首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The last decade or so has seen the development of refined performance-based earthquake engineering (PBEE) approaches that now provide a framework for estimation of a range of important decision variables, such as repair costs, repair time and number of casualties. This paper reviews current tools for PBEE, including the PACT software, and examines the possibility of extending the innovative displacement-based assessment approach as a simplified structural analysis option for performance assessment. Details of the displacement-based s+eismic assessment method are reviewed and a simple means of quickly assessing multiple hazard levels is proposed. Furthermore, proposals for a simple definition of collapse fragility and relations between equivalent single-degree-of-freedom characteristics and multi-degree-of-freedom story drift and floor acceleration demands are discussed, highlighting needs for future research. To illustrate the potential of the methodology, performance measures obtained from the simplified method are compared with those computed using the results of incremental dynamic analyses within the PEER performance-based earthquake engineering framework, applied to a benchmark building. The comparison illustrates that the simplified method could be a very effective conceptual seismic design tool. The advantages and disadvantages of the simplified approach are discussed and potential implications of advanced seismic performance assessments for conceptual seismic design are highlighted through examination of different case study scenarios including different structural configurations.  相似文献   

2.
A principal aspect of seismic design is the verification of performance limit states, which help ensure satisfactory behaviour within a performance-based earthquake engineering framework. However, it is increasingly acknowledged that while ensuring life safety is a suitable basic design requirement, more meaningful metrics of seismic performance exist. Expected annual loss (EAL) has gained attention in recent years but tends to be limited to seismic assessment. This article proposes a novel conceptual design framework that employs EAL as a design tool and requires very little building information at the design outset. This means that designers may commence from a definition of required EAL and arrive at a number of feasible structural solutions without the need for any detailed design calculations or numerical analysis. This works by transforming the building performance definition to a design solution space using a number of simplifying assumptions. A suitable structural response backbone is subsequently determined and used to identify feasible building typologies and associated structural geometries. The assumptions made to implement such a conceptual design framework are discussed and justified herein followed by a case study application. This proposed design framework is intended to form the first step in seismic design to identify suitable typologies and layouts before subsequent member detailing and design verification. This way, engineers, architects, and clients can make more informed decisions that target certain performance goals at the beginning of design before further refinement.  相似文献   

3.
The paper presents a computationally efficient algorithm to integrate a probabilistic, non-Gaussian parameter estimation approach for nonlinear finite element models with the performance-based earthquake engineering (PBEE) framework for accurate performance evaluations of instrumented civil infrastructures. The algorithm first utilizes a minimum variance framework to fuse predictions from a numerical model of a civil infrastructure with its measured behavior during a past earthquake to update the parameters of the numerical model that is, then, used for performance prediction of the civil infrastructure during future earthquakes. A nonproduct quadrature rule, based on the conjugate unscented transformation, forms an enabling tool to drive the computationally efficient model prediction, model-data fusion, and performance evaluation. The algorithm is illustrated and validated on Meloland Road overpass, a heavily instrumented highway bridge in El Centro, CA, which experienced three moderate earthquake events in the past. The benefits of integrating measurement data into the PBEE framework are highlighted by comparing damage fragilities of and annual probabilities of damages to the bridge estimated using the presented algorithm with that estimated using the conventional PBEE approach.  相似文献   

4.
Earthquakes are generally clustered, both in time and space. Conventionally, each cluster is made of foreshocks, the mainshock, and aftershocks. Seismic damage can possibly accumulate because of the effects of multiple earthquakes in one cluster and/or because the structure is unrepaired between different clusters. Typically, the performance-based earthquake engineering (PBEE) framework neglects seismic damage accumulation. This is because (i) probabilistic seismic hazard analysis (PSHA) only refers to mainshocks and (ii) classical fragility curves represent the failure probability in one event, of given intensity, only. However, for life cycle assessment, it can be necessary to account for the build-up of seismic losses because of damage in multiple events. It has been already demonstrated that a Markovian model (i.e., a Markov chain), accounting for damage accumulation in multiple mainshocks, can be calibrated by maintaining PSHA from the classical PBEE framework and replacing structural fragility with a set of state-dependent fragility curves. In fact, the Markov chain also works when damage accumulates in multiple aftershocks from a single mainshock of known magnitude and location, if aftershock PSHA replaces classical PSHA. Herein, this model is extended further, developing a Markovian model that accounts, at the same time, for damage accumulation: (i) within any mainshock–aftershock seismic sequence and (ii) among multiple sequences. The model is illustrated through applications to a series of six-story reinforced concrete moment-resisting frame buildings designed for three sites with different seismic hazard levels in Italy. The time-variant reliability assessment results are compared with the classical PBEE approach and the accumulation model that only considers mainshocks, so as to address the relevance of aftershocks for life cycle assessment.  相似文献   

5.
Performance-based concept on seismic evaluation of existing bridges   总被引:1,自引:0,他引:1  
Conventional seismic evaluation of existing bridges explores the ability of a bridge to survive under significant earthquake excitations. This approach has several major drawbacks, such as only a single structural performance of near collapse is considered, and the simplified approach of adopting strength-based concept to indirectly estimate the nonlinear behavior of a structure lacks accuracy. As a result, performance-based concepts that include a wider variety of structural performance states of a given bridge excited by different levels of earthquake intensity is needed by the engineering community. This paper introduces an improved process for the seismic evaluation of existing bridges. The relationship between the overall structural performance and earthquakes with varying levels of peak ground acceleration (PGA) can successfully be linked. A universal perspective on the seismic evaluation of bridges over their entire life-cycle can be easily obtained to investigate multiple performance objectives. The accuracy of the proposed method, based on pushover analysis, is proven in a case study that compares the results from the proposed procedure with additional nonlinear time history analyses.  相似文献   

6.
Analysis of civil structures at the scale of life‐cycle requires stochastic modeling of degradation. Phenomena causing structures to degrade are typically categorized as aging and point‐in‐time overloads. Earthquake effects are the members of the latter category this study deals with in the framework of performance‐based earthquake engineering (PBEE). The focus is structural seismic reliability, which requires modeling of the stochastic process describing damage progression, because of subsequent events, over time. The presented study explicitly addresses this issue via a Markov‐chain‐based approach, which is able to account for the change in seismic response of damaged structures (i.e. state‐dependent seismic fragility) as well as uncertainty in occurrence and intensity of earthquakes (i.e. seismic hazard). The state‐dependent vulnerability issue arises when the seismic hysteretic response is evolutionary and/or when the damage measure employed is such that the degradation increment probabilistically depends on the conditions of the structure at the time of the shock. The framework set up takes advantage also of the hypotheses of classical probabilistic seismic hazard analysis, allowing to separate the modeling of the process of occurrence of seismic shocks and the effect they produce on the structure. It is also discussed how the reliability assessment, which is in closed‐form, may be virtually extended to describe a generic age‐ and state‐dependent degradation process (e.g. including aging and/or when aftershock risk is of interest). Illustrative applications show the options to calibrate the model and its potential in the context of PBEE. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A computing environment for the seismic performance assessment of reinforced concrete frames has been developed in Matlab in combination with OpenSees. It includes several functions which provide calculations of the moment-rotation relationship of plastic hinges in columns and beams, rapid determination of simplified nonlinear structural models, the post-processing of the results of analyses and structural performance assessment with different methods. The user can add new functions to the PBEE toolbox in order to support additional procedures for the seismic performance assessment of RC frames, or can just change the rules for determining the moment-rotation relationship of plastic hinges in columns and beams, which are the main source of uncertainty in simplified nonlinear models. In the paper, the capabilities of the computing environment (PBEE toolbox) are first explained by focusing on the procedures for determining the moment-rotation relationship of plastic hinges. Different examples are then presented, starting with a comparison between the calculated response of a four-storey RC frame building and the response obtained in a pseudo-dynamic experiment. The calculated response was determined with the two different structural models which are later on used for the demonstration of the seismic performance assessment of the same structure by the N2 method. Lastly, seismic performance assessment of an eight-storey frame is performed by using incremental dynamic analysis with consideration of the modelling uncertainties.  相似文献   

8.
结构抗震可靠度分析的解析求解一直是结构可靠度领域和地震工程领域研究者们的追求目标.解析表达式不仅有利于简化结构抗震可靠度分析这个极端困难的工作,而且也有利于进行基于可靠度的结构概率抗震性能设计与评定.从全概率定理的两种不同表达式出发,介绍了国际上流行的两种结构抗震可靠度解析表达式,过去一直认为这是两种理论基础不同的表达式.本文通过对地震易损性函数关系的解析推导,揭示了若干重要关系,证明了两种表达式的一致性.  相似文献   

9.
钢框架结构直接基于位移抗震性能设计的非迭代法   总被引:1,自引:1,他引:0  
为使直接基于位移的抗震性能设计方法更加简便准确,本文采用一种直接基于位移的非迭代抗震设计方法对钢框架结构进行设计。该方法首先考虑结构的非弹性反应确定等效弹性反应谱和弹塑性反应谱,并建立了使用Newmark-Hall变形折减系数的能力谱的明确表达式。采用能力-需求图方法,确定了结构需要的目标位移与延性、谱位移和谱加速度之间关系的明确表示式,得到结构的刚度和设计基底剪力,进而确定构件截面,完成结构设计。对五层两跨平面钢框架结构进行了直接基于位移的抗震性能设计,设计过程简便,无需迭代程序,不需画出反应谱,通过时程分析验证了设计结果的精确性。本文研究表明:直接基于位移的非迭代抗震设计方法是一种简便、高效、精确的抗震性能设计方法。  相似文献   

10.
Estimating seismic demands on structures, to predict their performance level with confidence, requires explicit consideration of the structural inelastic behaviour: to this end, the use of nonlinear static procedures is inevitably going to be favoured over complex nonlinear time-history methods. The currently available assessment procedures have been tested predominantly against building frames. A newly derived assessment procedure is proposed within the scope of bridge applications, based on an innovative displacement-based adaptive pushover technique. The procedure, which can be incorporated into a performance-based engineering philosophy, is applicable to MDOF continuous span bridges with flexible or rigid superstructures, and for varying degrees of abutment restraint. As a first application to determine the viability of the proposed procedure, a parametric study is conducted on a ensemble of bridges subjected to earthquake motion. It is shown that, compared to the seismic demand estimated by means of the more accurate nonlinear dynamic analysis tool, the novel static assessment method can lead to the attainment of satisfactory predictions, both in terms of displacement as well as moment demand on members.  相似文献   

11.
This paper outlines a methodology to assess the seismic drift of reinforced concrete buildings with limited structural and geotechnical information. Based on the latest and the most advanced research on predicting potential near-field and far field earthquakes affecting Hong Kong, the engineering response spectra for both rock and soil sites are derived. A new step-by-step procedure for displacement-based seismic hazard assessment of building structures is proposed to determine the maximum inter-storey drift demand for reinforced concrete buildings. The primary information required for this assessment is only the depth of the soft soil above bedrock and the height of the building. This procedure is further extended to assess the maximum chord rotation angle demand for the coupling beam of coupled shear wall or frame wall structures, which may be very critical when subjected to earthquake forces. An example is provided to illustrate calibration of the assessment procedure by using actual engineering structural models.  相似文献   

12.
With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.  相似文献   

13.
As a result of rapid economic growth and urbanization in the past two decades,many tall buildings have been constructed in China Mainland,offering researchers and practitioners an excellent opportunity for research and practice in the field of structural engineering. This paper reviews progress by researchers throughout China Mainland on the seismic research of tall buildings,focusing on three major topics that impact the seismic performance of tall buildings. These are:(1) new types of steel-concrete composite structural members such as steel-concrete composite shear walls and columns,(2) earthquake resilient shear wall structures such as shear walls with replaceable structural components,self-centering shear walls and rocking walls,and(3) performance-based seismic design,including seismic performance index,performance level and design method. The paper concludes by presenting future research needs and directions in this field.  相似文献   

14.
With the development and implementation of performance-based earthquake engineering, harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event, failure of architectural, mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover, nonstructural damage has limited the functionality of critical facilities, such as hospitals, following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore, it is not surprising that in many past earthquakes, losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore, the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings, or of rescue workers entering buildings. In comparison to structural components and systems, there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse, and the available codes and guidelines are usually, for the most part, based on past experiences, engineering judgment and intuition, rather than on objective experimental and analytical results. Often, design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components, identifying major knowledge gaps that will need to be filled by future research. Furthermore, considering recent trends in earthquake engineering, the paper explores how performance-based seismic design might be conceived for nonstructural components, drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.  相似文献   

15.
结合国际地震工程界提出的新一代基于性能的地震工程的框架方法,重点阐述了性能评估中涉及的主要问题。对性能评估使用的静力非线性分析、动力非线性分析方法进行了总结,在此基础上详细阐述了在基于概率的性能评估中有应用前景的增量动力分析方法的概念、相关问题及其应用,并简要介绍了基于增量动力分析思想提出的一些简化方法。最后提出了今后研究的建议,特别是结构非线性分析方面的研究重点。  相似文献   

16.
对建筑物灾变发生时经济损失和人员伤亡情况做出准确预估是未来建筑结构设计初期需要努力的方向。基于下一代性能化设计理论,通过精细化建模和动力时程分析对结构进行易损性分析,并以此得到抗震性能评估所需的各类地震响应参数,建立RC框架结构全概率抗震性能评估方法。以云南大学力行楼为例,通过地震损失预测得到了该栋建筑的经济损失、修复时间和人员伤亡情况。该方法直观清晰地展示了结果,便于业主及非本专业从业者理解。  相似文献   

17.
A primary goal of earthquake engineering is to protect society from the possible negative consequences of future earthquakes. Conventionally, this goal has been achieved indirectly by reducing seismic damage of the built environment through better building codes, or more comprehensibly, by minimizing seismic risk. However, the effect that building damage has on occupants is not explicitly taken into account while designing infrastructure. Consequently, this paper introduces a conceptual framework and numerical algorithm to assess earthquake risk on building occupants during seismic events, considering the evacuation process of the structure. The framework combines probabilistic seismic hazard analysis, inelastic structural response analysis and damage assessment, and couples these results with the response of evacuating agents. The results are cast as probability distributions of variables that measure the overall performance of the system (e.g., evacuation times, number of injured people, and repair costs) for specific time windows. As a testbed, the framework was applied to the response of a reinforced concrete frame building that exemplifies the use of all steps of the methodology. The results suggest that this seismic risk evaluation framework of structural systems that combine the response of a physical model with human agents can be extended to a wide variety of other situations, including the assessment of mitigation actions in communities and people to improve their earthquake resilience. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Viscous dampers are widely employed for enhancing the seismic performance of structural systems, and their design is often carried out using simplified approaches to account for the uncertainty in the seismic input. This paper introduces a novel and rigorous approach that allows to explicitly consider the variability of the intensity and characteristics of the seismic input in designing the optimal viscous constant and velocity exponent of the dampers based on performance-based criteria. The optimal solution permits controlling the probability of structural failure, while minimizing the damper cost, related to the sum of the damper forces. The solution to the optimization problem is efficiently sought via the constrained optimization by linear approximation (COBYLA) method, while Subset simulation together with auxiliary response method are employed for the performance assessment at each iteration of the optimization process. A 3-storey steel moment-resisting building frame is considered to illustrate the application of the proposed design methodology and to evaluate and compare the performances that can be achieved with different damper nonlinearity levels. Comparisons are also made with the results obtained by applying simplifying approaches, often employed in design practice, as those aiming to minimize the sum of the viscous damping constant and/or considering a single hazard level for the performance assessment.  相似文献   

19.
Ground motion evaluation procedures for performance-based design   总被引:1,自引:0,他引:1  
The objective of performance-based earthquake engineering (PBEE) is the analysis of performance objectives with a specified annual probability of exceedance. Increasingly undesirable performance is caused by increasing levels of strong ground motion having decreasing annual probabilities of exceedance. Accordingly, the evaluation of ground motion intensity measures is a vital component of PBEE. This paper provides a brief synthesis of ground motion analysis procedures within a performance-based design framework, and is a summary of a recent report to which the reader is referred for details. The principal topics addressed are probabilistic characterizations of source, path, and site effects, with the discussion of these effects focusing principally on applications in active regions such as California.  相似文献   

20.
详细论述了结构分灾抗震设计的产生背景、设计思想、优化模型和基本原则,指出结构分灾设计是在分析基于投资—效益准则的结构抗震设计模型的基础上,对工程实践中一些成功经验的提炼和概括而形成的设计方法,工程领域中一些现行设计方法和措施就是分灾设计的具体应用。当工程师们待处理的问题必须考虑高度不确定性因素时,将分灾设计作为一种可能选用的设计理念,将有助于工程师们实现设计创新。分灾设计符合基于性能的抗震设计思想,可以方便地实现基于性能的设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号