首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2002年全世界灾害性地震综述   总被引:2,自引:0,他引:2  
2002年全球地震活动水平属中等偏低,地震灾情比往年要轻。今年地震共造成1795人死亡,5363人受伤,经济损失约7.1亿美元,与2001年基本相同。上半年地震灾情明显重于下半年。  相似文献   

2.
Shallow groundwater plays a key role in agro‐hydrological processes of arid areas. Groundwater often supplies a necessary part of the water requirement of crops and surrounding native vegetation, such as groundwater‐dependent ecosystems. However, the impact of water‐saving irrigation on cropland water balance, such as the contribution of shallow groundwater to field evapotranspiration, requires further investigation. Increased understanding of quantitative evaluation of field‐scale water productivity under different irrigation methods aids policy and decision‐making. In this study, high‐resolution water table depth and soil water content in field maize were monitored under conditions of flood irrigation (FI) and drip irrigation (DI), respectively. Groundwater evapotranspiration (ETg) was estimated by the combination of the water table fluctuation method and an empirical groundwater–soil–atmosphere continuum model. The results indicate that daily ETg at different growth stages varies under the two irrigation methods. Between two consecutive irrigation events of the FI site, daily ETg rate increases from zero to greater than that of the DI site. Maize under DI steadily consumes more groundwater than FI, accounting for 16.4% and 14.5% of ETa, respectively. Overall, FI recharges groundwater, whereas DI extracts water from shallow groundwater. The yield under DI increases compared with that under FI, with less ETa (526 mm) compared with FI (578 mm), and irrigation water productivity improves from 3.51 kg m?3 (FI) to 4.58 kg m?3 (DI) through reducing deep drainage and soil evaporation by DI. These results highlight the critical role of irrigation method and groundwater on crop water consumption and productivity. This study provides important information to aid the development of agricultural irrigation schemes in arid areas with shallow groundwater.  相似文献   

3.
The U.S. Geological Survey numerical groundwater flow model, MODFLOW, was integrated with an agent-based land-use model to yield a simulator for environmental planning studies. Ultimately, this integrated simulator will be used as a means to organize information, illustrate potential system responses, and facilitate communication within a participatory modeling framework. Initial results show the potential system response to different zoning policy scenarios in terms of the spatial patterns of development, which is referred to as urban form, and consequent impacts on groundwater levels. These results illustrate how the integrated simulator is capable of representing the complexity of the system. From a groundwater modeling perspective, the most important aspect of the integration is that the simulator generates stresses on the groundwater system within the simulation in contrast to the traditional approach that requires the user to specify the stresses through time.  相似文献   

4.
Cities based on coal resources have increasingly important social and economic roles in China. Their strategies for sustainable development, however, urgently need to be improved, which represents a huge challenge. Most observers believe that the continued progress of these cities relies on the optimization of scientific adaptive management in which social, economic, and ecological factors are incorporated. A systems perspective that combines policies, management priorities, and long-term policy impacts needs to be applied. To date, however, such an approach has not been adopted, which means it is difficult to implement adaptive management at the regional scale. In this study, we used various situations to develop a multiple adaptive scenario system dynamics model. We then simulated a range of policy scenarios, with Ordos in the Inner Mongolia Autonomous Region as a case study. Simulation results showed that the current strategy is not sustainable and predicted that the system would exceed the environmental capacity, with risks of resource exhaustion and urban decline in 2025–2035. Five critical policy variables, including the urban population carrying capacity, rates of water consumption and water recycling, and expansion of urban land cover, were identified during sensitivity analysis. We developed and compared six socio-economic scenarios. The urban area, represented by the urban population density, seemed to transition through five different stages, namely natural growth, rapid growth, stable oscillation, fading, and rebalancing. Our scenarios suggested that different policies had different roles through each stage. The water use efficiency management policy had a comprehensive far-reaching influence on the system behavior; land urbanization management functions dominated at the start, and population capacity management was a major control in the mid-term. Our results showed that the water recycling policy and the urban population carrying capacity were extremely important, and both should be reinforced and evaluated by the local governments.  相似文献   

5.
India's surface water and groundwater distribution is temporally variable due to the monsoon.Agriculture is one of the dominant economic sectors in India.Groundwater quality is regularly assessed to determine usability for drinking and irrigation.In this study,World Health Organization and Bureau of Indian Standards guidelines were used to determine suitability of groundwater near artificial recharge structures(ARS) with a focus on the structures impact on groundwater quality.Groundwater resources were evaluated for irrigation suitability using electrical conductivity(EC),sodium adsorption ratio,the US Salinity Laboratory diagram,sodium concentration,Wilcox's diagram,Kelly's index,and Doneen's permeability index.EC and major ions were tested in recharge areas at different distances from the ARS.The construction of ARS at optimal distances along major streams has improved groundwater quantity and quality in the subbasin.Before construction of ARS,fluoride concentrations were higher;after construction,fluoride was reduced in most locations.Water stored in the check dam and groundwater in the wells closer to the structure were suitable for both drinking and irrigation purposes.Impact of ARS on nearby groundwater quality was observed at Pallipatti,Mulayanur,Venkadasamuthram,Pudupatti,Poyyappatti,Harurl,and Sekkampatti.More distant sites included Pappiredipatti,Nambiyappati,Menasi,Harur,Todampatti,and Adikarapatti.Data demonstrated improved groundwater quality in the area of the ARS.Through recharge,the non-potable fluoride in the region is reduced to the permissible limit for human consumption.  相似文献   

6.
Quantifying anthropogenic contributions to elemental cycles provides useful information regarding the flow of elements important to industrial and agricultural development and is key to understanding the environmental impacts of human activity. In particular, when anthropogenic fluxes reach levels large enough to influence an element's overall cycle the risk of adverse environmental impacts rises. While intensive groundwater pumping has been observed to affect a wide-range of environmental processes, the role of intensive groundwater extraction on global anthropogenic element cycles has not yet been characterized. Relying on comprehensive datasets of groundwater and produced water (groundwater pumped during oil/gas extraction) chemistry from the U.S. Geological Survey along with estimates of global groundwater usage, I estimate elemental fluxes from global pumping, consumptive use, and depletion of groundwater. I find that groundwater fluxes appreciably contribute to a number of elements overall cycles and thus these cycles were underestimated in prior studies, which did not recognize groundwater pumping's role. I also estimate elemental loadings to agricultural soils in the United States and find that in some regions, groundwater may provide a significant portion (more than 10%) of crop requirements of key nutrients (K, N). With nearly 40% of globally irrigated land under groundwater irrigation, characterizing nutrient and toxic element fluxes to these soils, which ultimately influence crop yields, is important to our understanding of agricultural production. Thus, this study improves our basic understanding of anthropogenic elemental cycles and demonstrates that quantification of groundwater pumping elemental fluxes provides valuable information about the potential for environmental impacts from groundwater pumping.  相似文献   

7.
This work attempted to locate clean and safe groundwater for irrigation use in the Choushui River alluvial fan. Multiple‐variable indicator kriging (MVIK) was adopted to evaluate numerous hydrochemical parameters for a standard of water quality for irrigation in Taiwan. Many hydrochemical parameters in groundwater were distinguished into three main categories—salinity/sodium hazard, nitrogen hazard and heavy metal hazard. Safe and potential hazardous regions of groundwater for irrigation were delineated according to different probabilities estimated by MVIK. The probabilistic results of the classifications gave an opportunity to explore the spatial uncertainty of the hazards and helped government administrators establish a sound policy associated with the development and management of groundwater resources. Analysis of the results indicate that the central distal‐fan and mid‐fan aquifers are the best places to extract clean and safe groundwater for irrigation, and the deep aquifer (exceeding 200 m depth) has wider regions with clean and safe groundwater for irrigation than shallow aquifers. The northern and southern aquifers, with multiple hazards, limit groundwater use for irrigation. Although the proximal‐fan aquifer is a zone of groundwater recharge, the high nitrogen content seriously affects the environment and is not suitable for irrigation use. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Regional nitrate contamination in groundwater is a management challenge involving multisector benefits. There is always conflict between restricting anthropogenic activities to protect groundwater quality and prioritizing economic development, especially in productive agriculture dominated areas. To mitigate the nitrate contamination in groundwater, it is necessary to develop management alternatives that simultaneously support environmental protection and sustainable economic development. A regional transport modeling framework is applied to evaluate nitrate fate and transport in the Dagu Aquifer, a shallow sandy aquifer that supplies drinking water and irrigation water for a thriving agricultural economy in Shandong Province in east coastal China. The aquifer supports intensive high-value vegetable farms and nitrate contamination is extensive. Detailed land-use information and fertilizer use data were compiled and statistical approaches were employed to analyze nitrogen source loadings and the spatiotemporal distribution of nitrate in groundwater to support model construction and calibration. The evaluations reveal that the spatial distribution and temporal trends of nitrate contamination in the Dagu Aquifer are driven by intensive fertilization and vertical water exchange, the dominant flow pattern derived from intensive agricultural pumping and irrigation. The modeling framework is employed to assess the effectiveness of potentially applicable management alternatives. The predictive results provide quantitative comparisons for the trend and extent of groundwater quality mitigation under each scenario. Recommendations are made for measures that can both improve groundwater quality and sustain productive agricultural development.  相似文献   

9.
1992年世界地震活动性和地震灾害   总被引:3,自引:0,他引:3  
  相似文献   

10.
ABSTRACT

The possibility was studied of a gradual extension of the irrigable area of the Tarlac Irrigation System, located in the alluvial plain of Luzon Island (Philippines). The extension would be made by integrating groundwater with surface water supplied from a reservoir already designed. Aquifer exploitation was studied adopting the criterion that groundwater is a very expensive resource to be turned to only in severe drought years. The objectives of the study were twofold: (a) planning the distribution of the wells (to be drilled during the various stages of the irrigation system development) so as to minimize the pumping cost; (b) establishing a policy for the well management in conjunction with the reservoir operation. Different schemes of the combined system management were analysed on the basis of the climatic and hydrological regime over the period 1950–1972. For this period the monthly water requirements for the different crops and the monthly values of aquifer recharge were computed. The economic analyses were performed using present prices of agricultural products and power together with several different hypotheses about future prices. A finite element model of the semiconfined aquifer was postulated and calibrated; the importance of the return flow from irrigation was also tested. Simulations of exploitation schemes provided a detailed forecast of the aquifer response to the irrigation demands.  相似文献   

11.
2001年全世界灾害性地震综述   总被引:2,自引:0,他引:2  
2001年全世界地震活动水平属于中等偏高,地震灾情比往年较重。地震死亡人数总计17 770人,伤15 9370人,经济损失约77亿美元。2001年印度是地震灾害最严重的国家。  相似文献   

12.
Pakistan faces the challenge of developing sustainable groundwater policies with the main focus on groundwater management rather than groundwater development and with appropriate governance arrangement to ensure benefits continue into the future. This article investigates groundwater policy, farmers' perceptions, and drivers of tubewell (groundwater bore) adoption and proposes possible pathways for improved groundwater management for Balochistan, Pakistan. Historical groundwater policies were mainly aimed at increasing agricultural production and reducing poverty, without consideration of adverse impact on groundwater availability. These groundwater policies and governance arrangements have resulted in a massive decline in groundwater tables. Tubewell owners' rankings of the drivers of groundwater decline suggest that rapid and widespread installation of tubewells, together with uncontrolled extraction due to lack of property rights, electricity subsidy policies, and ineffective governance, are key causes of groundwater decline in Balochistan. An empirical “tubewell adoption” model confirmed that the electricity subsidy significantly influenced tubewell adoption decisions. The article proposes a more rational electricity subsidy policy for sustaining groundwater levels in the short‐run. However, in the long run a more comprehensive sustainable groundwater management policy, with strong institutional support and involvement of all stakeholders, is needed.  相似文献   

13.
Water scarcity has become a constraint for regional economic development in many cities and regions. Water rationing serves as one instrument to constrain water consumption to persuade users to save water and to moderate their consumption. When the supply of water is unable to satisfy demand, a loss of welfare for the water users will usually occur. This paper conducts an empirical case study on a Chicago suburban county, McHenry County, to evaluate effective water allocation strategies under possible water scarcity scenarios, by specifically taking into consideration of the economic welfare loss under water rationing. It points out the inefficiency of equal rationing and tests a more effective optimal rationing regime which could significantly lower the overall welfare loss for McHenry County. Instead of a conventional watershed‐based approach that would provide little advantage for an area that mostly relies on groundwater, this study adopts regional planning/political boundaries as its spatial analytical units. The outcomes suggest that municipality‐level water resources management models, powered under economic welfare objective functions, are both possible and practical. The planning strategy drawn under such optimization models suggests a variety of promising approaches to manage groundwater resources at county scales.  相似文献   

14.
The effects of anthropogenic water use play a significant role in determining the hydrological cycle of north India. This paper explores anthropogenic impacts within the region's hydrological regime by explicitly including observed human water use behaviour, irrigation infrastructure and the natural environment in the CHANSE (Coupled Human And Natural Systems Environment) socio-hydrological modelling framework. The model is constrained by observed qualitative and quantitative information collected in the study area, along with climate and socio-economic variables from additional sources. Four separate scenarios, including business as usual (BAU, representing observed irrigation practices), groundwater irrigation only (where the influence of the canal network is removed), canal irrigation only (where all irrigation water is supplied by diverted surface water) and rainfed only (where all human interventions are removed) are used. Under BAU conditions the modelling framework closely matched observed groundwater levels. Following the removal of the canal network, which forces farmers to rely completely on groundwater for irrigation, water levels decrease, while under a canal-only scenario flooding occurs. Under the rainfed-only scenario, groundwater levels similar to current business-as-usual conditions are observed, despite much larger volumes of recharge and discharge entering and leaving the system under BAU practices. While groundwater abstraction alone may lead to aquifer depletion, the conjunctive use of surface and groundwater resources, which includes unintended contributions of canal leakage, create conditions similar to those where no human interventions are present. Here, the importance of suitable water management practices, in maintaining sustainable water resources, is shown. This may include augmenting groundwater resources through managed aquifer recharge and reducing the impacts on aquifer resources through occasional canal water use where possible. The importance of optimal water management practices that highlight trade-offs between environmental impact and human wellbeing are shown, providing useful information for policy makers, water managers and users. © 2019 John Wiley & Sons, Ltd.  相似文献   

15.
Understanding the key drivers behind intensive use of groundwater resources and subsequent depletion in northern India is important for future food security of India. Although spatio-temporal changes of groundwater storage (GWS) and its depletion in northern India are mapped using the NASA's GRACE (Gravity Recovery and Climate Experiment) records, the sub-regional diverse socio-political and environmental factors contributing to the variability in groundwater withdrawals and renewals are not well documented. Here, we provide new evidence on changes in GWS at different spatial scales using both observations and satellite-based measurements applying both parametric and non-parametric statistical analyses. The substantial loss of GWS has occurred since the beginning of the 21st century, and the decline in GWS is associated with some record-breaking dry and hot climate events. We present how certain state-based policy decisions, such as supplying free electricity for irrigation, prompted farmers to extract groundwater unsustainably and thus led to widespread GWS deletion, which has been also accelerated by frequent dryness and rising temperatures. In the hotspot of Punjab, Haryana and Delhi of northern India, the extracted groundwater during 1985–2013 is equivalent to a metre-high layer if spread uniformly across its geographical domain. We find that the groundwater storage loss in northern India has increased rapidly from 17 km3 to 189 km3 between the pre-2002 and 2002–2013 periods. This loss in northern India is, therefore, an excellent example of rapid surface greening and sub-surface drying—a result of an interplay of socio-political and environmental factors. As groundwater continues to be treated as a common natural resource and no clear definition exists to guide policymaking, this study also illustrates how the administrative district level approach can solve the widespread problem of depletion.  相似文献   

16.
Due to increasing water demands globally, freshwater ecosystems are under constant pressure. Groundwater resources, as the main source of accessible freshwater, are crucially important for irrigation worldwide. Over-abstraction of groundwater leads to declines in groundwater levels; consequently, the groundwater inflow to streams decreases. The reduction in baseflow and alteration of the streamflow regime can potentially have an adverse effect on groundwater-dependent ecosystems. A spatially distributed, coupled groundwater–surface water model can simulate the impacts of groundwater abstraction on aquatic ecosystems. A constrained optimization algorithm and a simulation model in combination can provide an objective tool for the water practitioner to evaluate the interplay between economic benefits of groundwater abstractions and requirements to environmental flow. In this study, a holistic catchment-scale groundwater abstraction optimization framework has been developed that allows for a spatially explicit optimization of groundwater abstraction, while fulfilling a predefined maximum allowed reduction of streamflow (baseflow [Q95] or median flow [Q50]) as constraint criteria for 1484 stream locations across the catchment. A balanced K-Means clustering method was implemented to reduce the computational burden of the optimization. The model parameters and observation uncertainties calculated based on Bayesian linear theory allow for a risk assessment on the optimized groundwater abstraction values. The results from different optimization scenarios indicated that using the linear programming optimization algorithm in conjunction with integrated models provides valuable information for guiding the water practitioners in designing an effective groundwater abstraction plan with the consideration of environmental flow criteria important for the ecological status of the entire system.  相似文献   

17.
Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco2 concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential long-term effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world.  相似文献   

18.
This paper introduces economic concepts and theory pertaining to public policy issues and concerns about pollution in marine environments. Many of these concepts and theories are unfamiliar to individuals and professionals outside the field of economics, such as biologists, ecologists, environmental lawyers, and even public policymakers. Yet many of these individuals observe economics in action, often for the first time, within a public policy arena. Exposure and a better understanding of the concepts and ideas in economics that are particularly relevant for public policies can help to achieve efficiencies in the form of better designed policies, and help to bridge communications gaps across other professions and the economics profession.  相似文献   

19.
Evapotranspiration (ET) from riparian vegetation can be difficult to estimate due to relatively abundant water supply, spatial vegetation heterogeneity, and interactions with anthropogenic influences such as shallower groundwater tables, increased salinity, and nonpoint source pollution induced by irrigation. In semiarid south-eastern Colorado, reliable ET estimates are scarce for the riparian corridor that borders the Arkansas River. This work investigates relationships between the riparian ecosystem along the Arkansas River and an underlying alluvial aquifer using ET estimates from remotely sensed data and modelled water table depths. Results from a calibrated, finite-difference groundwater model are used to estimate weekly water table fluctuations in the riparian ecosystem from 1999 to 2009, and estimates of ET are calculated using the Operational Simplified Surface Energy Balance (SSEBop) model with over 200 Landsat scenes covering over 30 km2 of riparian ecosystem along a 70-km stretch of the river. Comparison of calculated monthly SSEBop ET to estimated alfalfa reference ET from local micrometeorological station data indicated statistically significant high linear correspondence (R2 = .87). Daily calculated SSEBop ET showed statistically significant moderate linear correspondence with data from a local weighing lysimeter (R2 = .59). Simulated monthly SSEBop ET values were larger in drier years compared with wetter years, and ET variability was also larger in drier years. Peak ET most commonly occurred during the month of June for all 11 years of analysis. Relationships between ET and water table depth showed that peak monthly ET was highest when groundwater depths were less than about 3 m, and ET values were significantly lower for groundwater depths greater than 3 m. Negative sample Spearman correlation highlighted riparian corridor locations where ET increased as a result of decreased groundwater depths across years with different hydroclimatic conditions. This study shows how a combination of remotely sensed riparian ET estimates and a regional groundwater model can improve our understanding of linkages between riparian consumptive use and near-river groundwater conditions influenced by irrigation return flow and different climatic drivers.  相似文献   

20.
ABSTRACT

The endorheic basin of Zayandehrud in Iran suffers from environmental problems, social tensions, and economic instability. Lack of understanding how the water system and the socio-economic system interact may explain these challenges. A system dynamics model, being a holistic simulation tool, was developed for the Zayandehrud basin and used to evaluate several policy scenarios. The indices of employment, gross regional product, the volume of groundwater and surface water stored, flow into the basin’s end lake, and the water flow in the river were used to evaluate the scenarios. The findings demonstrate that focusing on supply-based activities or water demand management cannot solely improve the condition of the Zayandehrud basin. It is required to reconsider the development policies of the region in a broader context. Reducing the irrigated area by 15% and developing new industries up to a certain limit may make the combined water and socio-economic system sustainable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号