首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
— To examine the spatial scales associated with atmospheric pollutants such as ozone (O3) and fine particulate matter (PM2.5), we employ the following five techniques: (1) Analysis of the persistence of high O3 concentrations aloft; (2) spatial and lag correlations between the short-term components (i.e., weather-induced variations) in the time series of O3 and PM2.5 throughout the eastern United States; (3) analysis of mixed-layer forward trajectories compiled at different locations on a climatological basis to identify the potential region covered in 1-day of atmospheric transport; (4) analysis of three-dimensional Lagrangian trajectories of tracer particles for three high-O3 episode events in the summer of 1995; and (5) analysis of the spatial extent over which emissions have an impact through photochemical model simulations. Regardless of the method chosen, the results demonstrate that pollutants such as O3 and PM2.5 have the potential to affect regions having spatial scales of several hundred kilometers. This finding has implications to regulatory policies for addressing the pollution problem, and for optimally designing monitoring networks for such pollutants.  相似文献   

2.
Particle hygroscopicity plays a key role in understanding the mechanisms of haze formation and particle optical properties. The present study developed a method for predicting the effective hygroscopic parameter k and the water content of PM_(2.5) on the basis of the k-K?hler theory and bulk chemical components of PM_(2.5). Our study demonstrated that the effective hygroscopic parameter can be estimated using the PM_(2.5) mass concentration, water-soluble ions, and total water-soluble carbon. By combining the estimated k and ambient relative humidity, the water content of PM_(2.5) can be further estimated. As an example, the k and water content of PM_(2.5) in Beijing were estimated utilizing the method proposed in this study. The annual average value of k of PM_(2.5) in Beijing was 0.25±0.09, the maximum k value 0.26±0.08 appeared in summer, and the seasonal variation is insignificant. The PM_(2.5) water content was determined by both the PM_(2.5) hygroscopicity and the ambient relative humidity(RH). The annual average mass ratio of water content and PM_(2.5) was 0.18±0.20, and the maximum value 0.31±0.25 appeared in summer. Based on the estimated water content of PM_(2.5) in Beijing, the relationship between the PM_(2.5) water content and RH was parameterized as: m(%)=0.03+(5.73×10~(-8)) ×RH~(3.72).This parametric formula helps to characterize the relationship between the PM_(2.5) mass concentration and atmospheric visibility.  相似文献   

3.
In this study, three approaches namely parallel, sequential, and multiple linear regression are applied to analyze the local air quality improvements during the COVID-19 lockdowns. In the present work, the authors have analyzed the monitoring data of the following primary air pollutants: particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO). During the lockdown period, the first phase has most noticeable impact on airquality evidenced by the parallel approach, and it has reflected a significant reduction in concentration levels of PM10 (27%), PM2.5 (19%), NO2 (74%), SO2 (36%), and CO (47%), respectively. In the sequential approach, a reduction in pollution levels is also observed for different pollutants, however, these results are biased due to rainfall in that period. In the multiple linear regression approach, the concentrations of primary air pollutants are selected, and set as target variables to predict their expected values during the city's lockdown period.The obtained results suggest that if a 21-days lockdown is implemented, then a reduction of 42 µg m−3 in PM10, 23 µg m−3 in PM2.5, 14 µg m−3 in NO2, 2 µg m−3 in SO2, and 0.7 mg m−3 in CO can be achieved.  相似文献   

4.
We consider a transversely isotropic medium with vertical axis of symmetry (VTI). Rayleigh wave displacement components in a homogeneous VTI medium contain exp(±krjz), where z is the vertical coordinate, k is the wave number, and j?=?1, 2; rj may be considered as depth-decay factor. In a VTI medium, rj can be a real or imaginary as in an isotropic medium, or it can be a complex depending on the elastic parameters of the VTI medium; if complex, r1 and r2 are complex conjugates. In a homogeneous VTI half space, Rayleigh wave displacement is significantly modified with a phase shift when rj changes from real to complex with variation of VTI parameters; at the transition, the displacement becomes zero when r1?=?r2. In a liquid layer over a VTI half space, Rayleigh waves are dispersive. Here, also Rayleigh wave displacement significantly modified with a phase shift when rj changes from real to complex with a decrease of period. At very low period, phase velocity of Rayleigh waves becomes less than P-wave velocity in the liquid layer giving rise to Scholte waves (interface waves). The amplitudes of Scholte waves with a VTI half space are found to be significantly larger than those with an isotropic half space.  相似文献   

5.
Rapid industrialization and haze episodes in Malaysia ensure pollution remains a public health challenge. Atmospheric pollutants such as PM10 are typically variable in space and time. The increased vigilance of policy makers in monitoring pollutant levels has led to vast amounts of spatiotemporal data available for modelling and inference. The aim of this study is to model and predict the spatiotemporal daily PM10 levels across Peninsular Malaysia. A hierarchical autoregressive spatiotemporal model is applied to daily PM10 concentration levels from thirty-four monitoring stations in Peninsular Malaysia during January to December 2011. The model set in a three stage Bayesian hierarchical structure comprises data, process and parameter levels. The posterior estimates suggest moderate spatial correlation with effective range 157 km and a short term persistence of PM10 in atmosphere with temporal correlation parameter 0.78. Spatial predictions and temporal forecasts of the PM10 concentrations follow from the posterior and predictive distributions of the model parameters. Spatial predictions at the hold-out sites and one-step ahead PM10 forecasts are obtained. The predictions and forecasts are validated by computing the RMSE, MAE, R2 and MASE. For the spatial predictions and temporal forecasting, our results indicate a reasonable RMSE of 10.71 and 7.56, respectively for the spatiotemporal model compared to RMSE of 15.18 and 12.96, respectively from a simple linear regression model. Furthermore, the coverage probability of the 95% forecast intervals is 92.4% implying reasonable forecast results. We also present prediction maps of the one-step ahead forecasts for selected day at fine spatial scale.  相似文献   

6.
A bus rapid transit (BRT) system began operation in Jakarta City, Indonesia, in January 2004 and led to a modal shift from private to public modes of transport. This modal shift from car and motorcycle to BRT reduced the emission intensity of primary pollutants, such as NOx and CO. We applied a combined structural equation model and an artificial neural network to evaluate the impact of the BRT system on the concentration of secondary pollutants in the roadside areas in the BRT corridors. An empirical analysis was carried out using data collected at five continuous ambient air quality monitoring stations located near to the BRT TransJakarta corridors in 2005. The establishment of our structural equation model gives a better understanding of the cause–effect relationship among the factors influencing roadside ambient air pollution, and was useful in simplifying the complexity of our artificial neural network model for predicting the modal shift’s impact on the PM10 values and concentration of O3. The introduction of the BRT system, and the modal shift it produced, had a greater influence on rapidly decaying pollutants, such as PM10, than on O3 because of the exposure to near-source microenvironments, such as the roadside of the TransJakarta corridors.  相似文献   

7.
Based on a comparison of the cases of a decrease in the ratio of A n/A μ (where A n and A μ are the amplitudes of the diurnal variations of the neutron and hard cosmic ray components) to the instants of the Earth crossing the neutral IMF, it has been indicated that the process of such crossing is most effective for stimulating large destructive earthquakes with a magnitude of M ≥ 6. The 11-year period in the cyclicity of the occurrence probability of the above earthquakes has been revealed.  相似文献   

8.
Non‐point source pollution in the impervious surface of city, which including dissolved and particulate pollutants, is a significant source of water pollution. Simple first‐order decay models can generally simulate the cumulative wash‐off process of the particulate pollutants. There is inadequate knowledge as to whether or not they are suitable for dissolved pollutants. This study presents a mathematical wash‐off model for dissolved pollutants, which combines analytical equations for overland flows and the exponential equation for the pollutant wash‐off. A series of laboratory experiments have been conducted to verify this wash‐off model. It shows that the pollutant concentration and pollutant transport rate can be predicted well by the newly developed equations. It is found that the pollutant concentration monotonically decreases to zero as the accumulated pollutants are washed off, whereas the pollutant transport rate first increases to the maximum value and then decreases to zero. The maximum pollutant transport rate is found to increase with the decrease of the arrival time of the maximum value. The difference between the simplified exponential model and the amended wash‐off equation depends on the initial residual percentage (Pc), but the present equation generally provides a more accurate representation of the wash‐off process of dissolved pollutants.  相似文献   

9.
This study investigated the composition of long-chain alkyl diols, triols, sec-alcohols, hydroxyl acids, and other hydroxylated compounds in Azolla imbricata and compared the organic alcohol components of Azolla filiculoides, Azolla microphylla, and South China Sea (SCS) sediments in order to investigate the possible indication of Azolla being the biological source of diols and triols in SCS sediment. Large amounts of diols, monohydroxy acids, and sec-alcohols with internal hydroxy groups at ω20 were detected in the three types of Azolla. Among these, 1,ω20-diol and ω20-hydroxy acid exhibited strong even-odd predominance distribution, whereas ω20-sec-alcohol exhibited strong odd-even predominance distribution. In addition, small amounts of diols, triols, and dihydroxy acids with internal hydroxy groups at 9, 10 or ω9, ω10 were detected, among which the chain length of C29 was predominate. Compounds having similar structures as those in Azolla reflected a similar biosynthetic pathway: ω20-hydroxy acid exhibiting even-odd predominance distribution is decarboxylated to ω20-sec-alcohol exhibiting odd-even predominance distribution and converted to 1, ω20-diol with even-odd predominance distribution by acyl reduction; ω9, ω10-hydroxy acid is converted to 1,20,21(1, ω9, ω10)-triol by acyl reduction, and then converted to 9,10-diol by hydrogenation and dehydration. The alcohol components in A. imbricata were clearly not the biological source of 1,13/1,14/1,15-C28, 30, 32 diols and 1,3,4-C27-29 triols in the SCS sediment. Certain marine diatoms might be the source of 1,14-C28, 30 diol in inshore sediment, but the biological source of diols and triols in the SCS sediment requires further investigation.  相似文献   

10.
The prediction of PM2.5 concentrations with high spatiotemporal resolution has been suggested as a potential method for data collection to assess the health effects of exposure. This work predicted the weekly average PM2.5 concentrations in the Yangtze River Delta, China, by using a spatio-temporal model. Integrating land use data, including the areas of cultivated land, construction land, and forest land, and meteorological data, including precipitation, air pressure, relative humidity, temperature, and wind speed, we used the model to estimate the weekly average PM2.5 concentrations. We validated the estimated effects by using the cross-validated R2 and Root mean square error (RMSE); the results showed that the model performed well in capturing the spatiotemporal variability of PM2.5 concentration, with a reasonably large R2 of 0.86 and a small RMSE of 8.15 (μg/m3). In addition, the predicted values covered 94% of the observed data at the 95% confidence interval. This work provided a dataset of PM2.5 concentration predictions with a spatiotemporal resolution of 3 km × week, which would contribute to accurately assessing the potential health effects of air pollution.  相似文献   

11.
The light hydrocarbon composition of 209 natural gas samples and individual light hydrocarbon carbon isotopes of 53 natural gas samples from typical humic-sourced gas and sapropelic-sourced gas in the four basins of China have been determined and analyzed. Some identification parameters for humic-sourced gas and sapropelic-sourced gas are proposed or corrected. The differences of compound-specific δ 13C value of individual light hydrocarbon between humic-sourced gas and sapropelic-sourced gas have been founded. The humic-sourced gas has the distribution of δ 13Cbenzene> ?24‰, δ 13Ctoluene >?23‰, δ 13Ccyclohexane > ?24‰ and δ 13Cmethyl cyclohexane> ?24‰, while the sapropelic-sourced gas has the distribution of δ 13Cbenzene <?24‰, δ 13Ctoluene< ?24‰, δ 13Ccyclohexane< ?24‰ and δ 13Cmethyl cyclohexane< ?24‰. Among the components of C7 light hydrocarbon compound, such as normal heptane (nC7), methyl cyclohexane (MCH) and dimethyl cyclopentane (ΣDMCP), etc, relative contents of nC7 and MCH are influenced mainly by the source organic matter type of natural gas. Therefore, it is suggested that the gas with relative content of nC7 of more than 30% and relative content of MCH of less than 70% is sapropelic-sourced gas, while gas with relative content of nC7 of less than 35% and relative content of MCH of more than 50% is humic-sourced gas. Among components of C5–7 aliphatics, the gas with relative content of C5–7 normal alkane of more than 30% is sapropelic-sourced gas, while the gas with relative content of C5–7 normal alkane of less than 30% is humic-sourced gas. These paremeters have been suggested to identify humic-sourced gas and sapropelic-sourced gas.  相似文献   

12.
Urban populations are exposed to a high level of fine and ultrafine particles from motor vehicle emissions which affect human health. To assess the hourly variation of fine particle (PM2.5) concentration and the influence of temperature and relative humidity (RH) on the ambient air of Lucknow city, monitoring of PM2.5 along with temperature and RH was carried out at two residential locations, namely Vikas Nagar and Alambagh, during November 2005. The 24 h mean PM2.5 concentration at Alambagh was 131.74 μg/m3 and showed an increase of 13.74%, which was significantly higher (p < 0.05) than the Vikas Nagar level. The 24 h mean PM2.5 on weekdays for both locations was found to be 142.74 μg/m3 (an increase of 66.23%) which was significantly higher (p < 0.01) than the weekend value, indicating that vehicular pollution is one of the important sources of PM2.5. The mean PM2.5 at night for all the monitoring days was 157.69 μg/m3 and was significantly higher (p < 0.01) than the daytime concentration (89.87 μg/m3). Correlation and multiple regressions showed that the independent variables, i. e., time, temperature, and RH together accounted for 54%, whereas RH alone accounted for 53% of total variations of PM2.5, suggesting that RH is the best influencing variable to predict the PM2.5 concentration in the urban area of Lucknow city. The 24 h mean PM2.5 for all the monitoring days was found to be higher than the NAAQS recommended by the US‐EPA (65 μg/m3) and can be considered to be an alarming indicator of adverse health effects for city dwellers.  相似文献   

13.
Based on a pseudo-static approach, finite difference (FDM) numerical analyses have been performed aimed at evaluating the seismic effects on the ultimate bearing capacity of shallow strip foundations. In the specialised literature, such seismic effects are usually divided in two components, namely, a structure inertia and a soil inertia, which can be either considered together, or separately addressed and then superposed. Both of these inertia effects are investigated in this work. The results of a comprehensive numerical study are presented in—and critically compared to—the wide framework of available analytical solutions proposed in the literature in the last 30 years. The good agreement found between the numerical and the analytical approaches is pointed out, thus providing further evidence of the reliability of some available and widespread solutions. The possibility of superposition of the two inertia effects is investigated. It is found that in some cases the soil inertia may play a significant role in the seismic capacity of the system, and that simple one-constant equations can be readily used in foundation design to estimate the reduction in bearing capacity (namely, factors e i , e k ) deriving from the two inertia effects.  相似文献   

14.
In order to investigate the pollution levels, sources and ecological risks of arsenic (As) and heavy metals (Cr, Ni, Cu, Zn, Pb and Cd) in inshore sediments of the Yellow River estuary, the surface sediment in areas of inshore coastal waters were sampled in October 2014 as the flow-sediment regulation project (FSRP) was implemented for 13 years. Results showed that the concentrations of As and heavy metals in inshore sediments of the Yellow River estuary were in the order of Zn?>?Cr?>?Cu?>?Ni?>?Pb?>?As?>?Cd. Higher levels of As, Cr, Ni, Cu, Zn and Pb generally occurred in fine-grained sediments of the Yellow River estuary and the southeast region, which was consistent with the spatial distribution of clay. In contrast, higher concentrations of Cd were generally observed in northwest area of the Yellow River estuary and near the Qingshuigou estuary, which showed similarly spatial distribution with that of sand. The sediment quality guidelines (SQGS) and geoaccumulation indices (Igeo) indicated that the inshore sediments were polluted by Cu, Cd, As, Pb and Zn, and, among them, Cd pollution was more serious. Ecological risk indices (E r i ) demonstrated low risks for Cr, Ni, Cu, Zn, Pb and As, and high potential toxicity by Cd. The integrated ecological risk index implied that 6.8% of stations presented moderate risk, 4.5% of stations exhibited disastrous risk, and 88.7% of stations demonstrated considerable risk. Principal component analysis indicated that Ni, Cu, Zn, Pb and As might originate from common pollution sources, while Cr and Cd might share another similar sources. With the continuous implementation of FSRP, As and heavy metal levels in inshore sediments of the Yellow River estuary could be classified as stage I (2002–2010) and stage II (2010–2014). In the stage I, As, Cr, Ni, Cu, Zn and Pb levels fluctuated but decreased significantly, whereas Cd concentrations showed little variation. In the stage II, As and heavy metal levels significantly increased although some little fluctuations occurred. The continuous accumulation of As and heavy metals (especially for Cd) in inshore sediments of the Yellow River estuary would occur again as the FSRP was implemented for 9 years (since 2010). The ecotoxicological risk of Cd, As, Ni and Cu in inshore sediments might be more serious since the accumulation of the four elements would be continuously occurred in future years. Next step, there will be long-term potential consequences for marine organism if effective measures are not taken to control the loadings of metal pollutants into estuary.  相似文献   

15.
Intense quasimonchromatic geomagnetic pulsations with a period of ~15 min, observed on the Earth’s surface in the near-noon sector at the beginning of the recovery phase of a very strong (Dst min = ?260 nT) magnetic storm of May 15, 2005, are analyzed. The variations were registered at auroral latitudes only in the X field component, and wave activity shifted into the postnoon sector of the polar cap an hour later; in this case pulsations were observed in the X and Y field components. Within the magnetosphere the source of magnetic pulsations could be the surface waves on the magnetopause caused by the pulse of the solar wind magnetic pressure. Geomagnetic pulsations in the polar cap, observed in phase at different latitudes, could apparently reflect quasiperiodic variations in the NBZ system of field-aligned currents. Such variations can originate due to the series of pulsed reconnections in the postnoon outer cusp at large (~20 nT) positive B z values and large (about ?40 nT) negative values of IMF B x .  相似文献   

16.
The seismic responses of steel buildings with perimeter moment resisting frames (MRF) with welded connections (WC) are estimated and compared to those of similar buildings with semi-rigid post-tensioned connections (PC). The responses are estimated in terms of ductility reduction factors (R µ,), ductility demands (µ G ) and force reduction factors (R). Two steel model buildings, which were modeled as complex-3D-MDOF systems, were used in the study. Results indicate that the reduction magnitude of global response parameters is larger than that of local response parameters, contradicting the same reduction implicitly assumed in the static equivalent lateral force procedure, implying that non-conservative design may result. The value of 8 for R, suggested in many codes for ductile steel MRF, and the value of 1 suggested in the well known Newmark and Hall procedure for the ratio of R to µ G , cannot be justified. The reason for this is that SDOF systems were used to model actual structures, where higher mode effects, energy dissipation and structural overstrength weren’t explicitly considered. The codes should be more transparent regarding the magnitude and the components involved in the force reduction factors. The seismic performance of steel buildings with PC may be superior to that of the buildings with WC, since their force reduction factors are larger and their ductility demands smaller, implying that PC buildings could be designed for smaller lateral seismic forces. The conclusions of this paper are for the particular structural systems and models considered. Much more research is needed to reach more general conclusions.  相似文献   

17.
Turbulence data(2008–2012) from a 325 m meteorological tower in Beijing, which consisted of three layers(47,140, and 280 m), was used to analyze the vertical distribution characteristics of turbulent transfer over Beijing city according to similarity theory. The conclusions were as follows.(1) Normalized standard deviations of wind speeds/ui * were plotted as a function only of a local stability parameter. The values under near-neutral conditions were 2.15, 1.61, and 1.19 at 47 m, 2.39, 1.75,and 1.21 at 140 m, and 2.51, 1.77, and 1.30 at 280 m, showing a clear increase with height. The normalized standard deviation of wind components fitted the 1/3 law under unstable stratification conditions and decreased with height under both stable and unstable conditions.(2) The normalized standard deviation of temperature fitted the.1/3 law in the free convection limit, but was quite scattered with different characteristics under near-neutral conditions. The normalized standard deviations of humidity and the CO2 concentration fitted the.1/3 law under unstable conditions, and remained constant under near-neutral and stable stratification. The normalized standard deviation of scalars, i.e., temperature, humidity, and CO2 concentration, all increased with height.(3) Compared with momentum, and the water vapor and CO2 concentrations, the turbulence correlation coefficient for heat was smaller under near-neutral conditions, but larger under both stable and unstable conditions. A dissimilarity between heat, and the water vapor and CO2 concentrations was observed in urban areas. The relative correlation coefficients between heat and each of momentum, humidity, and CO2 concentration(|rwT/ruw|, |rwT/rwc| and |rwT/ruq|) in the lower layers were always larger than in higher layers, except for the relative correlation coefficient between heat and humidity in an unstable stratification. Therefore, the ratio between heat and each of momentum, humidity, and CO2 concentration decreased with height.  相似文献   

18.
We study the frictional and viscous effects on earthquake nucleation, especially for the nucleation phase, based on a one-degree-of-freedom spring-slider model with friction and viscosity. The frictional and viscous effects are specified by the characteristic displacement, U c, and viscosity coefficient, η, respectively. Simulation results show that friction and viscosity can both lengthen the natural period of the system and viscosity increases the duration time of motion of the slider. Higher viscosity causes a smaller amplitude of lower velocity motion than lower viscosity. A change of either U c (under large η) or η (under large U c) from a large value (U ch for U c and η h for η) to a small one (U cl for U c and η l for η) in two stages during sliding can result in a clear nucleation phase prior to the P-wave. The differences δU c = U ch ? U cl and δη = η h ? η l are two important factors in producing a nucleation phase. The difference between the nucleation phase and the P-wave increases with either δU c or δη. Like seismic observations, the peak amplitude of P-wave, which is associated with the earthquake magnitude, is independent upon the duration time of nucleation phase. A mechanism specified with a change of either η or U c from a larger value to a smaller one due to temporal variations in pore fluid pressure and temperature in the fault zone based on radiation efficiency is proposed to explain the simulation results and observations.  相似文献   

19.
In January 2013,a long-lasting episode of severe haze occurred in central and eastern China,and it attracted attention from all sectors of society.The process and evolution of haze pollution episodes were observed by the"Forming Mechanism and Control Strategies of Haze in China"group using an intensive aerosol and trace gases campaign that simultaneously obtained data at 11 ground-based observing sites in the CARE-China network.The characteristics and formation mechanism of haze pollution episodes were discussed.Five haze pollution episodes were identified in the Beijing-Tianjin-Hebei(Jing-Jin-Ji)area;the two most severe episodes occurred during 9–15 January and 25–31 January.During these two haze pollution episodes,the maximum hourly PM2.5mass concentrations in Beijing were 680 and 530μg m 3,respectively.The process and evolution of haze pollution episodes in other major cities in the Jing-Jin-Ji area,such as Shijiazhuang and Tianjin were almost the same as those observed in Beijing.The external cause of the severe haze episodes was the unusual atmospheric circulation,the depression of strong cold air activities and the very unfavorable dispersion due to geographical and meteorological conditions.However,the internal cause was the quick secondary transformation of primary gaseous pollutants to secondary aerosols,which contributed to the"explosive growth"and"sustained growth"of PM2.5.Particularly,the abnormally high amount of nitric oxide(NOx)in the haze episodes,produced by fossil fuel combustion and vehicle emissions,played a direct or indirect role in the quick secondary transformation of coal-burning sulphur dioxide(SO2)to sulphate aerosols.Furthermore,gaseous pollutants were transformed into secondary aerosols through heterogeneous reactions on the surface of fine particles,which can change the particle’s size and chemical composition.Consequently,the proportion of secondary inorganic ions,such as sulphate and nitrate,gradually increased,which enhances particle hygroscopicity and thereby accelerating formation of the haze pollution.  相似文献   

20.
The Aki-Utsu method of Gutenberg-Richter (G-R) b value estimation is often misapplied so that estimations not using the G-R histogram are often meaningless because they are not based on adequate samples. We propose a method to estimate the likelihood Pr(b?b m , N, M 1, M 2) that an observed b m estimate, based on a sample of N magnitudes within an [M 1????≤?ΔM/2,?M 2?+?ΔM/2) range, where ΔM?=?0.1 is the usual rounding applied to magnitudes, is due to a “true” source b value, b, and use these likelihoods to estimate source b ranges corresponding to various confidence levels. As an example of application of the method, we estimate the b values before and after the occurrence of a 7.4-magnitude earthquake in the Mexican subduction zone, and find a difference of 0.82 between them with 100% confidence that the b values are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号