首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
抗震规范应用强度折减系数的现状及分析   总被引:4,自引:1,他引:4  
世界上大多数的抗震规范都采用了基于强度的设计方法,强度折减系数是基于强度的抗震设计中确定设计地震力的关键因素,提高强度折减系数的可靠性已经被认为是提高现有抗震规范可靠性的有效途径。本文主要介绍了抗震研究处于世界先进水平的美国(UBC97)、欧洲(EC8)、日本、墨西哥、加拿大、中国等国家抗震规范中强度折减系数取值的有关规定,然后给出了各国学者关于规范规定的强度折减系数的一些重要讨论和分析,最后指出了世界各国应用强度折减系数过程中存在的不足,指出了需进一步研究的问题。  相似文献   

3.
In the new types of industrial activities including unconventional energy extraction associated with shale gas and hot dry rock, gas reservoir operations, CO2 geological storage, undergoing research on induced earthquake forecasting has become one of the forward positions of current seismology. As for the intense actual demand, the immature research on induced earthquake forecasting has already been applied in pre-assessment of site safety and seismic hazard and risk management. This work will review systematically recent advances in earthquake forecasting induced by hydraulic fracturing during industrial production from four aspects: earthquake occurrence probability, maximum expected magnitude forecasting, seismic risk analysis for engineering and social applications and key scientific problems. In terms of earthquake occurrence probability, we introduce statistical forecasting models such as an improved ETAS and non-stationary ETAS and physical forecasting models such as Seismogenic Index (SI) and hydro-mechanism nucleation. Research on maximum expected magnitude forecasting has experienced four stages of linear relationship with net injection volume of fluid, power exponential relationship and physical forecasting regarding fault parameters. For seismic risk analysis, we focus on probabilistic seismic hazard assessment and quantitative geological susceptibility model. Furthermore, this review is extended to key scientific problems that contain obtaining accurate fault scale and environmental stress state of reservoir, critical physical process of runaway rupture, complex mechanism of fault activation as well as physical mechanism and modeling of trailing effect. This work in understanding induced earthquake forecasting may contribute to unconventional energy development and production, seismic hazard mitigation, emergency management and scientific research as a reference.  相似文献   

4.
Displacement‐based seismic assessment of buildings containing unreinforced masonry (URM) walls requires as input, among others, estimates of the in‐plane drift capacity at the considered limit states. Current codes assess the drift capacity of URM walls by means of empirical models with most codes relating the drift capacity to the failure mode and wall slenderness. Comparisons with experimental results show that such relationships result in large scatter and usually do not provide satisfactory predictions. The objective of this paper is to determine trends in drift capacities of modern URM walls from 61 experimental tests and to investigate whether analytical models could lead to more reliable estimates of the displacement capacity than the currently used empirical models. A recently developed analytical model for the prediction of the ultimate drift capacity for both shear and flexure controlled URM walls is introduced and simplified into an equation that is suitable for code implementation. The approach follows the idea of plastic hinge models for reinforced concrete or steel structures. It explicitly considers the influence of crushing due to flexural or shear failure in URM walls and takes into account the effect of kinematic and static boundary conditions on the drift capacity. Finally, the performance of the analytical model is benchmarked against the test data and other empirical formulations. It shows that it yields significantly better estimates than empirical models in current codes. The paper concludes with an investigation of the sensitivity of the ultimate drift capacity to the wall geometry, static, and kinematic boundary conditions.  相似文献   

5.
The design code for each country is revised and updated based on an expected zone’s seismic intensities,geotechnical site classifications,structural systems,construction materials and methods of construction in order to provide more realistic considerations of seismic demand,seismic response,and seismic capacity.Based on the aforementioned provisions,structures designed according to different seismic codes may yield different performances for the same level of hazard.This study aims to investigate and compare the induced responses related to the earthquake-resistant design of reinforced concrete(RC)buildings according to the Saudi building code(SBC-301),American code(ASCE-7),uniform building code(UBC-97),and European code(EC-8).In order to account for the provision regarding the hazard specification and its effect on the induced seismic responses,four regions in the Kingdom of Saudi Arabia with different seismic levels are selected.The code provisions related to the specification of site classification and its effect on the induced design base shear are investigated as well.Significant differences are observed in the induced responses with the variation in seismic design codes for the considered seismic hazards and site classifications.  相似文献   

6.
桥梁抗震设计规范的现状与发展趋势   总被引:12,自引:3,他引:9  
本文对世界主要桥梁结构抗震设计规范的现状进行了较为详细的对比,指出我国现行《公路工程抗震设计规范》中存在的一些缺点。本文还对目前国际上桥梁结构抗震设计规范的发展动向进行了总结,提出了修订我国新《城市桥梁抗震设计规范》的一些意见。  相似文献   

7.
In recent years, several research groups have studied a new generation of analysis methods for seismic response assessment of existing buildings. Nevertheless, many important developments are still needed in order to define more reliable and effective assessment procedures. Moreover, regarding existing buildings, it should be highlighted that due to the low knowledge level, the linear elastic analysis is the only analysis method allowed. The same codes (such as NTC2008, EC8) consider the linear dynamic analysis with behavior factor as the reference method for the evaluation of seismic demand. This type of analysis is based on a linear-elastic structural model subject to a design spectrum, obtained by reducing the elastic spectrum through a behavior factor. The behavior factor (reduction factor or q factor in some codes) is used to reduce the elastic spectrum ordinate or the forces obtained from a linear analysis in order to take into account the non-linear structural capacities. The behavior factors should be defined based on several parameters that influence the seismic nonlinear capacity, such as mechanical materials characteristics, structural system, irregularity and design procedures. In practical applications, there is still an evident lack of detailed rules and accurate behavior factor values adequate for existing buildings. In this work, some investigations of the seismic capacity of the main existing RC-MRF building types have been carried out. In order to make a correct evaluation of the seismic force demand, actual behavior factor values coherent with force based seismic safety assessment procedure have been proposed and compared with the values reported in the Italian seismic code, NTC08.  相似文献   

8.
One of the main challenges in earthquake risk mitigation is the assessment of existing buildings not designed according to modern codes and the development of effective techniques to strengthen these structures. Particular attention should be given to RC frame structures with masonry infill panels, as demonstrated by their poor performance in recent earthquakes in Europe. Understanding the seismic behaviour of masonry‐infilled RC frames presents one of the most difficult problems in structural engineering. Analytical tools to evaluate infill–frame interaction and the failure mechanisms need to be further studied. This research intends to develop a simplified macro‐model that takes into account the out‐of‐plane behaviour of the infill panels and the corresponding in‐plane and out‐of‐plane interaction when subjected to seismic loadings. Finally, a vulnerability assessment of an RC building will be performed in order to evaluate the influence of the out‐of‐plane consideration in the building response. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
本文分析了中国、美国、欧洲 3 种抗震设计规范的地震动参数取值,并比较了 3 种抗震设计反应谱。结果表明,总体上说,欧洲、美国规范的加速度短周期反应谱高于中国规范。但随着周期的扩大,由于中国规范中反应谱的下降指数较小,导致了中国规范中的反应谱逐渐接近并可能超过了欧洲、美国规范。本文的结果可为我国未来抗震设计规范修订,以及地震安全性评价工作中确定设计反应谱提供参考。  相似文献   

10.
The assessment of the static vulnerability under gravity loads of existing reinforced concrete (r.c.) framed buildings is a serious problem that requires the use of reliable methodologies to evaluate ductile and brittle mechanisms. The present work compares alternative formulations of member chord rotation and section and joint shear strength, proposed by Italian and European seismic codes and guidelines and other expressions available in the scientific literature. To this end, a r.c. framed building built sixty years ago with bi-directional (perimeter) and mono-directional (interior) plane frames, originally designed for five storeys then elevated to six during construction, is studied. A full characterization of the structure and its materials is carried out by means of destructive and non-destructive methods. Then, retrofitting based on the use of both innovative material, such as carbon fibre reinforced polymers (CFRP), and technology, such as base-isolation, are adopted to improve the static and seismic performances of the original structure. Finally, nonlinear analyses are carried out on a three-dimensional fibre model of the original and retrofitted structures, where an elastic linear law idealizes the behaviour of the CFRP up to tension failure and viscoelastic linear and bilinear models are used to idealize the behaviour of the elastomeric and sliding bearings, respectively.  相似文献   

11.
With the development and implementation of performance-based earthquake engineering, harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event, failure of architectural, mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover, nonstructural damage has limited the functionality of critical facilities, such as hospitals, following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore, it is not surprising that in many past earthquakes, losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore, the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings, or of rescue workers entering buildings. In comparison to structural components and systems, there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse, and the available codes and guidelines are usually, for the most part, based on past experiences, engineering judgment and intuition, rather than on objective experimental and analytical results. Often, design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components, identifying major knowledge gaps that will need to be filled by future research. Furthermore, considering recent trends in earthquake engineering, the paper explores how performance-based seismic design might be conceived for nonstructural components, drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.  相似文献   

12.
With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.  相似文献   

13.
Seismic assessment of existing unreinforced masonry buildings represents a current challenge in structural engineering. Many historical masonry buildings in earthquake regions were not designed to withstand seismic loading; thus, these structures often do not meet the basic safety requirements recommended by current seismic codes and need to be strengthened considering the results from realistic structural analysis. This paper presents an efficient modelling strategy for representing the nonlinear response of unreinforced masonry components under in‐plane cyclic loading, which can be used for practical and accurate seismic assessment of masonry buildings. According to the proposed strategy, generic masonry perforated walls are modelled using an equivalent frame approach, where each masonry component is described utilising multi‐spring nonlinear elements connected by rigid links. When modelling piers and spandrels, nonlinear springs are placed at the two ends of the masonry element for describing the flexural behaviour and in the middle for representing the response in shear. Specific hysteretic rules allowing for degradation of stiffness and strength are then used for modelling the member response under cyclic loading. The accuracy and the significant potential of the proposed modelling approach are shown in several numerical examples, including comparisons against experimental results and the nonlinear dynamic analysis of a building structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Current computational resources and physical knowledge of the seismic wave generation and propagation processes allow for reliable numerical and analytical models of waveform generation and propagation. From the simulation of ground motion, it is easy to extract the desired earthquake hazard parameters. Accordingly, a scenario-based approach to seismic hazard assessment has been developed, namely the neo-deterministic seismic hazard assessment (NDSHA), which allows for a wide range of possible seismic sources to be used in the definition of reliable scenarios by means of realistic waveforms modelling. Such reliable and comprehensive characterization of expected earthquake ground motion is essential to improve building codes, particularly for the protection of critical infrastructures and for land use planning. Parvez et al. (Geophys J Int 155:489–508, 2003) published the first ever neo-deterministic seismic hazard map of India by computing synthetic seismograms with input data set consisting of structural models, seismogenic zones, focal mechanisms and earthquake catalogues. As described in Panza et al. (Adv Geophys 53:93–165, 2012), the NDSHA methodology evolved with respect to the original formulation used by Parvez et al. (Geophys J Int 155:489–508, 2003): the computer codes were improved to better fit the need of producing realistic ground shaking maps and ground shaking scenarios, at different scale levels, exploiting the most significant pertinent progresses in data acquisition and modelling. Accordingly, the present study supplies a revised NDSHA map for India. The seismic hazard, expressed in terms of maximum displacement (Dmax), maximum velocity (Vmax) and design ground acceleration (DGA), has been extracted from the synthetic signals and mapped on a regular grid over the studied territory.  相似文献   

15.
Seismic safety of low ductility structures used in Spain   总被引:1,自引:0,他引:1  
The most important aspects of the design, seismic damage evaluation and safety assessment of structures with low ductility like waffle slabs buildings or flat beams framed buildings are examined in this work. These reinforced concrete structural typologies are the most used in Spain for new buildings but many seismic codes do not recommend them in seismic areas. Their expected seismic performance and safety are evaluated herein by means of incremental non linear structural analysis (pushover analysis) and incremental dynamic analysis which provides capacity curves allowing evaluating their seismic behavior. The seismic hazard is described by means of the reduced 5% damped elastic response spectrum of the Spanish seismic design code. The most important results of the study are the fragility curves calculated for the mentioned building types, which allow obtaining the probability of different damage states of the structures as well as damage probability matrices. The results, which show high vulnerability of the studied low ductility building classes, are compared with those corresponding to ductile framed structures.  相似文献   

16.
An analytical seismic fragility assessment framework is presented for the existing low strength reinforced concrete structures more common in the building stock of the developing countries.For realistic modelling of such substandard structures,low strength concrete stress-strain and bond-slip capacity models are included in calibrating material models.Key capacity parameters are generated stochastically to produce building population and cyclic pushover analysis is carried out to capture inelastic behaviour.Secant period values are evaluated corresponding to each displacement step on the capacity curves and used as seismic demand.A modified capacity demand diagram method is adopted for the degrading structures,which is further used to evaluate peak ground acceleration from back analysis considering each point on the capacity curve as performance point.For developing fragility curves,the mean values of peak ground acceleration are evaluated corresponding to each performance point on the series of capacity curves.A suitable probability distribution function is adopted for the secant period scatter at different mean peak ground acceleration values and probability of exceedance of limit states is evaluated.A suitable regression function is used for developing fragility curves and regression coefficients are proposed for different confidence levels.Fragility curves are presented for a low rise pre-seismic code reinforced concrete structure typical of developing countries.  相似文献   

17.
轻轨铁路站桥结构体系抗震分析与隔震研究   总被引:5,自引:0,他引:5  
本文结合地处高烈度地震区的天津轻轨工程,对轻轨铁路站桥结构体系进行抗震分析,并探索减轻其地震灾害、提高其抗震能力的隔震措施。研究结果表明,按照现行有关抗震设计规范规定的反应谱值设计的站桥结构体系的抗震安全性存在不足,设计必须按工程建设场地地震危险性评价给定的反应谱值对站桥结构体系进行时程分析,才能保证轻轨铁路的抗震安全性。通过在车站建筑与高架桥梁之间的连接部位安装新近研制的SMA复合橡胶支座隔震装置,可以有效地提高轻轨铁路站桥结构体系的抗震能力。  相似文献   

18.
Air Traffic Control (ATC) towers are among the most vital structures in each airport. Due to inadequate information regarding the seismic design and assessment of these types of structures, practicing engineers may refer to building codes. However, taking into account the special dynamic behavior of ATC towers, instructions and recommendations provided in building codes often do not comply with the required seismic performance levels of ATC towers. In this study, seismic behaviors of three in-service ATC towers with a dual concrete core lateral load resisting system were studied through pushover and incremental dynamic collapse analysis. Seismic design response factors of the reference towers were calculated. It was found that seismic design response factors adopted by the design code did not provide a uniform safety margin for all reference ATC towers. It was also observed that shorter towers have significantly higher response modification factors compared to taller towers. For the studied towers, a structural over-strength factor of 2.4 and a displacement amplification factor of 4 were obtained.  相似文献   

19.
The development of a scientific framework for performance-based seismic engineering requires, among other steps, the evaluation of ground motion intensity measures at a site and the characterization of their relationship with suitable engineering demand parameters (EDPs) which describe the performance of a structure. In order to be able to predict the damage resulting from earthquake ground motions in a structural system, it is first necessary to properly identify ground motion parameters that are well correlated with structural response and, in turn, with damage. Since structural damage during an earthquake ground motion may be due to excessive deformation or to cumulative cyclic damage, reliable methods for estimating displacement demands on structures are needed. Even though the seismic performance is directly related to the global and local deformations of the structure, energy-based methodologies appear more helpful in concept, as they permit a rational assessment of the energy absorption and dissipation mechanisms that can be effectively accomplished to balance the energy imparted to the structure. Moreover, energy-based parameters are directly related to cycles of response of the structure and, therefore, they can implicitly capture the effect of ground motion duration, which is ignored by conventional spectral parameters. Therefore, the identification of reliable relationships between energy and displacement demands represents a fundamental issue in both the development of more reliable seismic code provisions and the evaluation of seismic vulnerability aimed at the upgrading of existing hazardous facilities. As these two aspects could become consistently integrated within a performance-based seismic design methodology, understanding how input and dissipated energy are correlated with displacement demands emerges as a decisive prerequisite. The aim of the present study is the establishment of functional relationships between input and dissipated energy (that can be considered as parameters representative of the amplitude, frequency content and duration of earthquake ground motions) and displacement-based response measures that are well correlated to structural and non-structural damage. For the purpose of quantifying the EDPs to be related to the energy measures, for comprehensive range of ground motion and structural characteristics, both simplified and more accurate numerical models will be used in this study for the estimation of local and global displacement and energy demands. Parametric linear and nonlinear time-history analyses will be performed on elastic and inelastic SDOF and MDOF systems, in order to assume information on the seismic response of a wide range of current structures. Hysteretic models typical of frame force/displacement behavior will be assumed for the local inelastic cyclic response of the systems. A wide range of vibration periods will be taken into account so as to define displacement, interstory drift and energy spectra for MDOF systems. Various scalar measures related to the deformation demand will be used in this research. These include the spectral displacements, the peak roof drift ratio, and the peak interstory drift ratio. A total of about 900 recorded ground motions covering a broad variety of condition in terms of frequency content, duration and amplitude will be used as input in the dynamic analyses. The records are obtained from 40 earthquakes and grouped as a function of magnitude of the event, source-to-site condition and site soil condition. In addition, in the data-set of records a considerable number of near-fault signals is included, in recognition of the particular significance of pulse-like time histories in causing large seismic demands to the structures.  相似文献   

20.
A representative attenuation relationship is one of the key components required in seismic hazard assessment of a region of interest. Attenuation relationships for peak ground acceleration, peak ground velocity and response spectral accelerations for Sumatran megathrust earthquakes, covering Mw up to 9.0, are derived based on synthetic seismograms obtained from a finite‐fault kinematic model. The relationships derived are for very hard rock site condition and for a long‐distance range between 200 and 1500 km. They are then validated with recorded data from giant earthquakes on the Sumatran megathrust occurring since year 2000. A close examination of the recorded data also shows that spectral shapes predicted by most of the existing attenuation relationships and that specified in the IBC code are not particularly suitable for sites where potential seismic hazard is dominated by large‐magnitude, distant, earthquakes. Ground motions at a remote site are typically signified by the dominance of long‐period components with periods longer than 1 s, whereas the predominant periods from most of the existing attenuation relationships and the IBC code are shorter than 0.6 s. The shifting of response spectrum towards longer period range for distant earthquakes should be carefully taken into account in the formulation of future seismic codes for Southeast Asia, where many metropolises are located far from active seismic sources. The attenuation relationship derived in the present study can properly reproduce the spectral shape from distant subduction earthquakes, and could hopefully give insights into the formulation of future seismic codes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号