首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
给出了大气三维涡旋运动基本态所满足的简洁的偏微分方程. 大气涡旋运动存在低压辐合上升和高压辐散下沉的基本状况,基本态的三维速度场可以用流函数和对流速度势分解,且具有螺旋结构. 当Reynolds数Re→∞时,涡旋运动就化为地转风,涡旋运动近似就化为地转风近似.  相似文献   

2.
中纬度海洋热力状况异常影响大气主要通过两种途径:非绝热加热的直接强迫作用和大气瞬变涡旋反馈的间接强迫作用,而后者的作用并没有被很好地认识.为了进一步理解间接强迫作用的物理机制,本文利用观测资料分析和区域大气模式模拟,研究了伴随冬季北太平洋副热带海洋锋强度变化的中纬度大气场异常,特别是对流层中高层不同频率的涡旋扰动活动的异常.实际观测和数值试验结果均表明,当北太平洋副热带海表面温度锋偏强时,其上空的中纬度大气经向温度梯度增强;对应此时的大气斜压性增强,且中纬度大气西风急流整层加速;然而增强的大气斜压性并不对应一致性增强的大气涡旋扰动活动.中纬度大气的涡旋扰动根据其生命周期,进一步划分为高频(2~7天)和低频(10~90天)涡旋扰动.研究结果表明偏强的北太平洋副热带海洋锋对应着增强的中纬度大气高频涡旋扰动和减弱的低频涡旋扰动;其中,中纬度大气高频扰动活动的增强,将有利于削弱中纬度大气经向温度梯度,从而减弱中纬度大气斜压性;而高频扰动对纬向风倾向项的正贡献,有利于中纬度急流中心北侧及下游区域的西风加速,形成中纬度西风相当正压结构的增强;大气低频扰动的减弱,对中纬度大气纬向风倾向项产生负贡献,不利于急流的纬向均匀化,而其热力强迫异常则有利于维持中纬度对流层中层大气的经向温度梯度.  相似文献   

3.
巢纪平  刘飞 《中国科学D辑》2007,37(2):254-260
发展了Anderson和Moore跨赤道惯性急流理论, 应用非线性等值浅水模式, 根据与急流相联系的有旋大尺度气流(大气)或洋流(海洋)特征定出新的普适函数, 从而求出跨赤道惯性急流区中沿流线的位势涡度和能量守恒式, 由于最后的控制方程是非线性的, 因此可以有条件的存在跨赤道的多平衡态的惯性急流解. 通过急流区外不同的大尺度气流或洋流的特征分析, 讨论了跨赤道惯性急流区中可能存在平衡态的条件, 并给出多平衡态的解例.  相似文献   

4.
全球大气环流三维分解   总被引:2,自引:0,他引:2  
利用速度场的矢势表示过程将现有的二维环流的表示形式统一起来, 提出广义三维Walker环流、Hadley环流和Rossby环流的定义. 从全球的视角来看, 整个大气环流可以认为是这3种广义环流叠加之和. 给出大气环流三维分解的数学模型, 从理论上证明了大气环流三维分解过程的存在唯一性. 此外计算结果表明, 大气环流三维环流分解过程存在唯一, 速度场与三维广义流函数之间可以等价表示. 由流函数计算出的垂直速度ω*以及三维广义Hadley环流和广义Walker环流的垂直速度ωH和ωW能够反映垂直环流的主要特征. 全球大气环流三维分解为进一步研究全球大气的三维运动特征提供了方便.  相似文献   

5.
风生边界急流稳定性的渐近理论   总被引:3,自引:1,他引:3       下载免费PDF全文
观测表明,当冬季盛吹北风时,在南中国海西边界附近将形成一支向南的急流,在一定条件下这支急流可弯曲成波动甚至形成涡旋.本文应用等值浅水模式,采用截断模方法,分析了急流的稳定性,并给出急流上不稳定波出现的条件.分析表明只有当向南的风生急流很强很窄时,由变性的Kelvin波和风应力强迫出的地形Rossby波在长波波段耦合而出现不稳定,不稳定波在波长约200 km时向北传播的相速度约为02 m·s-1,波振幅增长到e倍所需的时间约15天.分析进一步表明,夏季向北的风生流在海洋的西边界附近是稳定的.这些结果在一定程度上解释了观测结果.  相似文献   

6.
将理想化的南中国海海盆在垂直方向上划分为Ekman层、惯性层和摩擦层. Ekman层中的运动由大气风应力驱动,其底部的扰动压力将作为其下惯性层中运动的上边界条件. 惯性层中的运动是由f 平面三维非线性方程在准地转近似下位势涡度守恒控制,由此得到控制惯性层中运动关于扰动压力的三维椭圆型方程. 在惯性层以下考虑到深层的海盆水平尺度很小,由此引进带有底部摩擦的线性控制方程,方程的边界条件为惯性层和摩擦层交界面上的扰动压力连续,沿海盆边界假定海水与相邻的固壁间无热量交换,由此设在海盆边界上扰动温度为零. 在此基础上分别利用惯性层和摩擦层中的椭圆型控制方程计算了相应层次上冬、夏季的扰动压力和准地转流. 结果表明冬季各层上以气旋式环流为主,且随深度的增加流速减小;夏季各层上以反气旋式环流为主,流速也随深度增加而减小. 这在一定程度上和观测事实相符.  相似文献   

7.
地学书签     
《地球》2012,(9):53-53
什么是地转偏向力?水平地转偏向力亦称地偏力,因为地球自转而产生的以地球经纬网为参照系的力。地转偏向是科氏力(科里奥利力)在沿地球表面方向的一个分力。是常被引入的第3类惯性力,前两类为平动惯性力和惯性离心力,当物体相对做匀速圆周的参考系有速度时,引入此力,由于比较复杂,很少被讲到,所以经常被人遗忘,表达式为f=2mvωsinφ。  相似文献   

8.
大气流场的拓扑结构   总被引:3,自引:1,他引:2       下载免费PDF全文
用简化的大气运动方程,定性分析了大气中几种常见天气系统流场的拓扑结构. 研究表明,气旋反气旋流场与中心点附近的流形相对应;长波演化形成阻塞高压流场,与鞍点和中心点从合并到分离的流形相对应;台风和龙卷风的流场与三维空间中鞍-焦点附近的流形相对应. 研究大气流场的拓扑结构,可以直观清晰地揭示大气运动的形态和形成机理,有助于认识大气运动的规律. 文中讨论基于一定假设,结果与实际大气有差异,因而具有局限性.  相似文献   

9.
西北太平洋等位势密度面上的东向副热带逆流   总被引:3,自引:0,他引:3  
用美国海军高分辨率气候月平均温盐资料和等位势密度面P-矢量方法, 计算了西北太平洋各月等位势密度面环流. 主要讨论西北太平洋副热带流涡内部东向副热带逆流(简称: STCC)的空间分布、垂直结构、体积输送及其附近的涡旋现象. 计算结果很好地再现了STCC的一些观测特征, 并且还揭示了STCC在等位势密度面上呈现的一些新现象: (1) 在24.6 σθ面上, STCC的空间分布、源地和流动态势都有很强的季节变化, 1 ~ 3月份不存在STCC; (2) 5 ~ 10月, 日本以南黑潮逆流的一个分支汇入了STCC, 使得STCC的流速增强, 流幅显著地加宽; (3) 流速矢量场明显地表现出: STCC和它附近的一些涡旋伴随而生, STCC存在时它附近总伴随着一些涡旋, 当STCC消失时涡旋也就消失了; (4) 通过137.5°E断面, STCC的输送量夏季最强, 8月份最大输送量达6.9 Sv (1 Sv ≡ 106 m3/s), 春、秋季较弱, 4和11月份的输送量分别为1.7和1.6 Sv, 输送主要集中在24.0≤ σθ ≤25.0面之间; (5) 纬向流沿137.5°E断面的分布表明, STCC的流核位于24.3 ~ 24.7 σθ之间.  相似文献   

10.
分数维由Mandelbrot创立已有30年,分数阶导数在1695年由L’Hospital提出已有400年的历史.本文用物理学中的间歇湍流问题说明分数维及分数阶导数的物理意义.由于间歇湍流涡旋不完全充满空间,所以其维数为2相似文献   

11.
We conducted hydrographic observations in 2002 to investigate the anticyclonic eddy that emerges every summer in Funka Bay, Hokkaido, Japan, and elucidate dynamical structure and wind-driven upwelling within the eddy. The anticyclonic eddy has a vertical scale of 32 m and is characterized by a strong baroclinic flow and a sharp pycnocline with a concave isopycnal structure. The sharp pycnocline occurs below a warm and relatively low-salinity water termed summer Funka Bay water (FS), which is formed by heating from solar radiation and dilution from river discharge in summertime Funka Bay. Flow of the anticyclonic eddy rotates as a rigid body at each layer, and the horizontal scale and rotation period of the eddy in the surface layer are about 15 km and 2.2 days, respectively. The dynamical balance of the anticyclonic eddy is well explained by the gradient flow balance. The contribution of centrifugal force to the gradient flow balance is about 27%. Therefore, the effect of the nonlinear term associated with centrifugal force cannot be neglected in considering the dynamics of the anticyclonic eddy in summertime Funka Bay. In addition, upwelling of subsurface water was observed in the surface layer of the central part of the eddy. The formation mechanism of this upwelling is consistent with interaction between horizontal uniform wind and the eddy. This upwelling is driven by upward Ekman pumping velocity related to the horizontal divergence of Ekman transport. In summertime Funka Bay, there are two wind effects that affect the anticyclonic eddy: a decay effect of the upwelling of subsurface water resulting from horizontal uniform wind (mainly northwesterly wind), and a maintenance or spin-up effect of horizontal non-uniform wind (mainly southerly–southeasterly seasonal wind) with negative wind stress curl.  相似文献   

12.
Several theoretical models for the East African Low Level Jet Stream are described. They all share the notion that the northward advection of planetary vorticity across the equator, coupled with the presence of a north-south mountain barrier, leads to the formation of a low-level western boundary current (akin to the Gulf-Stream) along the equatorial east coast of Africa. They differ in the manner in which the planetary vorticity advection is balanced to obtain a quasi-steady state. A purely inertial model predicts the correct cross-stream scale of the jet, but does not reproduce the observed inner shear layer which reduces the jet velocity to zero inland near the highlands. The lateral friction model can produce a realistic jet profile if the horizontal eddy viscosity (appearing as a free parameter) is chosen appropriately. However this solution shows a recirculation, i.e., northerly flow, off the coast that has not yet been observed. Finally, a model that includes bottom friction over variable topography also can give realistic jet profiles. If one accepts that the mountains, the Beta effect, and some form of inertial or frictional acceleration act together to produce the cross-equatorial low level jet stream, then one can formulate the types of observations needed to distinguish between the various theories.  相似文献   

13.
地面摩擦和大尺度流场是影响锋面气旋结构演变的重要因子,本文使用WRF模式并采用湿物理方案,通过理想化试验,综合考虑陆面摩擦、气旋式扰动相对于急流位置和大尺度流场对锋面气旋结构变化的影响.结果表明:当仅考虑单一因子时,气旋式扰动位于急流南侧和辐合流流场有利于气旋形成Shapiro-Keyser(S-K)模型结构.当同时考虑地面摩擦和大尺度辐合时,气旋式扰动位于急流北侧的气旋发展整体向经典的挪威气旋模型转变;扰动位于急流南侧的的气旋发展则整体呈现S-K模型结构,此时辐合流场有利于S-K模型结构出现.当同时考虑地面摩擦和大尺度辐散时,扰动处于急流北侧的气旋呈现挪威气旋模型结构;由于气旋式扰动穿越急流和辐散流场同时有利于暖锋后弯发展以及冷暖锋距离加大和锋消,扰动处于急流南侧的气旋呈现典型S-K气旋模型结构.这个结果解释了在东亚大陆地区辐散场形势下出现的S-K模型结构气旋个例.  相似文献   

14.
We investigate, through both asymptotic analysis and direct numerical simulation, precessionally driven flow of a homogeneous fluid confined in a fluid-filled circular cylinder that rotates rapidly about its symmetry axis and precesses about a different axis that is fixed in space. A particular emphasis is placed on a spherical-like cylinder whose diameter is nearly the same as its length. At this special aspect ratio, the strongest direct resonance occurs between the spatially simplest inertial mode and the precessional Poincaré forcing. An asymptotic analytical solution in closed form describing weakly precessing flow is derived in the mantle frame of reference for asymptotically small Ekman numbers. We also construct a nonlinear three-dimensional finite element model – which is validated against both the asymptotic solution and a constructed exact solution – for elucidating the nonlinear transition leading to disordered flow in the precessing spherical-like cylinder. Properties of both weakly and strongly precessing flows are investigated with the aid of a complete inertial-mode decomposition of the fully nonlinear solution. Despite a large effort being made, the well-known triadic resonance is not found in the precessing spherical-like cylinder. The energy contained in the precessionally forced inertial mode is primarily transferred, through nonlinear effects in the viscous boundary layers, to the geostrophic flow that becomes predominant when the precessional Poincaré force is sufficiently large. It is found that the nonlinear flow evolutes gradually and progressively from the laminar to disordered as the precessional force increases.  相似文献   

15.
We propose an improvement of the overland‐flow parameterization in a distributed hydrological model, which uses a constant horizontal grid resolution and employs the kinematic wave approximation for both hillslope and river channel flow. The standard parameterization lacks any channel flow characteristics for rivers, which results in reduced river flow velocities for streams narrower than the horizontal grid resolution. Moreover, the surface areas, through which these wider model rivers may exchange water with the subsurface, are larger than the real river channels potentially leading to unrealistic vertical flows. We propose an approximation of the subscale channel flow by scaling Manning's roughness in the kinematic wave formulation via a relationship between river width and grid cell size, following a simplified version of the Barré de Saint‐Venant equations (Manning–Strickler equations). The too large exchange areas between model rivers and the subsurface are compensated by a grid resolution‐dependent scaling of the infiltration/exfiltration rate across river beds. We test both scaling approaches in the integrated hydrological model ParFlow. An empirical relation is used for estimating the true river width from the mean annual discharge. Our simulations show that the scaling of the roughness coefficient and the hydraulic conductivity effectively corrects overland flow velocities calculated on the coarse grid leading to a better representation of flood waves in the river channels.  相似文献   

16.
Jet flow over foredunes   总被引:1,自引:0,他引:1       下载免费PDF全文
Jet flows, which are localized flows exhibiting a high speed maxima, are relatively common in nature, and in many devices. They have only been occasionally observed on dunes, and their dynamics are poorly known. This paper examines computational fluid dynamic (CFD) two‐dimensional (2D) modelling of jet flow over a foredune topography. Flow was simulated in 10° increments from onshore (0°) to highly oblique alongshore (70°) incident wind approach angles. CFD modelling reveals that the formation of a jet is not dependent on a critical wind speed, and an increase in incident wind velocity does not affect the magnitude of jet flow. A jet is first formed at ~1.0 m seawards of the foredune crest on the Prince Edward Island foredune morphology example examined here. A jet is not developed when the incident wind is from an oblique approach angle greater than ~50° because there is significantly less flow acceleration across a much lower slope at this incident angle. The presence of a scarp does influence the structure of the crest jet, in that the jet is more pronounced where a scarp is present. Surface roughness affects the magnitude of jet expansion and jets are better developed on bare surfaces compared to vegetated ones. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In the present paper zonal mean flow excitation by inertial waves is studied in analogy to mean flow excitation by gravity waves that plays an important role for the quasi-biennial oscillation in the equatorial atmosphere. In geophysical flows that are stratified and rotating, pure gravity and inertial waves correspond to the two limiting cases: gravity waves neglect rotation, inertial waves neglect stratification. The former are more relevant for fluids like the atmosphere, where stratification is dominant, the latter for the deep oceans or planet cores, where rotation dominates. In the present study a hierarchy of simple analytical and numerical models of zonally symmetric inertial wave-mean flow interactions is considered and the results are compared with data from a laboratory experiment. The main findings can be summarised as follows: (i) when the waves are decoupled from the mean flow they just drive a retrograde (eastward) zonal mean flow, independent of the sign of the meridional phase speed; (ii) when coupling is present and the zonal mean flow is assumed to be steady, the waves can drive vertically alternating jets, but still, in contrast to the gravity wave case, the structure is independent of the sign of the meridional phase speed; (iii) when coupling is present and time-dependent zonal mean flows are considered the waves can drive vertically and temporarily oscillating mean flows. The comparison with laboratory data from a rotating annulus experiment shows a qualitative agreement. It appears that the experiment captures the basic elements of the inertial wave mean flow coupling. The results might be relevant to understand how the Equatorial Deep Jets can be maintained against dissipation, a process currently discussed controversially.  相似文献   

18.
Radar measurements at Aberystwyth (52.4°N, 4.1°W) of winds at tropospheric and lower stratospheric heights are shown for 12–13 March 1994 in a region of highly curved flow, downstream of the jet maximum. The perturbations of horizontal velocity have comparable amplitudes in the troposphere and lower stratosphere with downward and upward phase propagation, respectively, in these two height regions. The sense of rotation with increasing height in hodographs of horizontal perturbation velocity derived for hourly intervals show downwards propagation of energy in the troposphere and upward propagation in the lower stratosphere with vertical wavelengths of 1.7 to 2.3 km. The results indicate inertia-gravity waves propagating in a direction similar to that of the jet stream but at smaller velocities. Some of the features observed contrast with those of previous observations of inertia-gravity waves propagating transverse to the jet stream. The interpretation of the hodographs to derive wave parameters has taken account of the vertical shear of the background wind transverse to the direction of wave propagation.  相似文献   

19.
The paper adopts an f-plane quasi-geostrophic inertial model without linearization to investigate the perturbation temperature, boundary jet and upwelling (downwelling) in an idealized rectangular basin, under the consideration of west side friction layer and heat conservation. There is net heat input on the upper surface and equal quality heat dissipation on the west boundary, and without heat exchange on other boundaries, then the heat is conservation in the whole basin. Results show that there is thermal front due to denseness of the perturbation temperature in the west side boundary, the perturbation pressure and flow field are reversal on the upper layer and bottom layer. On the bottom layer, the west coastal current is northward, and the maximum perturbation pressure center is on the west, however, on the upper layer, the east coastal current is southward, and the maximum perturbation pressure center is on the east. There is strong vertical flow in narrow western boundary layer, and also in the central zone. The effect of different upper thermal forcings is also studied, and it can be concluded that there is always temperature denseness and boundary jet near the west boundary, and the appearance of flow field reversal, but the distribution of vertical flow is rather different.  相似文献   

20.
A seasonal ice edge zone is a unique frontal system with an air-ice-sea interface. This paper is a report on the numerical results from a quasi-three dimensional, time dependent, non-linear numerical model of circulation at a continental shelf-seasonal ice edge zone. The purpose of the experiments is to model the hydrography and circulation, including upwelling, baroclinic geostrophic flow, and inertial oscillations, at the ice edge with emphasis on examining the driving forces of wind and melting ice. It is suggested that the non-linear acceleration terms and vertical density diffusion terms are negligible and that the horizontal density diffusion terms are of secondary importance within the time and space scales of the experiments. The vertical eddy viscosity terms are important in a spin-up time scale and for Ekman transport and a bottom Ekman layer. The effects of the horizontal eddy viscosity terms are observable (a long-ice jet is diffused away from the ice edge) by the end (72 h) of the model runs.Model results are compared with available oceanographic and meteorological data for verification. The observed and modeled features of melt water induced water column stability, frontal structure, and ice edge upwelling are briefly discussed relative to observed ice edge primary production. Because the model is relatively general in nature, it is readily applicable to other seasonal or marginal ice edge zones in either hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号