首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reclamation of peat bogs for agriculture changes the physical and chemical characteristics of the peat matrix, for example, drainage and tillage accelerate decomposition, altering peat porosity, pore size distribution, and hydraulic properties. This study investigated changes in near-saturated hydraulic conductivity over time after drainage of peat soil for agricultural use by conducting tension infiltrometer measurements in a mire that has been gradually drained and reclaimed for agriculture during the past 80 years (with fields drained 2, 12, 40, and 80 years before the measurements). At pore water pressure closest to saturation (pressure head −1 cm), hydraulic conductivity in the newest field was approximately nine times larger than that in the oldest field, and a decreasing trend with field age was observed. A similar (but weaker) trend was observed with −3 cm pressure head (approximately four times larger in the newest field in comparison to the oldest), but at −6 cm head, there were no significant differences. These results indicate that peat degradation reduces the amount of millimetre-sized pores in particular. They also indicate that changes in peat macroporosity continue for several decades before a new steady state is reached.  相似文献   

2.
Pore dilation, the compaction of humic acids on peat fibres due to the process of flocculation, causes the hydraulic conductivity of peat to increase with increasing pore water electrical conductivity. This is a reversible process and a reduction in the pore water conductivity produces a decrease in the hydraulic conductivity due to the constriction of pores. We verify how this dilation and constriction of pores, resulting from the application of artificial pore water (primarily deionized water), affects laboratory measurements of the hydraulic conductivity of peat. Repeat measurements of the hydraulic conductivity were performed on samples of Sphagnum peat. It is shown that the application of deionized water during constant head permeameter tests causes a significant decrease in the hydraulic conductivity. Between tests, the hydraulic conductivity of the peat continues to decline without an associate decrease in the pore water electrical conductivity because of a lagged pore constriction effect. We suggest that the use of artificially high or low pore water electrical conductivities, during laboratory hydraulic conductivity measurements, is likely to lead to significant errors. Experimental protocols must, therefore, be revised to take better account of the pore water chemistry. The ionic concentrations of the natural pore fluid should be replicated during hydraulic conductivity tests, either by using pore fluid extracted from the study site or by artificially replicating the major ionic composition of the natural pore fluid. In addition, prior to the hydraulic conductivity measurements, peat samples should be flushed with this solution until the hydraulic conductivity stabilizes and the samples subsequently allowed to equilibrate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
J. Holden  T. P. Burt 《水文研究》2003,17(6):1227-1237
A key parameter used in wetland hydrological and landform development models is hydraulic conductivity. Head recovery tests are often used to measure hydraulic conductivity, but the calculation techniques are usually confined to rigid soil theory. This is despite reports demonstrating the misapplication of rigid soil theory to non‐rigid soils such as peats. Although values of hydraulic conductivity calculated using compressible techniques have been presented for fenland peats, these data have never, to the authors' knowledge, been compared with such calculations in other peat types. Head recovery tests (slug withdrawal) were performed on piezometers at depths ranging from 10 to 80 cm from the surface on north Pennines blanket peats. Results were obtained using both rigid and compressible soil theories, thus allowing comparison of the two techniques. Compressible soil theory gives values for hydraulic conductivity that are typically a factor of five times less than rigid soil calculations. Hydraulic conductivity is often assumed to decrease with depth in upland peats, but at the study site in the northern Pennines it was not found to vary significantly with depth within the range of peat depths sampled. The variance within depth categories was not significantly different to the variance between depth categories showing that individual peat layers did not have characteristic hydraulic conductivity values. Thus, large lateral and vertical differences in hydraulic conductivity over short distances create problems for modelling but may help account for the high frequency of preferential flow pathways within what is otherwise a low matrix hydraulic conductivity peat. Hydraulic conductivity was found to vary significantly between sampling sites, demonstrating that hillslope‐ or catchment‐scale variability may be more important than plot‐scale variability. Values for compressibility of the peats are also reported. These generally decline with depth, and they also vary significantly between sampling sites. There are implications for the way in which measurements of hydraulic conductivity and other properties of blanket peat are interpreted, as the effects of environmental change in one part of a peat catchment may be very different to those in another. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
In organic soils, hydraulic conductivity is related to the degree of decomposition and soil compression, which reduce the effective pore diameter and consequently restrict water flow. This study investigates how the size distribution and geometry of air‐filled pores control the unsaturated hydraulic conductivity of peat soils using high‐resolution (45 µm) three‐dimensional (3D) X‐ray computed tomography (CT) and digital image processing of four peat sub‐samples from varying depths under a constant soil water pressure head. Pore structure and configuration in peat were found to be irregular, with volume and cross‐sectional area showing fractal behaviour that suggests pores having smaller values of the fractal dimension in deeper, more decomposed peat, have higher tortuosity and lower connectivity, which influences hydraulic conductivity. The image analysis showed that the large reduction of unsaturated hydraulic conductivity with depth is essentially controlled by air‐filled pore hydraulic radius, tortuosity, air‐filled pore density and the fractal dimension due to degree of decomposition and compression of the organic matter. The comparisons between unsaturated hydraulic conductivity computed from the air‐filled pore size and geometric distribution showed satisfactory agreement with direct measurements using the permeameter method. This understanding is important in characterizing peat properties and its heterogeneity for monitoring the progress of complex flow processes at the field scale in peatlands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

The theoretical spatial distribution of hydraulic head during infiltration is used to interpret the results of infiltration experiments made in the field on a single, isolated, column of herbaceous peat in a flood-plain wetland in central England. Crusts of different hydraulic resistance were applied to the column surface. These regulated the water influx enabling the hydraulic conductivity of the peat to be estimated at between 1 and 19.5 m day-1. It is inferred that, when the hydraulic gradient changes, water may follow different pathways through the peat. Water moves rapidly through macropores in proportion to the applied hydraulic gradient, and infiltrates the peat matrix from the macropore walls. The results indicate the significance of hydraulic conductivity variations with depth, and the importance of precipitation intensity.  相似文献   

6.
Anisotropy and heterogeneity of hydraulic conductivity (K) are seldom considered in models of mire hydrology. We investigated the effect of anisotropy and heterogeneity on groundwater flow in bog peat using a steady‐state groundwater model. In five model simulations, four sets of K data were used. The first set comprised measured K values from an anisotropic and heterogeneous bog peat. These data were aggregated to produce the following simplified data sets: an isotropic and heterogeneous distribution of K; an isotropic and homogeneous distribution; and an anisotropic and homogeneous distribution. We demonstrate that, where anisotropy and heterogeneity exist, groundwater flow in bog peat is complex. Fine‐scale variations in K have the potential to influence patterns and rates of groundwater flow. However, for our data at least, it is heterogeneity and not anisotropy that has the greater influence on producing complex patterns of groundwater flow. We also demonstrate that patterns and rates of groundwater flow are simplified and reduced when measured K values are aggregated to create a more uniform distribution of K. For example, when measured K values are aggregated to produce isotropy and homogeneity, the rate of modelled seepage is reduced by 28%. We also show that when measured K values are used, the presence of a drainage ditch can increase seepage through a modelled cross‐section. Our work has implications for the accurate interpretation of hydraulic head data obtained from peat soils, and also the understanding of the effect of drainage ditches on patterns and rates of groundwater flow. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
The hydraulic conductivity (K) of many low permeability materials is strongly scale‐dependent. In raised mires and other types of peat deposit the effects of features such as abandoned infilled ditches, root holes and localized woody material, cause K to be heterogeneous and scale‐dependent. Despite this, field measurements are routinely made using auger hole (slug) tests at the scale of only a few tens of centimetres. Such measurements are locally valid, but where the regional subsurface movement of water through peat bogs is simulated using groundwater models, typically at the scale of hundreds of metres, they give rise to a systematic underestimate of flows and an overprediction of water table elevations. Until now, techniques to obtain values at a scale sufficiently large to include the effects of localized features of higher permeability have not been applied routinely. Research at Thorne Moor, a large raised mire, demonstrates that the K of peat varies over several orders of magnitude when measured at different scales, using a variety of techniques. Laboratory and auger hole tests cannot be relied upon to provide results that represent the hydraulic conductivity of large expanses of peatland. This has significant implications for the management and long‐term restoration of peatlands where both regional and local control of water levels is crucial. For groundwater models to be used successfully to plan such schemes, it is essential to apply the K values relevant to the scale of the simulation. This paper describes and tests novel techniques, using ditches, for the derivation of K at large scales which overcome many of the problems that have been identified with conventional techniques and are capable of producing estimates that are appropriate to the application of physically based regional flow models. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Little is known about the processes of infiltration and water movement in the upper layers of blanket peat. A tension infiltrometer was used to measure hydraulic conductivity in a blanket peat in the North Pennines, England. Measurements were taken from the surface down to 20 cm in depth for peat under four different vegetation covers. It was found that macropore flow is a significant pathway for water in the upper layers of this soil type. It was also found that peat depth and surface vegetation cover were associated with macroporosity and saturated hydraulic conductivity. The proportion of macropore flow was found to be greater at 5 cm depth than at 0, 10 and 20 cm depth. Peat beneath a Sphagnum cover tends to be more permeable and a greater proportion of macropore flow can occur beneath this vegetation type. Functional macroporosity and matrix flow in the near‐surface layers of bare peat appear to have been affected by weathering processes. Comparision of results with rainfall records demonstrates that infiltration‐excess overland flow is unlikely to be a common runoff‐generating mechanism on blanket peat; rather, a saturation‐excess mechanism combined with percolation‐excess above much less permeable layers dominates the runoff response. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Our understanding of hydraulic properties of peat soils is limited compared with that of mineral substrates. In this study, we aimed to deduce possible alterations of hydraulic properties of peat soils following degradation resulting from peat drainage and aeration. A data set of peat hydraulic properties (188 soil water retention curves [SWRCs], 71 unsaturated hydraulic conductivity curves [UHCs], and 256 saturated hydraulic conductivity [Ks] values) was assembled from the literature; the obtained data originated from peat samples with an organic matter (OM) content ranging from 23 to 97 wt% (weight percent; and according variation in bulk density) representing various degrees of peat degradation. The Mualem‐van Genuchten model was employed to describe the SWRCs and UHCs. The results show that the hydraulic parameters of peat soils vary over a wide range confirming the pronounced diversity of peat. Peat decomposition significantly modifies all hydraulic parameters. A bulk density of approximately 0.2 g cm?3 was identified as a critical threshold point; above and below this value, macroporosity and hydraulic parameters follow different functions with bulk density. Pedotransfer functions based on physical peat properties (e.g., bulk density and soil depth) separately computed for bog and fen peat have significantly lower mean square errors than functions obtained from the complete data set, which indicates that not only the status of peat decomposition but also the peat‐forming plants have a large effect on hydraulic properties. The SWRCs of samples with a bulk density of less than 0.2 g cm?3 could be grouped into two to five classes for each peat type (botanical composition). The remaining SWRCs originating from samples with a bulk density of larger than 0.2 g cm?3 could be classified into one group. The Mualem‐van Genuchten parameter values of α can be used to estimate Ks if no Ks data are available. In conclusion, the derived pedotransfer functions provide a solid instrument to derive hydraulic parameter values from easily measurable quantities; however, additional research is required to reduce uncertainty.  相似文献   

10.
Part of the relationship between positive pore water pressures and hydraulic conductivity in peat soils may be explained by accumulations of methane bubbles. We show how compression and expansion of gas bubbles with changes in pore water pressure could cause changes in hydraulic conductivity and thus help to explain some observations of dependency of hydraulic conductivity in peats on pore water pressure. Consideration is also given to the effect on hydraulic conductivities of methane gas going into solution with increase in pore water pressure.  相似文献   

11.
地表糙度是衡量地表径流形成的一个重要指标.以东北区典型泥炭沼泽——金川泥炭沼泽为例,考虑地表坡度影响,用链条法对不同群落中糙度系数指标进行计算,并以泥炭沼泽中物种多样性、踏头个数以及踏头形态差异变率系数为主,初步分析泥炭泥泽地表糙度的变化机制,结果表明:在芦苇-臌囊苔草群落、臌囊苔草群落和油桦-臌囊苔草-泥炭藓群落三个植物群落中,糙度系数指标的变化与群落中物种丰富度和生物多样性变化相一致;糙度系数变化与踏头个数呈负相关关系,与踏头形态差异变率系数呈正相关关系说明物种多样性越小,生态优势度越大,优势种植物越少,踏头个数越多,踏头形态变率系数越小,微地貌形态发育相对较一致,糙度系数越小;反之,则地表糙度系数越大。  相似文献   

12.
Many peatlands have been subjected to wildfire or prescribed burning, but it is not known how these fires influence near‐surface hydrological processes. Macropores are important flowpaths in the upper layers of blanket peat and were investigated through the use of tension disc infiltrometers, which also provide data on saturated hydraulic conductivity. Measurements were performed on unburnt peat (U), where prescribed burning had taken place 2 years (B2), 4 years (B4) and >15 (B15+) years prior to sampling, and where a wildfire (W) had taken place 4 months prior to sampling. Where there had been recent burning (B2, B4 and W), saturated hydraulic conductivity was approximately three times lower than where there was no burning (U) or where burning was last conducted >15 years ago (B15+). Similarly, the contribution of macropore flow to overall infiltration was significantly lower (between 12% and 25% less) in the recently burnt treatments compared to B15+ and U. There were no significant differences in saturated hydraulic conductivity or macropore flow between peat that had been subject to recent wildfire (W) and those that had undergone recent prescribed burning (B2 and B4). The results suggest that fire influences the near‐surface hydrological functioning of peatlands but that recovery in terms of saturated hydraulic conductivity and macropore flow may be possible within two decades if there are no further fires. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
E. Rosa  M. Larocque 《水文研究》2008,22(12):1866-1875
Flow dynamics within a peatland are governed by hydraulic parameters such as hydraulic conductivity, dispersivity and specific yield, as well as by anisotropy and heterogeneity. The aim of this study is to investigate hydraulic parameters variability in peat through the use of different field and laboratory methods. An experimental site located in the Lanoraie peatland complex (southern Quebec, Canada) was used to test the different approaches. Slug and bail tests were performed in piezometer standpipes to investigate catotelm hydraulic conductivity. Combined Darcy tests and tracer experiments were conducted on cubic samples using the modified cube method (MCM) to assess catotelm hydraulic conductivity, anisotropy and dispersivity. A new laboratory method is proposed for assessing acrotelm hydraulic conductivity and gravity drainage using a laboratory experimental tank. Most of slug tests' recovery curves were characteristic of compressible media, and important variability was observed depending on the initial head difference. The Darcy experiments on cubic samples provided reproducible results, and anisotropy (Kh > Kv) was observed for most of samples. All tracer experiments displayed asymmetrical breakthrough curves, suggesting the presence of retardation and/or dual porosity. Hydraulic conductivity estimates performed using the experimental tank showed K variations over a factor of 44 within the upper 40 cm of the acrotelm. The results demonstrate that the intrinsic variability associated with the different field and laboratory methods is small compared with the spatial variability of hydraulic parameters. It is suggested that a comprehensive assessment of peat hydrological properties can be obtained through the combined use of complementary field and laboratory investigations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A numerical study demonstrates the effects of flooding on subsurface hydrological flowpaths and nitrate removal in anoxic groundwater in riparian zones with a top peat layer. A series of two-dimensional numerical simulations with changing conditions for flow (steady state or transient with flooding), hydrogeology, denitrification, and duration of flooding demonstrate how flowpaths, residence times, and nitrate removal are affected. In periods with no flooding groundwater flows horizontally and discharges to the river through the riverbed. During periods with flooding, shallow groundwater is forced upwards as discharge through peat layers that often have more optimal conditions for denitrification caused by the presence of highly reactive organic matter. The contrast in hydraulic conductivity between the sand aquifer and the overlying peat layer, as well as the flooding duration, have a significant role in determining the degree of nitrate removal.  相似文献   

15.
We report the results of numerical and analytical simulations to test the hypothesis that downward vertical flow of porewater from the crests of domed alpine and kettle bogs controls vertical porewater distributions of major solutes such as Ca and Mg. The domed Etang de la Gruère bog (EGr), Switzerland, characterized by a vertical downward gradient of 0·04 and stratified layers of peat, is chosen as a field site for the model calibration and evaluation. The middle 4‐m section of the 6·5 m thick bog peat is heavily humified and has a hydraulic conductivity of ~10?5·6 cm s?1. Above and below, peat is less humified with a hydraulic conductivity of ~10?3 cm s?1. Heuristic finite difference simulations, using Visual MODFLOW, of the bog hydraulics show that the higher conductivity peat at the bog base is critical to create the observed deep, local flow cells that substantively recharge porewater. Model results and Peclet number calculations show that before ~7000 14C yr BP diffusion of solutes from underlying mineral soils controlled the vertical distribution of porewater chemistry. From 7000 to ~1250 14C BP the porewater chemistry was probably controlled by both upward diffusion and downward advection, and after ~1250 14C yr BP porewater chemistry was probably controlled by downward advection. Concentrations of conservative major solutes in the porewaters of alpine, ombrotrophic bogs are the net effect of both downward vertical porewater movement and upward vertical diffusion, the magnitudes of which are delicately poised to the configuration of the bog water table over time and subsurface peat stratigraphy. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
This study used a two‐dimensional steady‐state finite‐element groundwater flow model to simulate groundwater flow in two Newfoundland blanket peat complexes and to examine flow system sensitivity to changes in water table recharge and aquifer properties. The modelling results were examined within the context of peat‐forming processes in the two complexes. Modelled flow compared favourably with observed flow. The sensitivity analyses suggested that more highly decomposed bog peat along bog margins probably has/had a positive impact on net peat accumulation within bog interiors. Peat with lower hydraulic conductivity along bog margins effectively impedes lateral drainage, localizes water table drawdown to extreme bog margins, and elevates water tables along bog interiors. Peat formation and elevated water tables in adjacent poor fens/laggs currently rely on placic and ortstein horizons impeding vertical drainage and water flow inputs from adjacent bogs. Modest reductions in atmospheric recharge were found to govern bog‐flow‐system geometries in a way that would adversely affect paludification processes in adjacent fens/laggs. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Transient high pore‐water pressures, up to 50 cm higher than ambient pressure, developed over the summer season at various depths in a shallow (1 m) fen peat. The excess pressures had a pattern of gradual increases and sharp drops, and their initiation and release typically corresponded to abrupt changes in atmospheric pressure. We conclude that these phenomena depend on gas bubbles (probably methane) generated by biological activity, both by clogging pores and by building up pressure as they grow. These transient and spatially discontinuous high‐pressure zones were found using pressure transducers in sealed (backfilled) pits, but not in piezometers open to the atmosphere. Piezometers may provide a conduit for the release of gas and pressure, thus rendering them unsuitable for measuring this phenomenon. Although the development of localized zones of high pressure causes erratic and unpredictable hydraulic gradients, we suggest that their effect on the flow of water or solutes is offset by the reduced permeability caused by the bubbles, which allows them to be sustained. These zones, however, probably deflect flows driven by the dominant hydraulic gradients. Furthermore, they may cause the peat volume to adjust (swell). The use and interpretation of traditional methods for estimating hydraulic head and conductivity in peat soils thus require great caution. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Perennial pools are common natural features of peatlands, and their hydrological functioning and turnover may be important for carbon fluxes, aquatic ecology, and downstream water quality. Peatland restoration methods such as ditch blocking result in many new pools. However, little is known about the hydrological function of either pool type. We monitored six natural and six artificial pools on a Scottish blanket peatland. Pool water levels were more variable in all seasons in artificial pools having greater water level increases and faster recession responses to storms than natural pools. Pools overflowed by a median of 9 and 54 times pool volume per year for natural and artificial pools, respectively, but this varied widely because some large pools had small upslope catchments and vice versa. Mean peat water‐table depths were similar between natural and artificial pool sites but much more variable over time at the artificial pool site, possibly due to a lower bulk specific yield across this site. Pool levels and pool‐level fluctuations were not the same as those of local water tables in the adjacent peat. Pool‐level time series were much smoother, with more damped rainfall or recession responses than those for peat water tables. There were strong hydraulic gradients between the peat and pools, with absolute water tables often being 20–30 cm higher or lower than water levels in pools only 1–4 m away. However, as peat hydraulic conductivity was very low (median of 1.5 × 10?5 and 1.4 × 10?6 cm s?1 at 30 and 50 cm depths at the natural pool site), there was little deep subsurface flow interaction. We conclude that (a) for peat restoration projects, a larger total pool surface area is likely to result in smaller flood peaks downstream, at least during summer months, because peatland bulk specific yield will be greater; and (b) surface and near‐surface connectivity during storm events and topographic context, rather than pool size alone, must be taken into account in future peatland pool and stream chemistry studies.  相似文献   

19.
A water budget was established for the open, undisturbed bog Stormossen, central Sweden, for the growing seasons of 1996 and 1997 as a part of the NOPEX project. The water budget was complemented with data on the spatial variation of groundwater levels and water contents in different microrelief elements (ridge, hollow and ridge margin). The seasonal (24 May to 4 October) rainfall, evaporation and runoff were 200, 256, and 43 mm in 1996, respectively, and 310, 286 and 74 mm in 1997, giving negative budgets of ?99 mm in 1996 and ?50 mm in 1997. Approximately 60% of the total budget was caused by storage changes in the upper 40 cm of the bog and 40% by swelling/shrinking in the layers below. This ‘mire breathing’ must be incorporated in future models of mire‐water dynamics. The water content varied diversely among the different microrelief elements, much depending on the properties of moss and peat together with distance to water table. There also was a strong hysteresis in the relationships between groundwater level and measured volumetric water content, depending partly on pore‐throat effects and partly on swelling/shrinking of the peat matrix. A seasonal variation of volumetric water content in a layer beneath water table was found to be larger than what could be justified by compression alone. We think that probable causes could be methane gas expansion together with temperature effects. The main conclusions of this study were: (i) water‐transport and storage characteristics are distinctly different among hummocks, ridges and hollows, (ii) mire wetness cannot be deduced from groundwater levels only, and (iii) an important part of the total water storage was caused by swelling/shrinking of the peat, not by changes in unsaturated water content. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
The present study makes use of a detailed water balance to investigate the hydrological status of a peatland with a basal clay‐rich layer overlying an aquifer exploited for drinking water. The aim is to determine the influence of climate and groundwater extraction on the water balance and water levels in the peatland. During the two‐year period of monitoring, the hydrological functioning of the wetland showed a hydric deficit, associated with a permanent unsaturated layer and a deep water table. At the same time, a stream was observed serving as a recharge inflow instead of draining the peatland, as usually described in natural systems. Such conditions are not favourable for peat accumulation. Field investigations show that the clay layer has a high hydraulic conductivity (from 1·10?7 to 3·10?9 m.s?1) and does not form a hydraulic barrier. Moreover, the vertical hydraulic gradients are downward between the peat and the sand aquifer, leading to high flows of groundwater through the clay layer (20–48% of the precipitation). The observed hydric deficit of the peatland results from a combination of dry climatic conditions during the study period and groundwater extraction. The climatic effect is mainly expressed through drying out of the peatland, while the anthropogenic effect leads to an enhancement of the climatic effect on a global scale, and a modification of fluxes at a local scale. The drying out of the peatland can lead to its mineralisation, which thus gives rise to environmental impacts. The protection of such wetlands in the context of climate change should take account of anthropogenic pressures by considering the wetland‐aquifer interaction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号