dams during earthquakes. In addition, the sliding and rocking movement of the dam and its settlement into the soil below are discussed.  相似文献   

7.
The friction developed between a steel base plate and a mortar base contributes shear resistance to the building system during a seismic event. In order to investigate the possible sliding behavior between the base plate and the mortar, a shake table study is undertaken using a large rigid mass supported by steel contact elements which rest on mortar surfaces connected to the shake table. Horizontal input accelerations are considered at various magnitudes and frequencies. The results provide a constant friction coefficient during sliding with an average value of approximately 0.78. A theoretical formulation of the friction behavior is also undertaken. The theoretical equations show that the sliding behavior is dependent on the ratio of the friction force to the input force. The addition of vertical accelerations to the system further complicates the sliding behavior as a result of the varying normal force. This results in a variable friction resistance which is a function of the amplitude, phase, and frequency of the horizontal and vertical input motions. In general, this study showed a consistent and reliable sliding behavior between steel and mortar. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
利用实体软钢棒作为消能限位装置,将一种摩擦性能优良的二硫化钼材料作为隔震支座的滑移材料,提出并制作了一种可以应用于框架结构既能隔震又可以消能的新型摩擦滑移隔震装置。探讨了其设计方法和应用方法,并对安装了该新型摩擦滑移隔震装置的一相似比为1:5的5层框架结构模型进行了振动台试验,测试了框架结构在单向地震波作用下的地震反应规律,分析了摩擦滑移隔震结构的加速度反应、层间剪力反应、隔震层滑移量及隔震层剪力的变化规律。结果表明:一般情况下当设防烈度为8度,Ⅱ类场地时,该隔震结构的加速度响应可降低50%左右,层间剪力响应可降低50%左右,减震效果比较明显。另外,只要确定合理的构造方案和实施方案,这种新型摩擦滑移隔震装置就能满足框架结构的隔震减震要求,可应用于实际工程结构中。  相似文献   

9.
The growth in computer processing power has made it possible to use time-consuming analysis methods such as incremental dynamic analysis(IDA) with higher accuracy in less time.In an IDA study,a series of earthquake records are applied to a structure at successively increasing intensity levels,which causes the structure to shift from the elastic state into the inelastic state and finally into collapse.In this way,the limit-states and capacity of a structure can be determined.In the present research,the IDA of a concrete gravity dam considering a nonlinear concrete behavior,and sliding planes within the dam body and at the dam-foundation interface,is performed.The influence of the friction angle and lift joint slope on the response parameters are investigated and the various limit-states of the dam are recognized.It is observed that by introducing a lift joint,the tensile damage can be avoided for the dam structure.The lift joint sliding is essentially independent of the base joint friction angle and the upper ligament over the inclined lift joint slides into the upstream direction in strong earthquakes.  相似文献   

10.
Earthquake safety assessment of concrete arch and gravity dams   总被引:9,自引:1,他引:8  
Based on research studies currently being carried out at Dalian University of Technology, some important aspects for the earthquake safety assessment of concrete dams are reviewed and discussed. First, the rate-dependent behavior of concrete subjected to earthquake loading is examined, emphasizing the properties of concrete under cyclic and biaxial loading conditions. Second, a modified four-parameter Hsieh-Ting-Chen viscoplastic consistency model is developed to simulate the rate-dependent behavior of concrete. The earthquake response of a 278m high arch dam is analyzed, and the results show that the strain-rate effects become noticeable in the inelastic range. Third, a more accurate non-smooth Newton algorithm for the solution of three-dimensional frictional contact problems is developed to study the joint opening effects of arch dams during strong earthquakes. Such effects on two nearly 300m high arch dams have been studied. It was found that the canyon shape has great influence on the magnitude and distribution of the joint opening along the dam axis. Fourth, the scaled boundary finite element method presented by Song and Wolf is employed to study the dam-reservoir-foundation interaction effects of concrete dams. Particular emphases were placed on the variation of foundation stiffness and the anisotropic behavior of the foundation material on the dynamic response of concrete dams. Finally, nonlinear modeling of concrete to study the damage evolution of concrete dams during strong earthquakes is discussed. An elastic-damage mechanics approach for damage prediction of concrete gravity dams is described as an example. These findings are helpful in understanding the dynamic behavior of concrete dams and promoting the improvement of seismic safety assessment methods.  相似文献   

11.
A suitable model material was developed to construct scaled models of a 30 m high prototype concrete gravity dam monolith and the experimental technique perfected for testing the models, till failure, on the EPSRC earthquake simulator at Bristol University. A series of shaking table tests was performed with the aim of assessing the possible failure mechanisms of medium to low height dams under simple motions and simulated earthquakes. Tests were conducted with and without the presence of hydrostatic pressure. The hydrodynamic pressure was simulated using Westergaard's added mass approach. Base cracking was observed to be the main failure mechanism and a tendency of the models to slide and rock after the full crack development at the interface was also observed in some cases.  相似文献   

12.
Allowing a structure to uplift and rock during an earthquake is one way in which activated forces can be capped and damage to the structure avoided or minimised. Slip‐friction connectors (also known as slotted‐bolt connectors) were originally developed for use in steel construction, but for this research have been adapted for use as hold‐downs in an experimental 2.4 m × 2.4 m rigid timber shear wall. A novel approach is used to achieve the desired sliding threshold in the connectors, and the wall uplifts when this threshold is reached. From a series of quasi‐static cyclic tests, it is shown that slip‐friction connectors can impart ductile and elasto‐plastic characteristics to what would otherwise be essentially brittle structures. Because forces on the wall were capped by the slip‐friction connectors to levels well below the design level, no damage to the wall was observed. Self‐centring potential was also found to be excellent. The slip‐friction connectors themselves are of a unique design and have proven to be robust and durable, adequately performing their duty even after almost 14 m of cumulative travel under high contact pressures. To resist base shear without unduly affecting rocking behaviour, a new type of shear‐key is proposed and implemented, and a procedure developed to quantify its influence on overall wall behaviour. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents results of a comprehensive experimental program on the seismic response of full‐scale freestanding laboratory equipment. First, quasi‐static experiments are conducted to examine the mechanical behavior of the contact interface between the laboratory equipment and floors. Based on the experimental results, the response analysis that follows adopts two idealized contact friction models: the elastoplastic model and the classical Coulomb friction model. Subsequently, the paper presents shake table test results of full‐scale freestanding equipment subjected to ground and floor motions of hazard levels with corresponding displacements that can be accommodated by the shake table at the UC Berkeley Earthquake Engineering Research Center. For the equipment tested, although some rocking is observed, sliding is the predominant mode of response, with sliding displacements reaching up to 60 cm. Numerical simulations with the proposed models are performed. Finally, the paper identifies a physically motivated intensity measure and the associated engineering demand parameter with the help of dimensional analysis and presents ready‐to‐use fragility curves. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A finite element model of incremental displacement constraint equations (IDCE), based on an existing node‐to‐surface concept, is implemented to deal with dynamic contact surfaces in the seismic behaviour analysis of cracked concrete gravity dams. After verification for sliding, rocking and impact, the IDCE model is applied to study the seismic responses of concrete gravity dams with different profiles and crack locations for a variety of parameters, such as coefficient of friction, water level and type of earthquake, as well as impact damping based on the concept of coefficient of restitution. It is revealed that cracked concrete gravity dams can experience not only sliding and rocking modes, but also the drifting mode in some cases of crack either at the base or at a height. Downstream sliding is normally accompanied by rocking, especially for the cases of crack at a height. Due to rocking and drifting, a cracked dam may still acquire a certain amount of residual sliding even if the effective coefficient of friction is relatively high. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
为了分析软土地基-筏基础核电厂房结构地震反应规律和特征,利用地震模拟振动台开展了软土地基-筏基础-核电厂房动力相互作用问题的试验研究。分别进行了表面水平土体模型和表面凹陷土体模型的运动相互作用试验、地基土-筏基础-核电厂房振动台相互作用试验、核电厂房直接固定在振动台面上的刚性基底振动台试验。试验采用圆形叠层剪切模型箱,地基土模型为某工程场地的均匀粉质粘土,其剪切波速为213 m/s;核电厂房简化为3层框架剪力墙结构模型。试验输入波形为美国核电规范常用的RG1.60反应谱合成得到的人工地震动时程。振动台试验结果对比分析表明:土-结构体系中系统的振动周期和阻尼明显大于刚性基底下结构的振动周期和阻尼;相同地震作用下在土-结构动力相互作用体系中结构加速度明显小于刚性基底下的结构加速度反应;而位移明显大于刚性基底下结构的位移。本文的研究成果可为软土地基建立核岛厂房的适应研究提供参考。  相似文献   

16.
桥墩地震动水效应的水下振动台试验研究   总被引:8,自引:0,他引:8  
进行了水下桩基础桥墩的振动台试验研究。从试件模型、试验装置和工况设置等方面介绍了水下桥墩振动台试验的实施过程。通过模型试验,分析与讨论了动水力对桩基础桥墩地震动响应的影响程度以及不同地震动输入条件下结构与水的相互作用规律。试验结果表明水的存在会改变结构动力特性和地震动响应。  相似文献   

17.
A series of shaking table tests was performed on three small-scale models of a monolith of a concrete gravity dam in order to simulate earthquake shaking. The purpose of the tests was to examine the nature of crack formation in a gravity dam and the stability of the dam in the presence of cracks. No failures occurred even though the levels of shaking employed were unrealistically high. The good performance owed to the development of crack profiles which had favourable orientations to resist sliding failures in each case. However, the development of an unfavourable crack profile, which cannot be ruled out, and the possibility of water intrusion into open cracks, something not included in the experiments, could lead to failure under significantly lower levels of excitation than those employed.  相似文献   

18.
乔峰  薄景山    王亮  常晁瑜    张兆鹏  齐文浩 《世界地震工程》2019,35(4):150-161
软土由于具有强度低、渗透性小、压缩性高、欠固结以及流变效应等不利于工程建设的特性,通常不被选做天然地基。但当软土以建筑环境或地基夹层存在时,对工程会带来一定的危害。在动力的作用下,软土表现特殊的力学行为,在地震作用有时会产生震陷;位于表层的软土放大效果显著;位于底层的软土有时具有隔震的作用。由于软土在动力学实验方面存在一定的困难,并且缺少软土场地的强震记录,使得这方面的研究受到一定影响。简要介绍了软土的成因及工程特性;总结和归纳了国内外软土的动剪切模量比和阻尼比以及剪切波速等动力学参数的特征,评述了软土动本构关系和地震反应特性等方面的研究进展,在此基础上提出了目前需要进一步开展研究的问题。该项工作对从事软土研究的科技工作者有一定的参考价值。  相似文献   

19.
为研究罕遇地震下复合隔震村镇建筑的地震响应特征及设计参数,采用ABAQUS有限元软件建立了复合隔震结构、滑移隔震结构、砂垫层隔震结构以及传统的砌体结构四种模型,通过对比4种模型在不同滑移层摩擦系数及不同地震烈度下的加速度、位移及底部剪力等动力响应差异,得出复合隔震体系的地震响应特征及主要设计参数。结果表明:复合隔震体系具有最优的隔震效果,且滑移层摩擦系数越小,地震烈度越大,隔震效果越好。根据预设40%隔震率的要求,确定出不同抗震设防烈度区的滑移层摩擦系数取值范围。  相似文献   

20.
—A numerical study is conducted to simulate complicated sliding behavior and earthquake activity on a subducting plate boundary. A 2-D model of a uniform elastic half-space with a semi-infinite thrust fault is set up, and the frictional stress prescribed by a rate- and state-dependent friction law is assumed to act on the plate boundary fault. Spatial nonuniformity of friction parameters representing rate-dependence of friction and of slip-dependence of friction are introduced in the model to obtain complicated sliding behavior in the numerical simulation. Analogs of great earthquakes that break the entire seismogenic plate boundary repeatedly occur at a constant time interval. Smaller events of seismic or aseismic sliding occur during a great earthquake cycle. Regions of rate-strengthening of friction and of a large characteristic distance in slip-dependence of friction behave as barriers or asperities. Rupture propagation is often arrested in such a region and a great earthquake occurs later when the region is broken. The variety of earthquake activity observed in many regions along real plate boundaries may be explained by similar nonuniformity in friction parameters. Conversely, the friction parameters on plate boundaries might be estimated from comparison of theoretical simulations with observations of earthquake activity. Simulation results indicate that spatiotemporal variation in stress due to aseismic sliding may play an important part in generating earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号