首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
River temperature models play an increasingly important role in the management of fisheries and aquatic resources. Among river temperature models, forecasting models remain relatively unused compared to water temperature simulation models. However, water temperature forecasting is extremely important for in-season management of fisheries, especially when short-term forecasts (a few days) are required. In this study, forecast and simulation models were applied to the Little Southwest Miramichi River (New Brunswick, Canada), where water temperatures can regularly exceed 25–29°C during summer, necessitating associated fisheries closures. Second- and third-order autoregressive models (AR2, AR3) were calibrated and validated using air temperature as the exogenous variable to predict minimum, mean and maximum daily water temperatures. These models were then used to predict river temperatures in forecast mode (1-, 2- and 3-day forecasts using real-time data) and in simulation mode (using only air temperature as input). The results showed that the models performed better when used to forecast rather than simulate water temperatures. The AR3 model slightly outperformed the AR2 in the forecasting mode, with root mean square errors (RMSE) generally between 0.87°C and 1.58°C. However, in the simulation mode, the AR2 slightly outperformed the AR3 model (1.25°C < RMSE < 1.90°C). One-day forecast models performed the best (RMSE ~ 1°C) and model performance decreased as time lag increased (RMSE close to 1.5°C after 3 days). The study showed that marked improvement in the modelling can be accomplished using forecasting models compared to water temperature simulations, especially for short-term forecasts.

EDITOR M.C. Acreman ASSOCIATE EDITOR S. Huang  相似文献   

2.
ABSTRACT

A modelling study was undertaken to quantify effects that the climate likely to prevail in the 2050s might have on water quality in two contrasting UK rivers. In so doing, it pinpointed the extent to which time series of climate model output, for some variables derived following bias correction, are fit for purpose when used as a basis for projecting future water quality. Working at daily time step, the method involved linking regional climate model (HadRM3-PPE) projections, Future Flows Hydrology (rainfall–runoff modelling) and the QUESTOR river network water quality model. In the River Thames, the number of days when temperature, dissolved oxygen, biochemical oxygen demand and phytoplankton exceeded undesirable values (>25°C, <6 mg L?1, >4 mg L?1 and >0.03 mg L?1, respectively) was estimated to increase by 4.1–26.7 days per year. The changes do not reflect impacts of any possible change in land use or land management. In the River Ure, smaller increases in occurrence of undesirable water quality are likely to occur in the future (by 1.0–11.5 days per year) and some scenarios suggested no change. Results from 11 scenarios of the hydroclimatic inputs revealed considerable uncertainty around the levels of change, which prompted analysis of the sensitivity of the QUESTOR model to simulations of current climate and hydrology. Hydrological model errors were deemed of less significance than those associated with the derivation and downscaling of driving climatic variables (rainfall, air temperature and solar radiation). Errors associated with incomplete understanding of river water quality interactions with the aquatic ecosystem were found likely to be more substantial than those associated with hydrology, but less than those related to climate model inputs. These errors are largely a manifestation of uncertainty concerning the extent to which phytoplankton biomass is controlled by invertebrate grazers, particularly in mid-summer; and the degree to which this varies from year to year. The quality of data from climate models for generating flows and defining driving variables at the extremes of their distributions has been highlighted as the major source of uncertainty in water quality model outputs.
EDITOR A. Castellarin; ASSOCIATE EDITOR X. Fang  相似文献   

3.
Considerable uncertainty occurs in the parameter estimates of traditional rainfall–water level transfer function noise (TFN) models, especially with the models built using monthly time step datasets. This is due to the equal weights assigned for rainfall occurring during both water level rise and water level drop events while estimating the TFN model parameters using the least square technique. As an alternative to this approach, a threshold rainfall-based binary-weighted least square method was adopted to estimate the TFN model parameters. The efficacy of this binary-weighted approach in estimating the TFN model parameters was tested on 26 observation wells distributed across the Adyar River basin in Southern India. Model performance indices such as mean absolute error and coefficient of determination values showed that the proposed binary-weighted approach of fitting independent threshold-based TFN models for water level rise and water level drop scenarios considerably improves the model accuracy over other traditional TFN models.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Fiori  相似文献   

4.
ABSTRACT

Evaporation is one of the most important components in the energy and water budgets of lakes and is a primary process of water loss from their surfaces. An artificial neural network (ANN) technique is used in this study to estimate daily evaporation from Lake Vegoritis in northern Greece and is compared with the classical empirical methods of Penman, Priestley-Taylor and the mass transfer method. Estimation of the evaporation over the lake is based on the energy budget method in combination with a mathematical model of water temperature distribution in the lake. Daily datasets of air temperature, relative humidity, wind velocity, sunshine hours and evaporation are used for training and testing of ANN models. Several input combinations and different ANN architectures are tested to detect the most suitable model for predicting lake evaporation. The best structure obtained for the ANN evaporation model is 4-4-1, with root mean square error (RMSE) from 0.69 to 1.35 mm d?1 and correlation coefficient from 0.79 to 0.92.
EDITOR M.C. Acreman

ASSOCIATE EDITOR not assigned  相似文献   

5.
In this study we quantify the spatial variability of seasonal water balances within the Omo-Ghibe River Basin in Ethiopia using methods proposed within the Prediction in Ungauged Basins initiative. Our analysis consists of: (1) application of the rainfall–runoff model HBV-Light to several sub-catchments for which runoff data are available, and (2) estimation of water balances in the remaining ungauged catchments through application of the model with regionalized parameters. The analyses of the resulting water balance outcomes reveal that the seasonal water balance across the Omo-Ghibe Basin is driven by precipitation regimes that change with latitude, from being strongly “seasonal” in the north to “precipitation spread throughout the year, but with a definite wetter season” in the south. The basin is divided into two distinct regions based on patterns of seasonal water balance and, in particular, seasonal patterns of soil moisture storage.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Efstratiadis  相似文献   

6.
ABSTRACT

A two-parameter monthly water balance model to simulate runoff can be used for a water resources planning programme and climate impact studies. However, the model estimates two parameters of transformation of time scale (c) and of the field capacity (SC) by a trial-and-error method. This study suggests a modified methodology to estimate the parameters c and SC using the meteorological and geological conditions. The modified model is compared with the Kajiyama formula to simulate the runoff in the Han River and International Hydrological Programme representative basins in South Korea. We show that the estimated c and SC can be used as the initial or optimal values for the monthly runoff simulation study in the model.
EDITOR M.C. Acreman; ASSOCIATE EDITOR S. Kanae  相似文献   

7.
ABSTRACT

Sedimentation in navigable waterways and harbours is of concern for many water and port managers. One potential source of variability in sedimentation is the annual sediment load of the river that empties in the harbour. The main objective of this study was to use some of the regularly monitored hydro-meteorological variables to compare estimates of hourly suspended sediment concentration in the Saint John River using a sediment rating curve and a model tree (M5?) with different combinations of predictors. Estimated suspended sediment concentrations were multiplied by measured flows to estimate suspended sediment loads. Best results were obtained using M5? with four predictors, returning an R2 of 0.72 on calibration data and an R2 of 0.46 on validation data. Total load was underestimated by 1.41% for the calibration period and overestimated by 2.38% for the validation period. Overall, the model tree approach is suggested for its relative ease of implementation and constant performance.
EDITOR M.C. Acreman; ASSOCIATE EDITOR B. Touaibia  相似文献   

8.
Nonstationary GEV-CDN models considering time as a covariate are built for evaluating the flood risk and failure risk of the major flood-control infrastructure in the Pearl River basin, China. The results indicate: (1) increasing peak flood flow is observed in the mainstream of the West River and North River basins and decreasing peak flood flow is observed in the East River basin; in particular, increasing peak flood flow is detected in the mainstream of the lower Pearl River basin and also in the Pearl River Delta region, the most densely populated region of the Pearl River basin; (2) differences in return periods analysed under stationarity and nonstationarity assumptions are found mainly for floods with return periods longer than 50 years; and (3) the failure risks of flood-control infrastructure based on failure risk analysis are higher under the nonstationarity assumption than under the stationarity assumption. The flood-control infrastructure is at higher risk of flood and failure under the influence of climate change and human activities in the middle and lower parts of Pearl River basin.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR G. Thirel  相似文献   

9.
Climate change and its impact on hydrological processes are overarching issues that have brought challenges for sustainable water resources management. In this study, surface water resources in typical regions of China are projected in the context of climate change. A water balance model based on the Fu rational function equation is established to quantify future natural runoff. The model is calibrated using data from 13 hydrological stations in 10 first-class water resources zones of China. The future precipitation and temperature series come from the ISI-MIP (Inter-Sectoral Impact Model Intercomparison Project) climate dataset. Taking natural runoff for 1961–1990 as a baseline, the impacts of climate change on natural runoff are studied under three emissions scenarios: RCP2.6, RCP4.5 and RCP8.5. Simulated results indicate that the arid and semi-arid region in the northern part of China is more sensitive to climate change compared to the humid and semi-humid region in the south. In the near future (2011–2050), surface water resources will decrease in most parts of China (except for the Liaozhong and Daojieba catchments), especially in the Haihe River Basin and the middle reaches of the Yangtze River Basin. The decrement of surface water resources in the northern part of China is more than that in the southern part. For the periods 2011–2030 and 2031–2050, surface water resources are expected to decrease by 12–13% in the northern part of China, while those in the southern part will decrease by 7–10%.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR R. Hirsch  相似文献   

10.
11.
This study examined the hysteresis exhibited in concentration–discharge (C–Q) relationships in the runoff from four hydrologically separated fields (catchments) at an intensively managed grassland. The objectives were to examine C–Q relationships constructed from high-resolution time series of flow, temperature, pH, conductivity, nitrate and turbidity, and their implications for hydrological processes. High-resolution datasets from the quality assured records of the Rothamsted Research North Wyke Farm Platform in the UK were examined using a graphical method and cross-correlation statistics. The study found that storm events based C–Q hysteresis reflects the cross-correlation that is generally hidden in time series analysis of large datasets, and that although Q and water quality variables can be effectively influenced by catchment size, the C–Q relationship is less significantly influenced. The dominant C–Q relationships of the water variables in the study area reflect that saturated overland flow was prevalent during the study period in the catchments, while the CCF results indicate coupled transfer of sediments and solute in the area at lag ≥ 0.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR M. D. Fidelibus  相似文献   

12.
Future changes in reference evapotranspiration (ET0) are of increasing importance in assessing the potential impacts on hydrology and water resources systems of more pronounced climate change. This study assesses the applicability of the Statistical Downscaling Model (SDSM) in projecting ET0, and investigates the seasonal and spatial patterns of future ET0 based on general circulation models (GCMs) across the Haihe River Basin. The results indicate that SDSM can downscale ET0 well in term of different basin-averaged measures for the HadCM3 and CGCM3 GCMs. HadCM3 has a much superior capability in capturing inter-annual variability compared to CGCM3 and thus is chosen as the sole model to assess the changes in future ET0. There are three homogeneous sub-regions of the Haihe River Basin: Northwest, Northeast and Southeast. Change points are detected at around 2050 and 2080 under the A2 and B2 scenarios, respectively. The Northwest is revealed to have a slight to strong increase in ET0, while the Northeast and the Southeast tend to experience a pattern change from decrease to increase in ET0.
EDITOR M.C. Acreman

ASSOCIATE EDITOR J. Thompson  相似文献   

13.
Hydrological responses vary spatially and temporally according to watershed characteristics. In this study, the hydrological models that we developed earlier for the Little Miami River (LMR) and Las Vegas Wash (LVW) watersheds in the USA were used for detailed sensitivity analyses. To compare the relative sensitivities of the hydrological parameters of these two models, we used normalized root mean square error (NRMSE). By combining the NRMSE index with the flow duration curve analysis, we derived an approach to measure parameter sensitivities under different flow regimes. Results show that the parameters related to groundwater are highly sensitive in the LMR watershed, whereas the LVW watershed is primarily sensitive to near-surface and impervious parameters. The high and medium flows are more impacted by most of the parameters. The low flow regime was highly sensitive to groundwater-related parameters. Moreover, our approach is found to be useful in facilitating model development and calibration.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR S. Huang  相似文献   

14.
《水文科学杂志》2013,58(3):640-655
Abstract

Water temperature is an important abiotic variable in aquatic habitat studies and may be one of the factors limiting the potential fish habitat (e.g. salmonids) in a stream. Stream water temperatures are modelled using statistical approaches with air temperature and streamflow as exogenous variables in the Nivelle River, southern France. Two different models are used to model mean weekly maximum temperature data: a non-parametric approach, the k-nearest neighbours method (k-NN) and a parametric approach, the periodic autoregressive model with exogenous variables (PARX). The k-NN is a data-driven method, which consists of finding, at each point of interest, a small number of neighbours nearest to this value, and the prediction is estimated based on these neighbours. The PARX model is an extension of commonly-used autoregressive models in which parameters are estimated for each period within the years. Different variants of air temperature and flow are used in the model development. In order to test the performance of these models, a jack-knife technique is used, whereby model goodness of fit is assessed separately for each year. The results indicate that both models give good performances, but the PARX model should be preferred, because of its good estimation of the individual weekly temperatures and its ability to explicitly predict water temperature using exogenous variables.  相似文献   

15.
Groundwater provides an important source of water for maize cultivation where the water table is shallow in the semi-arid Hailiutu River catchment of the Maowusu Desert on the Erdos Plateau in Northwest China. A HYDRUS-1D model of the unsaturated flow beneath a maize (Zea mays L.) field was calibrated and validated with measured soil water contents at various depths during the maize growing period from 30 April to 1 October 2011, and from 23 May to 27 September 2012, respectively. The model computed the actual maize evapotranspiration (ETa) as 580 mm during the whole growing period from 30 April to 1 October 2011. The groundwater contribution to ETa was calculated to be 220 mm, accounting for 38% of maize water use during the growing season in 2011. When the groundwater level drops below a depth of 157 cm, maize can no longer use groundwater for transpiration. The irrigation water requirement increases with the increase of groundwater table depth. These results are very important for managing crop irrigation in the area.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR L. Ruiz  相似文献   

16.
ABSTRACT

The southern coast of the Caspian Sea in northern Iran is bordered by a mountain range with forested catchments which are susceptible to droughts and floods. This paper examines possible changes to runoff patterns from one of these catchments in response to climate change scenarios. The HEC-HMS rainfall–runoff model was used with downscaled future rainfall and temperature data from 13 global circulation models, and meteorological and hydrometrical data from the Casilian (or “Kassilian”) Catchment. Annual and seasonal predictions of runoff change for three future emissions scenarios were obtained, which suggest significantly higher spring rainfall with increased risk of flooding and significantly lower summer rainfall leading to a higher probability of drought. Flash floods arising from extreme rainfall may become more frequent, occurring at any time of year. These findings indicate a need for strategic planning of water resource management and mitigation measures for increasing flood hazards.
EDITOR M.C. Acreman ASSOCIATE EDITOR not assigned  相似文献   

17.
ABSTRACT

In this study, a hybrid factorial stepwise-cluster analysis (HFSA) method is developed for modelling hydrological processes. The HFSA method employs a cluster tree to represent the complex nonlinear relationship between inputs (predictors) and outputs (predictands) in hydrological processes. A real case of streamflow simulation for the Kaidu River basin is applied to demonstrate the efficiency of the HFSA method. After training a total of 24?108 calibration samples, the cluster tree for daily streamflow is generated based on a stepwise-cluster analysis (SCA) approach and is then used to reproduce the daily streamflows for calibration (1995–2005) and validation (2008–2010) periods. The Nash-Sutcliffe coefficients for calibration and validation are 0.68 and 0.65, respectively, and the deviations of volume are 1.68% and 4.11%, respectively. Results show that: (i) the HFSA method can formulate a SCA-based hydrological modelling system for streamflow simulation with a satisfactory fitting; (ii) the variability and peak value of streamflow in the Kaidu River basin can be effectively captured by the SCA-based hydrological modelling system; (iii) results from 26 factorial experiments indicate that not only are minimum temperature and precipitation key drivers of system performance, but also the interaction between precipitation and minimum temperature significantly impacts on the streamflow. The findings are useful in indicating that the streamflow of the study basin is a mixture of snowmelt and rainfall water.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR G. Thirel  相似文献   

18.
This study aimed to quantify possible climate change impacts on runoff for the Rheraya catchment (225 km2) located in the High Atlas Mountains of Morocco, south of Marrakech city. Two monthly water balance models, including a snow module, were considered to reproduce the monthly surface runoff for the period 1989?2009. Additionally, an ensemble of five regional climate models from the Med-CORDEX initiative was considered to evaluate future changes in precipitation and temperature, according to the two emissions scenarios RCP4.5 and RCP8.5. The future projections for the period 2049?2065 under the two scenarios indicate higher temperatures (+1.4°C to +2.6°C) and a decrease in total precipitation (?22% to ?31%). The hydrological projections under these climate scenarios indicate a significant decrease in surface runoff (?19% to ?63%, depending on the scenario and hydrological model) mainly caused by a significant decline in snow amounts, related to reduced precipitation and increased temperature. Changes in potential evapotranspiration were not considered here, since its estimation over long periods remains a challenge in such data-sparse mountainous catchments. Further work is required to compare the results obtained with different downscaling methods and different hydrological model structures, to better reproduce the hydro-climatic behaviour of the catchment.
EDITOR M.C. Acreman

ASSOCIATE EDITOR R. Hirsch  相似文献   

19.
A seasonal water budget analysis was carried out to quantify various components of the hydrological cycle using the Soil and Water Assessment Tool (SWAT) model for the Betwa River basin (43?500 km2) in central India. The model results were satisfactory in calibration and validation. The seasonal water budget analysis showed that about 90% of annual rainfall and 97% of annual runoff occurred in the monsoon season. A seasonal linear trend analysis was carried out to detect trends in the water balance components of the basin for the period 1973–2001. In the monsoon season, an increasing trend in rainfall and a decreasing trend in ET were observed; this resulted in an increasing trend in groundwater storage and surface runoff. The winter season followed almost the same pattern. A decreasing trend was observed in summer season rainfall. The study evokes the need for conservation structures in the study area to reduce monsoon runoff and conserve it for basin requirements in water-scarce seasons.

EDITOR Z.W. Kundzewicz

ASSOCIATE EDITOR F. Hattermann  相似文献   

20.
ABSTRACT

This study presents a systematic illustration quantifying how misleading the calibration results of a groundwater simulation model can be when recharge rates are considered as the model parameters to be estimated by inverse modelling. Three approaches to recharge estimation are compared: autocalibration (Model 1), the empirical return coefficient method (Model 2), and distributed hydrological modelling using the Soil and Water Assessment Tool, SWAT (Model 3). The methodology was applied in the Dehloran Plain, western Iran, using the MODFLOW modular flow simulator and the PEST method for autocalibration. The results indicate that, although Model 1 performed the best in simulating water levels at observation wells in the calibration stage, it did not perform satisfactorily in real future scenarios. Model 3, with SWAT-based recharge rates, performed better than the other models in the validation stage. By not evaluating the model performance solely on calibration results, we demonstrate the relative significance of using more accurate recharge estimates when calibrating groundwater simulation models.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR M. Besbes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号