首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
An integrated model is developed for the short-term and long-term dynamic response of an offshore structure subjected to random wave excitation. A discrete linear, elastic model of the upper structure is coupled with an iterative linear quasi-three-dimensional finite element model for the pile-soil medium, and the system is subjected to stochastic storms described by mean rate of arrival, joint probability distribution of storm duration and average intensity, and a random process that describes the variations of a statistical wave height measure during each storm. Sarpkaya's 1977 experimental information is used to specify values for CM and CD, in Morison's equation, consistent with the flow and response characteristics. Soil (clay) degradation, due to cyclic excitation, is followed during the passage of a storm. The indicator of soil degradation is taken to be the value of the horizontal foundation stiffness and the stiffness degradation is modelled by a homogeneous Markov process.  相似文献   

4.
Measurements of significant wave height are made routinely throughout the world’s oceans, but a record of the sea surface elevation (η) is rarely kept. This is mostly due to memory limitations on data, but also, it is thought that buoy measurements of sea surface elevation are not as accurate as wave gauges mounted on stationary platforms. Accurate records of η which contain rogue waves (defined here as an individual wave at least twice the significant wave height) are of great interest to scientists and engineers. Using field data, procedures for tilt correcting and double integrating accelerometer data to produce a consistent record of η are given in this study. The data in this study are from experimental buoys deployed in the recent Impact of Typhoons on the Ocean in the Pacific (ITOP) field experiment which occurred in 2010. The statistics from the ITOP buoys is under that predicted by Rayleigh theory, but matches the distributions of Boccotti and others (Tayfun and Fedele) (Ocean Eng 34:1631-1649, 2007). Rogue waves were recorded throughout the experiment under various sea state conditions. Recommendations, as a result of lessons learned during ITOP, are made for the routine recording of η which may not add significantly to the existing data burden. The hope is that we might one day collect a worldwide database of rogue waves from the existing buoy network, which would progress our understanding of the rogue wave phenomenon and make work at sea safer.  相似文献   

5.
A predictability study on wave forecast of the Arctic Ocean is necessary to help identify hazardous areas and ensure sustainable shipping along the trans-Arctic routes. To assist with validation of the Arctic Ocean wave model, two drifting wave buoys were deployed off Point Barrow, Alaska for two months in September 2016. Both buoys measured significant wave heights exceeding 4 m during two different storm events on 19 September and 22 October. The NOAA-WAVEWATCH III? model with 16-km resolution was forced using wind and sea ice reanalysis data and obtained general agreement with the observation. The September storm was reproduced well; however, model accuracy deteriorated in October with a negative wave height bias of around 1 m during the October storm. Utilising reanalysis data, including the most up-to-date ERA5, this study investigated the cause: grid resolution, wind and ice forcing, and in situ sea level pressure observations assimilated for reanalysis. The analysis has found that there is a 20% reduction of in situ SLP observations in the area of interest, presumably due to fewer ships and deployment options during the sea ice advance period. The 63-member atmospheric ensemble reanalysis, ALERA2, has shown that this led to a larger ensemble spread in the October monthly mean wind field compared to September. Since atmospheric physics is complex during sea ice advance, it is speculated that the elevated uncertainty of synoptic-scale wind caused the negative wave model bias. This has implications for wave hindcasts and forecasts in the Arctic Ocean.  相似文献   

6.
The impact of the gustiness on surface waves under storm conditions is investigated with focus on the appearance of wave groups with extreme high amplitude and wavelength in the North Sea. During many storms characterized by extremely high individual waves measured near the German coast, especially in cold air outbreaks, the moving atmospheric open cells are observed by optical and radar satellites. According to measurements, the footprint of the cell produces a local increase in the wind field at sea surface, moving as a consistent system with a propagation speed near to swell wave-traveling speed. The optical and microwave satellite data are used to connect mesoscale atmospheric turbulences and the extreme waves measured. The parameters of open cells observed are used for numerical spectral wave modeling. The North Sea with horizontal resolution of 2.5?km and with focus on the German Bight was simulated. The wind field “storm in storm,” including moving organized mesoscale eddies with increased wind speed, was generated. To take into account the rapid moving gust structure, the input wind field was updated each 5?min. The test cases idealized with one, two, and four open individual cells and, respectively, with groups of open cells, with and without preexisting sea state, as well the real storm conditions, are simulated. The model results confirm that an individual-moving open cell can cause the local significant wave height increase in order of meters within the cell area and especially in a narrow area of 1–2?km at the footprint center of a cell (the cell's diameter is 40–90?km). In a case of a traveling individual open cell with 15?m·s?1 over a sea surface with a preexisting wind sea of and swell, a local significant wave height increase of 3.5?m is produced. A group of cells for a real storm condition produces a local increase of significant wave height of more than 6?m during a short time window of 10–20?min (cell passing). The sea surface simulation from modeled wave spectra points out the appearance of wave groups including extreme individual waves with a period of about 25?s and a wavelength of more than 350?m under the cell's footprint. This corresponds well with measurement of a rogue wave group with length of about 400?m and a period of near 25?s. This has been registered at FiNO-1 research platform in the North Sea during Britta storm on November 1, 2006 at 04:00 UTC. The results can explain the appearance of rogue waves in the German Bight and can be used for ship safety and coastal protection. Presently, the considered mesoscale gustiness cannot be incorporated in present operational wave forecasting systems, since it needs an update of the wind field at spatial and temporal scales, which is still not available for such applications. However, the scenario simulations for cell structures with appropriate travel speed, observed by optical and radar satellites, can be done and applied for warning messages.  相似文献   

7.
Within the context of a warming climate, there are wide and increasing concerns about the way beaches respond to different wave energy environments. However, behavioural differences in changes in beach elevation contours (including shorelines) in different wave energy environments remain unknown. Thus, it is unilateral to evaluate the changes in beaches based on a single elevation contour (e.g. shoreline) in coastal engineering and management applications. In this study, based on the collected shoreline and wave energy data of two international beaches, as well as the measured beach elevation contour data from Yintan Beach and the corresponding wave energy data simulated by Xbeach, our results show that frequency distributions of beach elevation contour changes exhibit distinct features under different wave energy environments. Under high wave energy environments, the frequency distributions of beach elevation contour changes show a Gaussian distribution. However, frequency distributions of beach elevation contour changes present a power law, intermediate between the logarithmic and Gaussian distributions under low and moderate wave energy environments, respectively. Furthermore, the conceptual model of beach elevation contour changes constructed by this study indicates that the relative importance of the wave energy and sediment resistance determines this phenomenon. © 2020 John Wiley & Sons Ltd  相似文献   

8.
Few studies of wave processes on shore platforms have addressed the hydrodynamic thresholds that control wave transformation and energy dissipation, especially under storm conditions. We present results of a field experiment conducted during a storm on a sub‐horizontal shore platform on the east coast of Auckland, New Zealand. Small (<0.5 m) locally generated waves typically occur at the field site, whereas during the experiment the offshore wave height reached 2.3 m. Our results illustrate the important control that platform morphology has on wave characteristics. At the seaward edge of the platform a scarp abruptly descends beneath low tide level. Wave height immediately seaward of the platform was controlled by the incident conditions, but near the cliff toe wave height on the platform was independent of incident conditions. Results show that a depth threshold at the seaward platform edge > 2.5 times the gravity wave height (0.05–0.33 Hz) is necessary for waves to propagate onto the platform without breaking. On the platform surface the wave height is a direct function of water depth, with limiting maximum wave height to water depth ratios of 0.55 and 0.78 at the centre of the platform and cliff toe, respectively. A relative ‘platform edge submergence’ (water depth/water height ratio) threshold of 1.1 is identified, below which infragravity (<0.05 Hz) wave energy dominates the platform energy spectra, and above which gravity waves are dominant. Infragravity wave height transformation across the platform is governed by the relative platform edge submergence. Finally, the paper describes the first observations of wave setup on a shore platform. During the peak of the storm, wave setup on the platform at low tide (0.21 m) is consistent with measurements from planar sandy beaches, but at higher tidal stages the ratio between incident wave height and maximum setup was lower than expected. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Extreme storm events are known to produce, entrain, transport and deposit sizable boulders along rocky coastlines. However, the extent to which these processes occur under moderate, fetch-limited wave conditions is seldom considered. In this study we quantify boulder transport at a relatively sheltered location subject to high-frequency, low-magnitude storm activity. This was achieved by deploying radio frequency identification (RFID) tags within 104 intertidal limestone boulders ranging in size from fine to very coarse (intermediate axis: 0.27–2.85 m). The study was conducted over 3 years (July 2015–July 2018) and encompassed numerous storm events. Tagged boulders were relocated during 17 field surveys and their positions recorded using a differential global positioning navigation satellite system (DGNSS). On completion, we identified boulder displacement in 69% of the tagged array. The accrued boulder transport distance amounted to 233.0 m from 195 incidents of displacement, including the movement of a boulder weighing an estimated 11.9 t. Transport was not confined to autumn and winter storms alone, as displacement was also recorded during summer months (April–September), despite the seasonally reduced wave magnitude. Boulder production by wave quarrying was documented in three tagged clasts, confirming observations that the shore platform is actively eroding. Incidents of overturning during transport were also recorded, including multiple overturning of clasts weighing up to 5 t. We further identify a statistically significant difference (maximum p-value ≤ 0.03) between the transport distances attributed to constrained and unconstrained boulders, suggesting that the pre-transport morphological setting exerts considerable control over boulder transport potential. The findings establish low to moderate storm waves as a key component in the evolution of the study site. More broadly, we claim that high-frequency, low-magnitude storms regularly modify these overlooked rocky coastal locations, suggesting that the hydrodynamic capability at such sites may previously have been underestimated. © 2020 John Wiley & Sons, Ltd.  相似文献   

10.
Near‐surface airflow over a morphologically simple, vegetated, 8 m high foredune with a small wave‐cut scarp was measured for onshore to oblique‐onshore conditions during a low‐moderate (5–6 m s‐1 ) wind event and a high velocity (11–18 m s‐1) sand‐transporting gale event. Flow across the foredune was characterized by significant flow compression and acceleration up and across the foredune during both events. During the gale, a pronounced jet (speed bulge) developed at the foredune crest, which increased in magnitude with increasing wind speed. The vertical (W) velocity component of the 3D flow field was positive (upwards) across the stoss slope under low wind conditions but negative (downwards) during gale wind conditions, with upslope acceleration. During the low velocity event, there was speed‐down within the vegetation canopy, as would be expected for a porous roughness cover. During the strong wind event there was speed‐up in the lower portion of the vegetation canopy, and this was found up the entire stoss slope. Sediment transport during the gale force event was substantial across the beach and foredune despite the moderate vegetation cover and minimum fetch. Aeolian suspension was evident in the lee of the dune crest. The observations presented herein show that strong storm winds are an effective mechanism for translating sediment landwards across a high vegetated foredune, contributing sediment to the stoss slope, crest and leeward slopes of the foredune and backing dunes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Tropical cyclones (termed hurricanes and typhoons in other regions), are extreme events associated with strong winds, torrential rain and storm surges (in coastal areas) and cause extensive damage as a result of strong winds and flooding (caused by either heavy rainfall or ocean storm surges) in the immediate area of impact. The eastern Indian Ocean, particularly in the northwest region of Australia, is impacted by up to 10 tropical cyclones during the cyclone season, although direct impact of cyclones along the west and southwest coastlines is rare. However, the sub-tidal frequency component of sea level records along the west and south coasts of Western Australia indicates lagged correspondence with the occurrence of tropical cyclones. It is demonstrated that the tropical cyclones generate a continental shelf wave which travels along the west and south coasts of Australia up to 3500 km with speeds of 450–500 km day−1 (5.2–5.8 ms−1) with maximum trough to crest wave height of 0.63 m, comparable with the mean daily tidal range in the region. The shelf wave is identified in the coastal sea level records, initially as a decrease in water level, 1–2 days after the passage of the cyclone and has a period of influence up to 10 days. Amplitude of the shelf wave was strongly affected by the path of the tropical cyclone, with cyclones travelling parallel to the west coast typically producing the most significant signal due to resonance and superposition with local forcing. Analysis of water levels from Port Hedland, Geraldton, Fremantle and Albany together with cyclone paths over a ten year period (1988–1998) indicated that the tropical cyclones paths may be classified into 6 different types based on the amplitude of the wave.  相似文献   

12.
Wind characteristics and aeolian transport were measured on a naturally evolving beach and dune and a nearby site where the beach is raked and sand‐trapping fences are deployed. The beaches were composed of moderately well sorted to very well sorted fine to medium sand. The backshore at the raked site was wider and the foredune was more densely vegetated and about 1 m higher than at the unraked site. Wind speeds were monitored using anemometers placed at 1 m elevation and sand transport was monitored using vertical traps during oblique onshore, alongshore and offshore winds occurring in March and April 2009. Inundation of the low backshore through isolated swash channels prevented formation of a continuously decreasing cross‐shore moisture gradient. The surface of the berm crest was dryer than the backshore, making the berm crest the greatest source of offshore losses during offshore winds. The lack of storm wrack on the raked beach reduced the potential for sediment accumulation seaward of the dune crest during onshore winds, and the higher dune crest reduced wind speeds and sediment transport from the dune to the backshore during offshore winds. Accretion at wrack seaward of the dune toe on the unraked beach resulted in a wider dune field and higher, narrower backshore. Although fresh wrack is an effective local trap for aeolian transport, wrack that becomes buried appears to have little effect as a barrier and can supply dry sand for subsequent transport. Aeolian transport rates were greater on the narrower but dryer backshore of the unraked site. Vegetation growth may be necessary to trap sand within zones of buried wrack in order to allow new incipient foredunes to evolve. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
本文采用基于ENA(Energetic Neutral Atoms)次生电子起始脉冲高度分布,统计拟合分离中能段ENA两种主要成分氢和氧的方法,研发了实现ENA氢与氧分离的TWINS卫星原始数据处理软件;其中所需要的脉高分布模型,参照已有理论公式,利用TWINS(Two Wide-angle Imaging Neutral-atom Spectrometers)卫星标定数据进行拟合确定未知参数,再加以计算得到.将上述方法用于TWINS卫星实测数据,分离得到一次大磁暴主相期间ENA-H和ENA-O微分通量随观测视线的分布及其随主相增长的变化.分析发现:(1)ENA-H与ENA-O微分通量的强度和随观测视线的分布特征都有明显差别,从某种角度反映出ENA之源的O~+与H~+离子强度和分布之间的差异;(2)接近主相极大时,ENA-H有很强的低高度发射(LAE,Low Altitude Emission),出现在磁地方时午夜前极光和亚极光纬度区,意味着该区域较强的等离子片和环电流质子沉降,进入到外层基底以下较低高度大气层;而ENA-O则未有明显LAE产生;ENA-O强通量观测视线主要穿过广大环电流区,磁地方时主要在午夜之后以及黄昏前和黎明前后;(3)在磁暴主相快速增长期,ENA-O平均总通量持续增大,而ENA-H同步减小,ENA-O与ENA-H平均总通量的比率随环电流指数Dst绝对值的增大而大致成正比增长.  相似文献   

14.
Wind flow and sand transport intensity were measured on the seaward slope of a vegetated foredune during a 16 h storm using an array of sonic anemometers and Wenglor laser particle counters. The foredune had a compound seaward slope with a wave‐cut scarp about 0.5 m high separating the upper vegetated portion from the lower dune ramp, which was bare of vegetation. Wind direction veered from obliquely offshore at the start of the event to obliquely onshore during the storm peak and finally to directly onshore during the final 2 h as wind speed dropped to below threshold. Sand transport was initially inhibited by a brief period of rain at the start of the event but as the surface dried and wind speed increased sand transport was initiated over the entire seaward slope. Transport intensity was quite variable both temporally and spatially on the upper slope as a result of fluctuating wind speed and direction, but overall magnitudes were similar over the whole length. Ten‐minute average transport intensity correlates strongly with mean wind speed measured at the dune crest, and there is also strong correlation between instantaneous wind speed and transport intensity measured at the same locations when the data are smoothed with a 10 s running mean. Transport on the beach for onshore winds is decoupled from that on the seaward slope above the small scarp when the wind angle is highly oblique, but for wind angles <45° from shore perpendicular some sand is transported onto the lower slope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This paper examines the processes responsible for the morphodynamics of an intertidal swash bar at Skallingen, Denmark, during seven successive storms (one with a large surge of +3·02 m DNN). During this period a subtidal bar migrated landward onto the foreshore and continued to migrate across the intertidal zone as a swash bar. The onshore migration of the inner subtidal bar resulted from the erosion of sediment from the upper foreshore and dune ramp during the large storm surge that was transported seaward, causing the landward displacement of the bar through accretion on the landward slope. The magnitude and direction of suspended sediment transport within the intertidal zone, and more specifically at and close to the crest of the swash bar, varied with the ratio of both the significant (Hs) and average (Havg) wave heights to the water depth (hcr) at the swash bar crest (the local depth minimum). The transition between onshore and offshore suspended sediment transport was associated with the average wave of the incident distribution breaking on the swash bar crest (Havgh ≈ 0·33). While the onshore‐directed transport was largest at infragravity frequencies, sediment resuspension was best explained by the skewed accelerations under the surf bores. Offshore transport was dominated by the cross‐shore mean currents (undertow) that developed when the significant wave of the distribution broke on the swash bar crest (Hsh ≈ 0·33) and weakened as the average wave of the distribution started to break at the crest (Havgh ≈ 0·33) and the surf zone approached saturation. In contrast to subtidal bars, the swash bar at Skallingen exhibited a divergent behaviour with respect to the cross‐shore position of the breaker zone, migrating onshore when the average wave broke seaward of the crest and migrating offshore when the average wave broke landward of the crest. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents an investigation of geomagnetic storm effects in the equatorial and middle-low latitude F-region in the West Pacific sector during the intense geomagnetic storm on 13–17 April, 2006. The event, preceded by a minor storm, started at 2130 UT on April 13 while interplanetary magnetic field (IMF) Bz component was ready to turn southward. From 14–17 the ionosphere was characterized by a large scale enhancement in critical frequency, foF2 (4~6 MHz) and total electron content (TEC) (~30TECU, 1TECU=1×1016el/m2) followed by a long-duration negative phase observed through the simultaneous ionospheric sounding measurements from 14 stations and GPS network along the meridian 120°E. A periodic wave structure, known as traveling ionospheric disturbances (TIDs) was observed in the morning sector during the initial phase of the storm which should be associated with the impulsive magnetospheric energy injection to the auroral. In the afternoon and nighttime, the positive phase should be caused by the combination of equatorward winds and disturbed electric fields verified through the equatorial F-layer peak height variation and modeled upward drift of Fejer and Scherliess [1997. Empirical models of storm time equatorial electric fields. Journal of Geophysical Research 102, 24,047–24,056]. It is shown that the large positive storm effect was more pronounced in the Southern Hemisphere during the morning-noon sector on April 15 and negative phase reached to lower magnetic latitudes in the Northern Hemisphere which may be related to the asymmetry of the thermospheric condition during the storm.  相似文献   

17.
Erosion of hard‐rock coastal cliffs is understood to be caused by a combination of both marine and sub‐aerial processes. Beach morphology, tidal elevation and significant wave heights, especially under extreme storm conditions, can lead to variability in wave energy flux to the cliff‐toe. Wave and water level measurements in the nearshore under energetic conditions are difficult to obtain and in situ observations are rare. Here we use monthly cliff‐face volume changes detected using terrestrial laser scanning alongside beach morphological changes and modelled nearshore hydrodynamics to examine how exposed cliffs respond to changes in extreme wave conditions and beach morphology. The measurements cover the North Atlantic storms of 2013 to 2014 and consider two exposed stretches of coastline (Porthleven and Godrevy, UK) with contrasting beach morphology fronting the cliffs; a flat dissipative sandy beach at Godrevy and a steep reflective gravel beach at Porthleven. Beach slope and the elevation of the beach–cliff junction were found to influence the frequency of cliff inundation and the power of wave–cliff impacts. Numerical modelling (XBeach‐G) showed that under highly energetic wave conditions, i.e. those that occurred in the North Atlantic during winter 2013–2014, with Hs = 5.5 m (dissipative site) and 8 m (reflective site), the combination of greater wave height and steeper beach at the reflective site led to amplified wave run‐up, subjecting these cliffs to waves over four times as powerful as those impacting the cliffs at the dissipative site (39 kWm‐1 compared with 9 kWm‐1). This study highlighted the sensitivity of cliff erosion to extreme wave conditions, where the majority (over 90% of the annual value) of cliff‐face erosion ensued during the winter. The significance of these short‐term erosion rates in the context of long‐term retreat illustrates the importance of incorporating short‐term beach and wave dynamics into geomorphological studies of coastal cliff change. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

18.
The level of wave geomagnetic activity in the morning, afternoon, and nighttime sectors during strong magnetic storms with Dst varying from ?100 to ?150 nT has been statistically studied based on a new ULF wave index. It has been found out that the intensity of geomagnetic pulsations at frequencies of 2–7 mHz during the magnetic storm initial phase is maximal in the morning and nighttime sectors at polar and auroral latitudes, respectively. During the magnetic storm main phase, wave activity is maximal in the morning sector of the auroral zone, and the pulsation intensity in the nighttime sector is twice as low as in the morning sector. It has been indicated that geomagnetic pulsations excited after substorms mainly contribute to a morning wave disturbance during the magnetic storm main phase. During the storm recovery phase, wave activity develops in the morning and nighttime sectors of the auroral zone; in this case nighttime activity is also observed in the subauroral zone.  相似文献   

19.
The observation of extreme waves at FINO 1 during storm Britta on the 1st November 2006 has initiated a series of research studies regarding the mechanisms behind. The roles of stability and the presence of the open cell structures have been previously investigated but not conclusive. To improve our understanding of these processes, which are essential for a good forecast of similarly important events offshore, this study revisits the development of storm Britta using an atmospheric and wave coupled modeling system, wind and wave measurements from ten stations across the North Sea, cloud images and Synthetic Aperture Radar (SAR) data. It is found here that a standard state-of-the-art model is capable of capturing the important characteristics of a major storm like Britta, including the storm path, storm peak wind speed, the open cells, and peak significant wave height (H s ) for open sea. It was also demonstrated that the impact of the open cells has negligible contribution to the development of extreme H s observed at FINO 1. At the same time, stability alone is not sufficient in explaining the development of extreme H s . The controlling conditions for the development of Britta extreme H s observed at FINO 1 are the persistent strong winds and a long and undisturbed fetch over a long period.  相似文献   

20.
The problem of a sinusoidal wave crest striking an adverse slope due to gradual elevation of the bed is relevant for coastal sea waves. Turbulence based RANS equations are used here under turbulence closure assumptions. Depth-averaging the equations of continuity and momentum, yield two differential equations for the surface elevation and the average forward velocity. After nondimensionalization, the two equations are converted in terms of elevation over the inclined bed and the discharge, where the latter is a function of the former satisfying a first order differential equation, while the elevation is given by a first order evolution equation which is treated by Lax-Wendroff discretization. Starting initially with a single sinusoidal crest, it is shown that as time progresses, the crest leans forwards, causing a jump in the crest upfront resulting in its roll over as a jet. Three cases show that jump becomes more prominent with increasing bed inclination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号