首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
The three-dimensional harmonic response in the vicinity of an infinitely long, cylindrical cavity of circular cross-section buried in a layered, viscoelastic half-space is obtained when the half-space is subjected to homogeneous plane waves and surface waves impinging at an oblique angle with respect to the axis of the cavity. The solution is obtained by an indirect boundary integral method based on the use of moving Green's functions for the viscoelastic half-space. Numerical results describing the motion on the ground surface and the motion and stresses on the wall of the cavity are presented for obliquely incident P-, SV-, SH- and Rayleigh waves with different horizontal angles of incidence.  相似文献   

2.
A method to obtain the three-dimensional harmonic response of a infinitely long cylindrical shell of circular cross-section embedded in a layered viscoelastic half-space and subjected to harmonic plane waves impinging at an oblique angle with respect to the axis of the shell is presented. The procedure combines an indirect integral representation for the field in the exterior half-space with a model of the pipeline or tunnel based on Donnell shell theory. The integral representation for the soil is based on the use of moving Green's functions for the layered viscoelastic half-space. The accuracy of the formulation is tested by comparison of results obtained by using different discretizations. Extensive comparisons with previous two- and three-dimensional results for the case of a shell embedded in a uniform half-space and some new numerical results for a shell embedded in a multilayered half-space are presented in a companion paper.  相似文献   

3.
An indirect boundary-method formulation to obtain the three-dimensional response of an infinitely long canyon of uniform but arbitrary cross-section cut in a layered viscoelastic half-space is presented. Seismic excitation in the form of plane elastic waves acting at an arbitrary angle with respect to the axis of the canyon is considered. Numerical results for SH-, SV- and P-wave excitation of a circular canyon and of a canyon with a topography similar to that in the vicinity of Pacoima Dam are discussed in some detail.  相似文献   

4.
A procedure to calculate the three-dimensional harmonic response of a infinitely long cylindrical shell of circular cross-section embedded in a layered viscoelastic half-space and subjected to harmonic plane waves impinging at an oblique angle with respect to the axis of the shell is validated by extensive comparisons with previous two- and three-dimensional results for the particular case of a shell embedded in a uniform half-space. New numerical results describing the motion and stresses within a shell embedded in a multilayered half-space and subjected to obliquely incident P-, SV- and SH-waves with different horizontal angles of incidence are presented and discussed.  相似文献   

5.
The indirect boundary element method is used to study the 3D dynamic response of an infinitely long alluvial valley embedded in a saturated layered half-space for obliquely incident SV waves. A wave-number transform is first applied along the valley’s axis to reduce a 3D problem to a 2D plane strain problem. The problem is then solved in the section perpendicular to the axis of the valley. Finally, the 3D dynamic responses of the valley are obtained by an inverse wave-number transform. The validity of the method is confirmed by comparison with relevant results. The differences between the responses around the valley embedded in dry and in saturated poroelastic medium are studied, and the effects of drainage conditions, porosity, soil layer stiffness, and soil layer thickness on the dynamic response are discussed in detail resulting in some conclusions.  相似文献   

6.
The two-dimensional response of a viscoelastic half-space containing a buried, unlined, infinitely long cylindrical cavity of circular cross-section subjected to harmonic plane SH, P, SV and Rayleigh waves is obtained by an indirect boundary integral method based on the two-dimensional Green's functions for a viscoelastic half-space. An extensive critical review of the existing numerical results obtained by other techniques is presented together with some new numerical results describing the motion on the ground surface and the motion and stresses on the wall of the cavity for P, SV, SH and Rayleigh waves.  相似文献   

7.
3-D seismic response analysis of long lined tunnels in half-space   总被引:4,自引:0,他引:4  
The dynamic response of infinitely long lined tunnels with a uniform cross-section buried into an elastic or viscoelastic half-space to body and surface harmonic seismic waves is numerically determined by a special direct boundary element method in the frequency domain. The waves have an arbitrary direction of propagation with respect to the axis of the tunnel and this renders the problem three-dimensional. However, this problem is effectively reduced to a two-dimensional one by a coordinate transformation and appropriate integration of the full-space dynamic fundamental solution along the direction of the tunnel axis. Quadratic isoparametric boundary line elements and advanced numerical integration techniques for the treatment of singular integrals produce results of high accuracy. Numerical results are presented for the case of an infinitely long lined tunnel of circular cross-section and compared against those of a full three-dimensional boundary element analysis, as well as those of other methods. Thus the proposed method is illustrated and its merits demonstrated.  相似文献   

8.
Three-dimensional scattering of seismic waves by a cylindrical alluvial valley embedded in a layered half-space is investigated by using the combination of the boundary integral representation and the finite element method. The surface displacements due to incident plane harmonic body waves (P, SV and SH) propagating at an arbitrary angle to the axis of the cylindrical valley are evaluated numerically for two semi-elliptical alluvial valleys. The presence of the layer is found to have a strong effect on the amplification of the surface displacements in some cases. The three-dimensional motion seems to be quite critical and may cause large amplification. The surface ground motion becomes significant when compared with corresponding free-field motion as the wavelengths become comparable to the characteristic length of the valley. The maximum amplification always occurs atop the valley. Numerical results show that the amplitude and the amplification pattern of the surface displacement strongly depend upon the frequency, the angle and the type of the incident waves.  相似文献   

9.
An integral equation technique to determine the response of foundations embedded in a layered viscoelastic half-space when subjected to various types of seismic waves is presented. The technique is validated by comparison with previous results for rigid hemispherical and cylindrical foundations embedded in a uniform half-space. Illustrative results for rigid cylindrical foundations embedded in layered media are also presented.  相似文献   

10.
A computationally efficient boundary integral equation technique to calculate the dynamic response of a group of rigid surface foundations bonded to a layered viscoelastic half-space and subjected to external forces and seismic waves is presented. The technique relies on an iterative scheme which minimizes in-core memory requirements and takes advantage of any geometrical symmetry of the foundations. Extensive results for the case of two rigid square foundations placed at different separations and bonded to a viscoelastic half-space are presented. It was found that the choice of discretization of the foundations has a marked effect on the calculated impedance functions for extremely small separations. Illustrative results for a case of several closely-spaced foundations bonded to a layered half-space are also presented.  相似文献   

11.
Department of Civil Engineering, University of California, Berkeley, CA 94720, U.S.A. A direct boundary element method to determine the three-dimensional seismic response of an infinitely-long canyon of arbitrary but uniform cross-section cut in a homogeneous viscoelastic half-space is presented. The seismic excitation is represented by P, SV, SH or Rayleigh waves at arbitrary angles with respect to the axis of the canyon. The accuracy of the procedure and implementing computer program is demonstrated by comparison with previous solutions for the limiting case of two-dimensional response, recently obtained three-dimensional response results for infinitely-long canyons, and three-dimensional boundary method solutions presented in this paper for finite canyons.  相似文献   

12.
An integral equation technique to calculate the dynamic response of foundations embedded in a layered viscoelastic half-space when subjected to external forces and moments is presented. The technique is based on representing the radiated field as resulting from a set of sources distributed over a surface internal to the actual boundary of the foundation and by imposing the boundary conditions in an integral sense. The resulting non-singular integral equation with symmetric kernel is solved by discretization and reduction to a system of linear algebraic equations. The technique is validated by comparison with previous results for cylindrical foundations with different embedment ratios.  相似文献   

13.
平面SV波在层状半空间中沉积谷地周围的散射   总被引:2,自引:0,他引:2  
采用间接边界元方法求解了入射平面SV波在层状半空间中沉积谷地周围的散射问题.问题的解答包含自由场和散射场两部分.自由场可由直接刚度法求得,散射场由层状半空间中斜线荷载动力格林函数来模拟.文中以入射平面SV波在基岩上单一土层中沉积谷地周围散射为例研究了土层和沉积谷地周围的影响.结果表明,由于考虑了土层的动力特性,平面SV...  相似文献   

14.
弹性层状半空间中沉积谷地对入射平面SH波的放大作用   总被引:6,自引:3,他引:6  
对Wolf理论进行拓展,使之可解决沉积谷地对波的散射问题,进而利用间接边界元法,求解了弹性层状半空间中沉积谷地对入射平面SH波的放大作用问题。通过自由场反应分析,求得假想边界上各点的位移和各单元的应力反应。施加虚拟均布荷载,求得位移和应力的格林函数。根据应力和位移连续边界条件确定虚拟分布荷载,将自由场反应和虚拟分布荷载产生的反应叠加起来,即得到问题的解答。最后,以基岩上单一土层中沉积谷地对入射平面SH波的放大作用为例进行了数值计算分析,结果表明,层状半空间中沉积谷地和均匀半空间中沉积谷地对波的放大作用存在显著差别。文中分析了造成差别的原因,并讨论了覆盖层厚度和刚度对放大作用的影响。  相似文献   

15.
A hybrid indirect boundary element – discrete wavenumber method is presented and applied to model the ground motion on stratified alluvial valleys under incident plane SH waves from an elastic half-space. The method is based on the single-layer integral representation for diffracted waves. Refracted waves in the horizontally stratified region can be expressed as a linear superposition of solutions for a set of discrete wavenumbers. These solutions are obtained in terms of the Thomson–Haskell propagators formalism. Boundary conditions of continuity of displacements and tractions along the common boundary between the half-space and the stratified region lead to a system of equations for the sources strengths and the coefficients of the plane wave expansion. Although the regions share the boundary, the discretization schemes are different for both sides: for the exterior region, it is based on the numerical and analytical integration of exact Green's functions for displacements and tractions whereas for the layered part, a collocation approach is used. In order to validate this approach results are compared for well-known cases studied in the literature. A homogeneous trapezoidal valley and a parabolic stratified valley were studied and excellent agreement with previous computations was found. An example is given for a stratified inclusion model of an alluvial deposit with an irregular interface with the half-space. Results are displayed in both frequency and time domains. These results show the significant influence of lateral heterogeneity and the emergence of locally generated surface waves in the seismic response of alluvial valleys.  相似文献   

16.
This paper studies three-dimensional diffraction of obliquely incident plane SH waves by twin infinitely long cylindrical cavities in layered poroelastic half-space using indirect boundary element method. The approach is validated by comparison with the literature, and the effects of cavity interval, incident frequency, and boundary drainage condition on the diffraction are studied through numerical examples. It is shown that, the interaction between two cavities is significant and surface displacement peaks become large when two cavities are close, and the surface displacement may be significantly amplified by twin cavities, and the influence range with large amplification can be as wide as 40 times of the cavity radius. Surface displacements in dry poroelastic case and saturated poroelastic cases with drained and undrained boundaries are evidently different under certain circumstances, and the differences may be much larger than those in the free-field response.  相似文献   

17.
Elastic wave propagation in an irregularly layered medium   总被引:1,自引:0,他引:1  
The indirect boundary element method (IBEM) is used to simulate wave propagation in two-dimensional irregularly layered elastic media for internal line sources. The method is based on the integral representation for scattered elastic waves using single layer boundary sources. Fulfillment of the boundary conditions leads to a system of integral equations. Results are obtained in the frequency domain and seismograins are computed through Fourier synthesis. In order to test and validate the method we present various comparisons between our results and the time series obtained analytically for a buried line source in a half-space and by using the recently developed spectral element method (SEM).  相似文献   

18.
巴振宁  梁建文 《地震学报》2014,36(4):571-583
针对层状半空间中沉积谷地对斜入射瑞雷波的三维散射问题, 采用直接刚度法计算自由场波场, 以层状半空间中移动斜线均布荷载动力格林影响函数求解三维散射波场, 建立了求解该问题的间接边界元方法. 通过与已有结果的比较, 验证了该方法的正确性, 并以均匀半空间以及弹性基岩上单一土层场地中沉积谷地为例进行了计算分析. 研究结果表明: 层状半空间与均匀半空间中沉积谷地对瑞雷波的散射存在显著差别; 层状半空间中瑞雷波的振动模态对沉积附近位移幅值有着重要影响; 土层刚度和厚度等参数也对沉积附近位移幅值大小及空间分布有着显著的影响.   相似文献   

19.
Azimuth dependent wave amplification in alluvial valleys   总被引:1,自引:0,他引:1  
An extension of the indirect boundary element method (IBEM) to three-dimensional scattering by two-dimensional alluvial valleys is presented. While the valley is two-dimensional, the incident plane waves can arrive outside the 2D plane so the scattering is three-dimensional with coupling of P---SV---SH waves. Such a method makes it possible to take earthquake location into account in the estimation of site effects in alluvial valleys. The method is validated by transparency tests, by comparison with 2D simulations, and by comparison with results of other authors. The advantage of the method is that is combines high accuracy with cost-efficiency in terms of computer-time. It is applied to theoretically estimate site effects across a simplified model of an alluvial valley in the French Alps where azimuth dependence of local amplification has been observed. A parametric study with simulations for a range of azimuths and incidence angles shows that (1) the local amplification depends strongly on both azimuth and incidence of the incoming waves, (2) the global pattern of amplification across the valley is very complex for all azimuths, and (3) it is not possible to predict the 3D response of the valley from 2D modeling. Theoretical spectral ratios are in approximate agreement with observed ones for a station in the center of the valley where the local structure justifies use of a simplified model for the comparison.  相似文献   

20.
A time domain boundary element in a cylindrical co-ordinate system is developed for the analysis of wave propagation in a layered half-space. The field quantities (displacements and tractions) are expressed as products of Fourier series in the circumferential direction and as linear polynomials in the other spatial directions. An integral equation is written for each layer as an independent domain, and these equations are then assembled into a general equation by virtue of compatibility and equilibrium conditions between the interfaces. Examples of three-dimensional wave propagation in the layered half-spaces due to various forms of surface and inner-domain excitations are reported to demonstrate the accuracy and versatility of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号