首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The combination of structure-from-motion with multi-view stereo (SfM-MVS) photogrammetry has become an increasingly popular method for the monitoring and three-dimensional (3D) reconstruction of coastal environments. Climate change is driving the potential for increased coastal landward retreat meaning geomorphological monitoring using methods such as SfM-MVS has become essential for detecting and tracking impacts. SfM-MVS has been well-researched with a variety of platforms and spatial and temporal resolutions using mainly rectilinear digital cameras in coastal settings. However, there has been no assessment of the potential of fixed multi-camera arrays to monitor landward retreat or on the significance of camera placement in relation to the scene. This study presents an innovative method of image acquisition using a purpose-built camera grid and GoPro© action camera to evaluate the combined effects of camera height, obliqueness and overlap at a site of known landward retreat. This approach examines the effect of camera placement on scene reconstruction to aid the design of a multi-camera array. SfM-MVS dense point clouds display millimetre accuracy when compared to equivalent terrestrial laser scans and strong image network geometry with internal precision estimates of < 3 mm. Comparable point cloud reconstruction can be achieved with a small number of images stationed in appropriate positions. Initial results show as few as five images positioned at a cliff to camera ratio of 3:4.18 and camera obliqueness of 40° can provide reconstruction in the range of millimetres (mean error of 4.79 mm). These findings illustrate the importance of camera placement when using multiple cameras and aid the design of a low-cost, fixed multi-camera array for use at sites of small-scale landward retreat. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

2.
High resolution digital elevation models (DEMs) are increasingly produced from photographs acquired with consumer cameras, both from the ground and from unmanned aerial vehicles (UAVs). However, although such DEMs may achieve centimetric detail, they can also display systematic broad‐scale error that restricts their wider use. Such errors which, in typical UAV data are expressed as a vertical ‘doming’ of the surface, result from a combination of near‐parallel imaging directions and inaccurate correction of radial lens distortion. Using simulations of multi‐image networks with near‐parallel viewing directions, we show that enabling camera self‐calibration as part of the bundle adjustment process inherently leads to erroneous radial distortion estimates and associated DEM error. This effect is relevant whether a traditional photogrammetric or newer structure‐from‐motion (SfM) approach is used, but errors are expected to be more pronounced in SfM‐based DEMs, for which use of control and check point measurements are typically more limited. Systematic DEM error can be significantly reduced by the additional capture and inclusion of oblique images in the image network; we provide practical flight plan solutions for fixed wing or rotor‐based UAVs that, in the absence of control points, can reduce DEM error by up to two orders of magnitude. The magnitude of doming error shows a linear relationship with radial distortion and we show how characterization of this relationship allows an improved distortion estimate and, hence, existing datasets to be optimally reprocessed. Although focussed on UAV surveying, our results are also relevant to ground‐based image capture. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

3.
由于InSAR数据处理所用的WGS84参考椭球系统与通用的DEM高程系统(EGM96大地水准参考面)不一致,在InSAR形变监测分析中会引入大地水准面高导致的误差.本文利用覆盖青藏高原北部阿尔金断裂带西段的27景Envisat ASAR宽幅模式数据和44景条带模式数据,研究了大地水准面高与InSAR大范围形变测量不确定性的关系:(1)模拟分析表明对于100 m的垂直基线,8.8 m的DEM测量误差,若研究区域存在20 m的大地水准面高的变化,对宽幅或条带模式InSAR形变测量造成的影响将由3 mm增至10 mm左右;(2)实例验证表明对于不同的研究区域,大地水准面高与该地区地形变化存在较大相关性,对于同一研究区域,垂直基线的大小决定了大地水准面高对InSAR不确定性的影响程度;(3)对于大地水准面高有较大梯度变化的研究区域,组合短基线方法与去除轨道平面的方法难以消除大地水准面高的影响.使用基于WGS84高程系统的DEM,可以为InSAR形变测量分析提供统一的高程基准,有效避免大地水准面高误差的影响.  相似文献   

4.
The production of topographic datasets is of increasing interest and application throughout the geomorphic sciences, and river science is no exception. Consequently, a wide range of topographic measurement methods have evolved. Despite the range of available methods, the production of high resolution, high quality digital elevation models (DEMs) requires a significant investment in personnel time, hardware and/or software. However, image‐based methods such as digital photogrammetry have been decreasing in costs. Developed for the purpose of rapid, inexpensive and easy three‐dimensional surveys of buildings or small objects, the ‘structure from motion’ photogrammetric approach (SfM) is an image‐based method which could deliver a methodological leap if transferred to geomorphic applications, requires little training and is extremely inexpensive. Using an online SfM program, we created high‐resolution digital elevation models of a river environment from ordinary photographs produced from a workflow that takes advantage of free and open source software. This process reconstructs real world scenes from SfM algorithms based on the derived positions of the photographs in three‐dimensional space. The basic product of the SfM process is a point cloud of identifiable features present in the input photographs. This point cloud can be georeferenced from a small number of ground control points collected in the field or from measurements of camera positions at the time of image acquisition. The georeferenced point cloud can then be used to create a variety of digital elevation products. We examine the applicability of SfM in the Pedernales River in Texas (USA), where several hundred images taken from a hand‐held helikite are used to produce DEMs of the fluvial topographic environment. This test shows that SfM and low‐altitude platforms can produce point clouds with point densities comparable with airborne LiDAR, with horizontal and vertical precision in the centimeter range, and with very low capital and labor costs and low expertise levels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Quantifying the morphology of braided rivers is a key task for understanding braided river behaviour. In the last decade, developments in geomatics technologies and associated data processing methods have transformed the production of precise, reach‐scale topographic datasets. Nevertheless, generating accurate Digital Elevation Models (DEMs) remains a demanding task, particularly in fluvial systems. This paper identifies a threefold set of challenges associated with surveying these dynamic landforms: complex relief, inundated shallow channels and high rates of sediment transport, and terms these challenges the ‘morphological’, ‘wetted channel’ and ‘mobility’ problems, respectively. In an attempt to confront these issues directly, this paper presents a novel survey methodology that combines mobile terrestrial laser scanning and non‐metric aerial photography with data reduction and surface modelling techniques to render DEMs from the resulting very high resolution datasets. The approach is used to generate and model a precise, dense topographic dataset for a 2.5 km reach of the braided Rees River, New Zealand. Data were acquired rapidly between high flow events and incorporate over 5 x 109 raw survey observations with point densities of 1600 pts m‐2 on exposed bar and channel surfaces. A detailed error analysis of the resulting sub‐metre resolution is described to quantify DEM quality across the entire surface model. This reveals unparalleled low vertical errors for such a large and complex surface model; between 0.03 and 0.12 m in exposed and inundated areas of the model, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Global digital elevation models (DEMs) are an invaluable source of information in large area studies. Of particular interest are shuttle radar topography mission (SRTM) data that are freely available for the scientific community worldwide. Prior to any application, global datasets should be evaluated using reference data of higher accuracy. Therefore, the main objective of this study was to assess the accuracy of the SRTM C-band (version 4) DEM and SRTM X-band DEM of mountainous areas located in Poland and to examine the quality of data in relation to topographic parameters, radar beam geometry, initial voids in data and the presence of forest cover. A DEM from the Central National Geodetic and Cartographic Inventory, Poland, served as a reference. The study consisted of three steps: (i) the computation of vertical errors of the SRTM C- and X-band DEMs, (ii) the examination of any systematic bias in the data, and (iii) the analysis of the relationships between the elevation errors and terrain slope, aspect, local incidence angle, occurrence of voids and land cover. We found that the SRTM C- and X-band DEMs have mean errors equal to 4.31 ± 14.09 and 9.03 ± 37.40 m and root mean square errors equal to 14.74 and 38.47 m, respectively. Only 82 % of the C-band DEM and 74 % of the X-band DEM vertical errors had absolute values below 16 m. We found that the most important factors determining the occurrence of high errors were the distribution of initial voids and high slope angles for the C-band DEM, and local incidence angle, slope, aspect and radar beam geometry for the X-band DEM. In both cases, the presence of forest cover increased the mean error by approximately 10 m.  相似文献   

7.
We describe a low-cost application of digital photogrammetry using commercially available photogrammetric software and oblique photographs taken with an off-the-shelf digital camera to create sequential digital elevation models (DEMs) of a lava dome that grew during the 2004–2008 eruption of Mount St. Helens (MSH) volcano. Renewed activity at MSH provided an opportunity to devise and test this method, because it could be validated against other observations of this well-monitored volcano. The datasets consist of oblique aerial photographs (snapshots) taken from a helicopter using a digital single-lens reflex camera. Twelve sets of overlapping digital images of the dome taken during 2004–2007 were used to produce DEMs and to calculate lava dome volumes and extrusion rates. Analyses of the digital images were carried out using photogrammetric software to produce three-dimensional coordinates of points identified in multiple photos. The evolving morphology of the dome was modeled by comparing successive DEMs. Results were validated by comparison to volume measurements derived from traditional vertical photogrammetric surveys by the US Geological Survey Cascades Volcano Observatory. Our technique was significantly less expensive and required less time than traditional vertical photogrammetric techniques; yet, it consistently yielded volume estimates within 5% of the traditional method. This technique provides an inexpensive, rapid assessment tool for tracking lava dome growth or other topographic changes at restless volcanoes.  相似文献   

8.
The worldwide availability of digital elevation models (DEMs) has enabled rapid (semi-)automated mapping of earth surface landforms. In this paper, we first present an approach for delineating valley bottom extent across a large catchment using only publicly available, coarse-resolution DEM input. We assess the sensitivity of our results to variable DEM resolution and find that coarse-resolution datasets (90 m resolution) provide superior results. We also find that LiDAR-derived DEMs produce more realistic results than satellite-derived DEMs across the full range of topographic settings tested. Satellite-derived DEMs perform more effectively in moderate topographic settings, but fail to capture the subtleties of valley bottom extent in mild gradient, low-lying topography and in narrow headwater reaches. Second, we present a semi-automated technique within ArcGIS for delineating valley bottom segments using DEM-derived network scale metrics of valley bottom width and slope. We use an unsupervised machine-learning technique based on the k-means clustering algorithm to solve a conundrum in GIS-based geomorphic analysis of rivers: the delineation of valley bottom segments of variable length. The delineation of valley bottom segments provides a coarse-scale entry point into automated geomorphic analysis and characterization of river systems. © 2020 John Wiley & Sons, Ltd.  相似文献   

9.
The increasing popularity of remote sensing techniques has created numerous options for researchers seeking spatial datasets, especially digital elevation models (DEMs), for geomorphic investigations. This yields an important question regarding what DEM resolution is most appropriate when answering questions of geomorphic significance. The highest possible resolution is not always the best choice for a particular research aim, and DEM resolution should be tailored to fit both the scale of investigation and the simplicity/complexity of modelling processes applied to the dataset. We find that DEM resolution has a significant effect on a simple model of bed load sediment connectivity in the Lockyer Valley, Queensland. We apply a simple bed load transport threshold to catchment DEMs at three different resolutions – 1 m, 5 m, and 25 m. We find that using a 1 m resolution DEM generates numerous disconnections along tributary channel networks that underestimates the sediment contributing area, i.e. effective catchment area (ECA), of seven tributary basins of Lockyer Creek. Utilizing a coarser (lower‐resolution) DEM helps eliminate erroneous disconnections, but can reduce the detail of stream network definition. We find that the 25 m resolution DEM provides the best measure of ECA for comparing sediment connectivity between tributary catchments. The utility of simple models and coarse‐resolution datasets is important for undertaking large, catchment‐scale geomorphic investigations. As catchment‐scale investigations are becoming increasingly entwined with river management and rehabilitation efforts, scientists need not embrace an ‘out with the old’ philosophy. Simple models and coarse‐resolution datasets can help better integrate geomorphic research with management strategies and provide inexpensive and quick first‐order insights into catchment‐scale processes that can help focus future management efforts. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
刘超  雷启云  余思汗  杨顺  王银 《地震学报》2021,43(1):113-123
本文首先介绍了无人机摄影测量技术获取数字高程模型(digital elevation model,缩写为DEM)和地貌数据(正射影像)的作业流程,对比分析了三种不同质量密集点云生成的DEM在水平位置和高程上的差异;然后以1709年中卫南M7?大地震的主体地表破裂带为例,提取其上地震断层的垂直位错量和水平位移量。研究结果显示:高质量密集点云生成的DEM分辨率可达厘米级,且处理时间不需太长,其水平位置和高程与另外两种质量密集点云生成的DEM差异均小于0.100 m;基于高质量密集点云可生成6.33 cm/pix分辨率的DEM,提取1709年中卫南地震地表破裂带上地震断层的垂直位错量为(0.704±0.293) m,水平位移量为5.1 m,与前人的研究结果相吻合,因此可以代表该地震的同震位移,这表明无人机摄影测量技术能够获取地震地表破裂带典型场点的高分辨率地形地貌数据,并基于生成的DEM可进一步提取地震断层的定量参数。   相似文献   

11.
It is well established that digital elevation models (DEMs) derived from unmanned aerial vehicle (UAV) images and processed by structure from motion may contain important systematic vertical errors arising from limitations in camera geometry modelling. Even when significant, such ‘dome’-shaped errors can often remain unnoticed unless specific checks are conducted. Previous methods used to reduce these errors have involved: the addition of convergent images to supplement traditional vertical datasets, the usage of a higher number of ground control points, precise direct georeferencing techniques (RTK/PPK) or more refined camera pre-calibration. This study confirms that specific UAV flight designs can significantly reduce dome errors, particularly those that have a higher number of tie points connecting distant images, and hence contribute to a strengthened photogrammetric network. A total of 22 flight designs were tested, including vertical, convergent, point of interest (POI), multiscale and mixed imagery. Flights were carried out over a 300 × 70 m2 flat test field area, where 143 ground points were accurately established. Three different UAVs and two commercial software packages were trialled, totalling 396 different tests. POI flight designs generated the smallest systematic errors. In contrast, vertical flight designs suffered from larger dome errors; unfortunately, a configuration that is ubiquitous and most often used. By using the POI flight design, the accuracy of DEMs will improve without the need to use more ground control or expensive RTK/PPK systems. Over flat terrain, the improvement is especially important in self-calibration projects without (or with just a few) ground control points. Some improvement will also be observed on those projects using camera pre-calibration or with stronger ground control. © 2020 John Wiley & Sons, Ltd.  相似文献   

12.
Digital elevation models (DEMs) are increasingly used for landform mapping, particularly with the growing availability of national and global datasets. In this paper we describe a variety of techniques that can visualize a DEM. We then compare five techniques to ascertain which performs the most complete and unbiased visualization. We assess the visualization techniques by comparing landforms mapped from them against a detailed morphological map (derived from mapping of multi‐azimuth relief‐shaded DEMs cross‐checked with stereo aerial photographs). Results show that no single visualization method provides complete and unbiased mapping. The relief‐shaded visualizations are particularly prone to azimuth biasing, although they can highlight subtle landforms. We recommend curvature visualization for initial mapping as this provides a non‐illuminated (and therefore unbiased) image. Initial mapping can then be supplemented with data from relief‐shaded visualizations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
This study is focused on the evaluation of a Digital Elevation Model (DEM) for Tokyo, Japan from data collected by the recently launched TerraSAR add-on for Digital Elevation Measurements (TanDEM-X), satellite of the German Aerospace Center (DLR). The aim of the TanDEM-X mission is to use Interferometric SAR techniques to generate a consistent high resolution global DEM dataset. In order to generate an accurate global DEM using TanDEM-X data, it is important to evaluate the accuracy at different sites around the world. Here, we report our efforts to generate a high-resolution DEM of the Tokyo metropolitan region using TanDEM-X data. We also compare the TanDEM-X DEM with other existing DEMs for the Tokyo region. Statistical techniques were used to calculate the elevation differences between the TanDEM-X DEM and the reference data. Two high-resolution LiDAR DEMs are used as independent reference data. The vertical accuracy of the TanDEM-X DEM evaluated using the Root Mean Square Error (RMSE) is considerably higher than the existing global digital elevation models. However, the local area DEM generated by Geospatial Information Authority of Japan (GSI DEM) showed the highest accuracy among all non-LiDAR DEM’s. The vertical accuracy in terms of RMSE estimated using the 2 m LiDAR as reference is 3.20 m for TanDEM-X, 2.44 m for the GSI, 7.00 m for SRTM DEM and 10.24 m for ASTER-GDEM. We also compared the accuracy of TanDEM-X with the other DEMs for different types of land cover classes. The results show that the absolute elevation error of TanDEM-X is higher for urban and vegetated areas, likewise to those observed for other global DEM’s. This is probably because the radar signals used by TanDEM-X tend to measure the first reflective surface that is encountered, which is often the top of the buildings or canopy. Hence, the TanDEM-X based DEM is more akin to a Digital Surface Model (DSM).  相似文献   

14.
Digital flow networks derived from digital elevation models (DEMs) sensitively react to errors due to measurement, data processing and data representation. Since high‐resolution DEMs are increasingly used in geomorphological and hydrological research, automated and semi‐automated procedures to reduce the impact of such errors on flow networks are required. One such technique is stream‐carving, a hydrological conditioning technique to ensure drainage connectivity in DEMs towards the DEM edges. Here we test and modify a state‐of‐the‐art carving algorithm for flow network derivation in a low‐relief, agricultural landscape characterized by a large number of spurious, topographic depressions. Our results show that the investigated algorithm reconstructs a benchmark network insufficiently in terms of carving energy, distance and a topological network measure. The modification to the algorithm that performed best, combines the least‐cost auxiliary topography (LCAT) carving with a constrained breaching algorithm that explicitly takes automatically identified channel locations into account. We applied our methods to a low relief landscape, but the results can be transferred to flow network derivation of DEMs in moderate to mountainous relief in situations where the valley bottom is broad and flat and precise derivations of the flow networks are needed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The availability of high‐resolution, multi‐temporal, remotely sensed topographic data is revolutionizing geomorphic analysis. Three‐dimensional topographic point measurements acquired from structure‐from‐motion (SfM) photogrammetry have been shown to be highly accurate and cost‐effective compared to laser‐based alternatives in some environments. Use of consumer‐grade digital cameras to generate terrain models and derivatives is becoming prevalent within the geomorphic community despite the details of these instruments being largely overlooked in current SfM literature. A practical discussion of camera system selection, configuration, and image acquisition is presented. The hypothesis that optimizing source imagery can increase digital terrain model (DTM) accuracy is tested by evaluating accuracies of four SfM datasets conducted over multiple years of a gravel bed river floodplain using independent ground check points with the purpose of comparing morphological sediment budgets computed from SfM‐ and LiDAR‐derived DTMs. Case study results are compared to existing SfM validation studies in an attempt to deconstruct the principle components of an SfM error budget. Greater information capacity of source imagery was found to increase pixel matching quality, which produced eight times greater point density and six times greater accuracy. When propagated through volumetric change analysis, individual DTM accuracy (6–37 cm) was sufficient to detect moderate geomorphic change (order 100 000 m3) on an unvegetated fluvial surface; change detection determined from repeat LiDAR and SfM surveys differed by about 10%. Simple camera selection criteria increased accuracy by 64%; configuration settings or image post‐processing techniques increased point density by 5–25% and decreased processing time by 10–30%. Regression analysis of 67 reviewed datasets revealed that the best explanatory variable to predict accuracy of SfM data is photographic scale. Despite the prevalent use of object distance ratios to describe scale, nominal ground sample distance is shown to be a superior metric, explaining 68% of the variability in mean absolute vertical error. Published 2016. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

16.
To quantify landscape change resulting from processes of erosion and deposition and to establish spatially distributed sediment budgets, ‘models of change’ can be established from a time series of digital elevation models (DEMs). However, resolution effects and measurement errors in DEMs may propagate to these models. This study aimed to evaluate and to modify remotely‐sensed DEMs for an improved quantification of initial sediment mass changes in an artificially‐created catchment. DEMs were constructed from photogrammetry‐based, airborne (ALS) and ground‐based laser scanning (TLS) data. Regions of differing morphological characteristics and vegetation cover were delineated. Three‐dimensional (3D) models of volume change were established and mass change was derived from these models. DEMs were modified region‐by‐region for rill, interrill and alluvial areas, based on logical and hydro‐geomorphological principles. Additional DEMs were constructed by combining multi‐source, modified data. Models were evaluated by comparison with d‐GPS reference data and by considering sediment budget plausibility. Comprehensive evaluation showed that DEM usability depends on a relation between the technique used to obtain elevation data, surface morphology and vegetation cover characteristics. Photogrammetry‐based DEMs were suited to quantification of change in interrill areas but strongly underestimated surface lowering in erosion rills. TLS DEMs were best suited to rill areas, while ALS DEMs performed best in vegetation‐covered alluvial areas. Agreement with reference data and budget plausibility were improved by modifications to photogrammetry‐ and TLS‐based DEMs. Results suggest that artefacts in DEMs can be reduced and hydro‐geomorphic surface structures can be better represented by applying region‐specific modifications. Photogrammetry‐based DEMs can be improved by combining higher and lower resolution data in defined structural units and applying modifications based on principles given by characteristic hydro‐geomorphic evolution. Results of the critical comparative evaluation of remotely‐sensed elevation data can help to better interpret DEM‐based quantifications of earth‐surface processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Surface elevations represented in MODFLOW head-dependent packages are usually derived from digital elevation models (DEMs) that are available at much high resolution. Conventional grid refinement techniques to simulate the model at DEM resolution increases computational time, input file size, and in many cases are not feasible for regional applications. This research aims at utilizing the increasingly available high resolution DEMs for effective simulation of evapotranspiration (ET) in MODFLOW as an alternative to grid refinement techniques. The source code of the evapotranspiration package is modified by considering for a fixed MODFLOW grid resolution and for different DEM resolutions, the effect of variability in elevation data on ET estimates. Piezometric head at each DEM cell location is corrected by considering the gradient along row and column directions. Applicability of the research is tested for the lower Rio Grande (LRG) Basin in southern New Mexico. The DEM at 10 m resolution is aggregated to resampled DEM grid resolutions which are integer multiples of MODFLOW grid resolution. Cumulative outflows and ET rates are compared at different coarse resolution grids. Results of the analysis conclude that variability in depth-to-groundwater within the MODFLOW cell is a major contributing parameter to ET outflows in shallow groundwater regions. DEM aggregation methods for the LRG Basin have resulted in decreased volumetric outflow due to the formation of a smoothing error, which lowered the position of water table to a level below the extinction depth.  相似文献   

18.
High resolution terrain models generated from widely available Interferometric Synthetic Aperture Radar (IfSAR) and digital photogrammetry are an exciting resource for geomorphological research. However, these data contain error, necessitating pre‐processing to improve their quality. We evaluate the ability of digital filters to improve topographic representation, using: (1) a Gaussian noise removal filter; (2) the proprietary filters commonly applied to these datasets; and (3) a terrain sensitive filter, similar to those applied to laser altimetry data. Topographic representation is assessed in terms of both absolute accuracy measured with reference to independent check data and derived geomorphological variables (slope, upslope contributing area, topographic index and landslide failure probability) from a steepland catchment in northern England. Results suggest that proprietary filters often degrade or fail to improve precision. A combination of terrain sensitive and Gaussian filters performs best for both IfSAR and digital photogrammetry datasets, improving the precision of photogrammetry digital elevation models (DEMs) by more than 50 per cent relative to the unfiltered data. High‐frequency noise and high‐magnitude gross errors corrupt geomorphological variables derived from unfiltered photogrammetry DEMs. However, a terrain sensitive filter effectively removes gross errors and noise is minimized using a Gaussian filter. These improvements propagate through derived variables in a landslide prediction model, to reduce the area of predicted instability by up to 29 per cent of the study area. Interferometric Synthetic Aperture Radar is susceptible to removal of topographic detail by oversmoothing and its errors are less sensitive to filtering (maximum improvement in precision of 5 per cent relative to the raw data). Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

19.
Hydro‐geomorphological assessments are an essential component for riverine management plans. They usually require costly and time‐consuming field surveys to characterize the spatial variability of key variables such as flow depth, width, discharge, water surface slope, grain size and unit stream power throughout the river corridor. The objective of this research is to develop automated tools for hydro‐geomorphological assessments using high‐resolution LiDAR digital elevation models (DEMs). More specifically, this paper aims at developing geographic information system (GIS) tools to extract channel slope, width and discharge from 1 m‐resolution LiDAR DEMs to estimate the spatial distribution of unit stream power in two contrasted watersheds in Quebec: a small agricultural stream (Des Fèves River) and a large gravel‐bed river (Matane River). For slope, the centreline extracted from the raw LiDAR DEM was resampled at a coarser resolution using the minimum elevation value. The channel width extraction algorithm progressively increased the centerline from the raw DEM until thresholds of elevation differences and slopes were reached. Based on the comparison with over 4000 differential global positioning system (GPS) measurements of the water surface collected in a 50 km reach of the Matane River, the longitudinal profile and slope estimates extracted from the raw and resampled LiDAR DEMs were in very good agreement with the field measurements (correlation coefficients ranging from 0 · 83 to 0 · 87) and can thus be used to compute stream power. The extracted width also corresponded very well to the channel as seen from ortho‐photos, although the presence of bars in the Matane River increased the level of error in width estimates. The estimated maximum unit stream power spatial patterns corresponded well with field evidence of bank erosion, indicating that LiDAR DEMs can be used with confidence for initial hydro‐geomorphological assessments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Policies, measures, and models geared towards flood prevention and managing surface waters benefit from high quality data on the presence and characteristics of drainage ditches. As a cost and labour effective alternative for acquiring such data through field surveys, we propose a method (a) to extract vector data representing ditch drainage networks based on local morphologic features derived from high resolution digital elevation models (DEM) and (b) to identify possible connections in the ditch network by calculating a probability of the connectivity using a logistic regression where the predictor variables are characteristics of the ditch centre lines or derived from the DEM. Using Light Detection and Ranging (LiDAR) derived DEMs with a 1 m resolution, the method was developed and tested for a mixed agricultural residential area in north‐eastern Belgium. The derived ditch segments had an error of omission of 8% and an error of commission of 5%. The original positional accuracy of the centre lines of the extracted ditches was 0.6 m and could be improved to 0.4 m by shifting each vertex to the position of the lowest LiDAR point located within a radius equal to the spatial resolution of the used DEM. About 69% of the false disconnections in the network were identified and corrected leading to a reduction of the unconnected parts of the ditch network by 71%. The extracted and connected network approximated the reference ditch network fairly well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号