首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
On August 3, 2014, an MW6.5 earthquake occurred in Ludian County, Yunnan Province, which triggered significant landslides and caused serious ground damages and casualties. Compared with the existing events of earthquake-triggered landslides, the spatial distribution of co-seismic landslides during the Ludian earthquake showed a special pattern. The relationship between the co-seismic landslides and the epicenter or the known faults is not obvious, and the maximum landslide density doesn't appear in the area near the epicenter. Peak ground acceleration (PGA), which usually is used to judge the limit boundary of co-seismic landslide distribution, cannot explain this distribution pattern. Instead of correlating geological and topographic factors with the co-seismic landslide distribution pattern, this study focuses on analyzing the influence of seismic landslide susceptibility on the co-seismic distribution. Seismic landslide susceptibility comes from a calculation of critical acceleration values using a simplified Newmark block model analysis and represents slope stability under seismic loading. Both DEM (SRTM 90m)and geological map (1 ︰ 200000)are used as inputs to calculate critical acceleration values. Results show that the most susceptible slopes with the smallest critical accelerations are generally concentrated along the banks of rivers. The stable slopes, which have the larger critical accelerations and are comparably stable, are in the places adjacent to the epicenter. Comparison of the distribution of slope stability and the real landslides triggered by the 2014 MW6.1 Ludian earthquake shows a good spatial correlation, meaning seismic landslide susceptibility controls the co-seismic landslide distributions to a certain degree. Moreover, our study provides a plausible explanation on the special distribution pattern of Ludian earthquake triggered landslides. Also the paper discusses the advantages of using the seismic landslide susceptibility as a basic map, which will offer an additional tool that can be used to assist in post-disaster response activities as well as seismic landslides hazards zonation.  相似文献   

2.
In this study, a detailed database of landslides triggered by the 25 April 2015 Gorkha (Nepal)MW7.8 earthquake is constructed based on visual interpretation of pre- and post-earthquake high-resolution satellite images and field reconnaissance. Results show the earthquake triggered at least 47 200 landslides, which have a NWW direction spatial distribution, similar with the location and strike of the seismogenic fault. The landslides are of a total area about 110km2 and an oval distribution area about 35 700km2. On the basis of a scale relationship between landslide area (A)and volume (V), V=1.314 7×A1.208 5, the total volume of the coseismic landslides is estimated to be about 9.64×108m3. In the oval landslide distribution area, the landslide number density, area density, and volume density were calculated and the results are 1.32km-2, 0.31%, and 0.027m, respectively. This study provides a detailed and objective inventory of landslides triggered by the Gorkha earthquake, which provides very important and essential basic data for study of mechanics of coseismic landslides, spatial pattern, distribution law, and hazard assessment. In addition, the landslide database related to an individual earthquake also provides an important earthquake case in a subduction zone for studying landslides related to multiple earthquakes from a global perspective.  相似文献   

3.
The MS7.0 Jiuzhaigou earthquake in Sichuan Province of 8 August 2017 triggered a large number of landslides. A comprehensive and objective panorama of these landslides is of great significance for understanding the mechanism, intensity, spatial pattern and law of these coseismic landslides, recovery and reconstruction of earthquake affected area, as well as prevention and mitigation of landslide hazard. In this paper, we use the trinity method of space, sky and earth to create a panorama of the landslides triggered by this event. There are 4 roads in the distribution area of the coseismic landslides. The Jinglinghai-Xiamo and Jiudaoguai-Jiuzhaitiantang road sections register the most serious coseismic landslides. The landslides are mainly of moderate-and small-scales, and also with a few large landslides and avalanches. A detailed visual interpretation of the coseismic landslides is performed in two areas of Wuhuahai(11.84km2) and Zharusi-Shangsizhai village(47.07km2), respectively. The results show the overall intensity of landsliding(1088 landslides, a total area 1.514km2) in the Wuhuahai area is much higher than those in the Zharusi-Shangsizhai village area(528 landslides, a total area 0.415km2). On the basis of a scene of post-earthquake Geoeye -1 satellite images, we delineate more than 4 800 coseismic landslides with a total occupation area 9.6km2. The spatial pattern of these landslides is well related with the locations of the inferred seismogenic fault and aftershocks. Widely distributed earthquake-affected weakened slopes, residual loose materials staying at high-position slopes and in valleys have greater possibilities to fail again and generate new landslides or debris flows under the conditions of strong aftershocks or heavy rainfalls in the future. Geological hazard from these events will become one of the most serious problems in the recovery and reconstruction of the earthquake-affected area which should receive much attention.  相似文献   

4.
The MS7.0 Jiuzhaigou earthquake in Sichuan Province of 8 August 2017 triggered a large number of landslides. A comprehensive and objective panorama of these landslides is of great significance for understanding the mechanism, intensity, spatial pattern and law of these coseismic landslides, recovery and reconstruction of earthquake affected area, as well as prevention and mitigation of landslide hazard. The main aim of this paper is to present the use of remote sensing images, GIS technology and Logistic Regression(LR)model for earthquake triggered landslide hazard mapping related to the 2017 Jiuzhaigou earthquake. On the basis of a scene post-earthquake Geoeye-1 satellite image(0.5m resolution), we delineated 4834 co-seismic landslides with an area of 9.63km2. The ten factors were selected as the influencing factors for earthquake triggered landslide hazard mapping of Jiuzhaigou earthquake, including elevation, slope angle, aspect, horizontal distance to fault, vertical distance to fault, distance to epicenter, distance to roads, distance to rivers, TPI index, and lithology. Both landsliding and non-landsliding samples were needed for LR model. Centroids of the 4834 initial landslide polygons were extracted for landslide samples and the 4832 non-landslide points were randomly selected from the landslide-free area. All samples(4834 landslide sites and 4832 non-landslide sites)were randomly divided into the training set(6767 samples)and validation set(2899 samples). The logistic regression model was used to carry out the landslide hazard assessment of the Jiuzhaigou earthquake and the results show that the landslide hazard assessment map based on LR model is very consistent with the actual landslide distribution. The areas of Wuhuahai-Xiamo, Huohuahai and Inter Continental Hotel of Jiuzhai-Ruyiba are high hazard areas. In order to quantitatively evaluate the prediction results, the trained model calculated with the training set was evaluated by training set and validation set as the input of the model to get the output results of the two sets. The ROC curve was used to evaluate the accuracy of the model. The ROC curve for LR model was drawn and the AUC values were calculated. The evaluation result shows good prediction accuracy. The AUC values for the training and validation data set are 0.91 and 0.89, respectively. On the whole, more than 78.5% of the landslides in the study area are concentrated in the high and extremely high hazard zones. Landslide point density and landslide area density increase very rapidly as the level of hazard increases. This paper provides a scientific reference for earthquake landslides, disaster prevention and mitigation in the earthquake area.  相似文献   

5.
Strong earthquakes can not only trigger a large number of co-seismic landslides in mountainous areas, but also have an important impact on the development level of geological hazards in the disaster area. Usually, geological hazards caused by strong earthquakes will significantly increase and continue for a considerable period of time before they recover to the pre-earthquake level. Therefore, studying the evolution characteristics of landslides triggered by earthquake is particularly important for the prevention of geological disaster. In this paper, a 66km2 region in Yingxiu near the epicenter of the 2008 MS8.0 Wenchuan earthquake, which was strongly disturbed by the earthquake, was investigated. Firstly, one high-resolution satellite image before the earthquake(April, 2005) and five high-resolution satellite images after the earthquake(June, 2008; April, 2011; April, 2013; May, 2015; May, 2017)were used to interpret and catalog multi-temporal landslide inventories. Secondly, seven primary factors were analyzed in the GIS platform, including elevation, slope, aspect, curvature, stratum, lithology, and the distance from the nearest water system and the distance from seismogenic faults. Finally, the evolution of the landslide triggered by earthquake in this region was analyzed by comparing the landslide activity intensity in different periods, using the methods of correlation analysis, regression analysis, and single-factor statistical analysis. It was found that the total area of landslides in the study region decreased sharply from 2008 to 2017, with the area of the co-seismic landslide reducing from 21.41km2 to 1.33km2. This indicates that the magnitude of the landslides has recovered or is close to the pre-earthquake level. Moreover, correlation analysis shows that the elevation has a strong positive correlation with the distance from the nearest water system, and a weak positive correlation with the area. Meanwhile, there is a weak negative correlation between the distance from the nearest water system and the distance from seismogenic faults. Overall, the degree of landslide activity in the study region decreased over time, as well as the number of reactivated landslides and new landslides. The region where the area of earthquake triggered landslides decreased mainly concentrated at an elevation of 1 000m to 2 100m, a slope of 30° to 55°, an aspect of 40° to 180°, and a curvature of -2 to 2. In addition, the lithology of the Pengguan complex in the Yingxiu study region is more conducive to the occurrence of landslides, while the sedimentary rock is more conducive to the landslide recovery. When the distance from the nearest water system is more than 1 600m, the effect of the water system on the landslides gradually decreases. Also, the landslides triggered by Wenchuan earthquake in this area have the characteristics of the hanging wall effect, which means, the number of landslides in the northwestern region is much higher than that in the southeast side.  相似文献   

6.
A complete understanding to the disasters triggered by giant earthquakes is not only crucial to effectively evaluating the reliability of existing earthquake magnitude, but also supporting the seismic hazard assessment. The great historical earthquake with estimated magnitude of M8.5 in Huaxian County on the 23rd January 1556, which caused a death toll of more than 830 000, is the most serious earthquake on the global record. But for a long time, the knowledge about the hazards of this earthquake has been limited to areas along the causative Huashan piedmont fault(HSPF) and within the Weihe Basin. In this paper, we made a study on earthquake triggered landslides of the 1556 event along but not limited to the HSPF. Using the high-resolution satellite imagery of Google Earth for earthquake-triggered landslide interpretation, we obtained two dense loess landslides areas generated by the 1556 earthquake, which are located at the east end and west end of the HSPF. The number of the interpreted landslides is 1 515 in the west area(WA), which is near to the macro-epicentre, and 2 049 in the east area(EA), respectively. Based on the empirical relationship between the landslide volume and area, we get the estimated landslide volume of 2.85~6.40km3 of WA and EA, which is equivalent or bigger than the value of ~2.8km3 caused by Wenchuan earthquake of MW7.9 on 12th May 2008. These earthquake triggered landslides are the main cause for the death of inhabitants living in houses or loess house caves located outside of the basin, such as Weinan, Lintong, Lantian(affected by WA) and Lingbao(affected by EA). Our results can help deeply understand the distribution characteristics of coseismic disaster of the 1556 Huaxian earthquake to the south of Weihe Basin, and also provide important reference for the modification of the isoseismals.  相似文献   

7.
A complete landslide inventory and attribute database is the importantly fundamental for the study of the earthquake-induced landslide. Substantial landslides were triggered by the MW7.9 Wenchuan earthquake on May 12th, 2008. Google Earth images of pre- and post-earthquakes show that 52 194 co-seismic landslides were recognized and mapped, with a total landslides area of 1 021 km2.Based on the statistics,we assigned all landslide parameters and established the co-seismic landslides database, which includes area, length, and width of landslides, elevation of the scarp top and foot edge, and the top and bottom elevations of each located slope. Finally, the spatial distribution and the above attribute parameters of landslides were analyzed. The results show that the spatial distribution of the co-seismic landslides is extremely uneven. The landslides that mainly occur in a rectangular area (a width of 30 km of the hanging wall of the Yingxiu-Beichuan fault and a length of 120 km between Yingxiu and Beichuan) are obviously controlled by surface rupture, terrain, and peak ground acceleration. Meanwhile, a large number of small landslides (individual landslide area less than 10 000 m2)contribute less to the total landslides area. The number of landslides larger than 10 000 m2 accounts for 38.7% of the total number of co-seismic landslides, while the area of those landslides account for 88% of the total landslides area. The 52 194 co-seismic landslides are caused by bedrock collapse that usually consists of three parts:source area, transport area, and accumulation area. However, based on the area-volume power-law relationship, the resulting regional landslide volume may be much larger than the true landslide volume if the landslide volume is calculated using the influenced area from each landslide.  相似文献   

8.
许冲  徐锡伟 《地球物理学报》2012,55(9):2994-3005
基于统计学习理论与地理信息系统(GIS)技术的地震滑坡灾害空间预测是一个重要的研究方向,其可以对相似地震条件下地震滑坡的发生区域进行预测.2010年4月14日07时49分(北京时间),青海省玉树县发生了Mw6.9级大地震,作者基于高分辨率遥感影像解译与现场调查验证的方法,圈定了2036处本次地震诱发滑坡,这些滑坡大概分布在一个面积为1455.3 km2的矩形区域内.本文以该矩形区域为研究区,以GIS与支持向量机(SVM)模型为基础,开展基于不同核函数的地震滑坡空间预测模型研究.应用GIS技术建立玉树地震滑坡灾害及相关滑坡影响因子空间数据库,选择高程、坡度、坡向、斜坡曲率、坡位、水系、地层岩性、断裂、公路、归一化植被指数(NDVI)、同震地表破裂、地震动峰值加速度(PGA)共12个因子作为地震滑坡预测因子.以SVM模型为基础,基于线性核函数、多项式核函数、径向基核函数、S形核函数等4类核函数开展地震滑坡空间预测研究,分别建立了玉树地震滑坡危险性指数图、危险性分级图、预测结果图.4类核函数对应的模型正确率分别为79.87%,83.45%,84.16%,64.62%.基于不同的训练样本开展模型训练与讨论工作,表明径向基核函数是最适用于该地区的地震滑坡空间预测模型.本文为地震滑坡空间预测模型中核函数的科学选择提供了依据,也为地震区的滑坡防灾减灾工作提供了参考.  相似文献   

9.
地震应急是减轻地震灾害的重要途径之一。地震应急工作具有时间紧迫、事关重大的特点。2017年8月8日四川九寨沟MS7.0级地震发生后,为快速、准确地提供地震引发的滑坡灾害分布,本研究基于震后第一天获取到的高分辨率遥感影像(高分二号卫星影像、北京二号卫星影像),通过人工目视解译的方法初步建立了四川九寨沟地震滑坡编目。结果表明,该地震至少触发了622处同震滑坡,分布在沿使用影像边界框定的面积为3919km2的区域内。本研究还利用这个地震滑坡编目,统计了九寨沟地震滑坡数量和滑坡点密度(LND)与地形(坡度、坡向)、地震(地震烈度、震中距)等因素的关系。结果表明九寨沟地震滑坡多发生在坡度为20°—50°的区域内,滑坡的易发性随着坡度的增加而增加。受地震波传播方向的影响,E、SE向是地震滑坡较易发生的坡向。滑坡的易发程度和地震烈度呈正相关,即随着烈度的增大,滑坡易发性增大。滑坡易发性还随着震中距增加而降低,这是由于地震波能量随震中距的增加而衰减导致的。  相似文献   

10.
利用新技术、新方法,研究历史强震的发震构造及震害,是修订历史强震震源参数的重要内容.本文以1718年通渭M 7.5地震滑坡为研究对象,采用地质学“将今论古”原理,基于历史文献分析、遥感解译、野外验证等方法获得通渭地震滑坡数据库.研究发现,(1)总解译滑坡数量5019处,总面积635 km^2,滑坡密集沿通渭断裂分布,与X度等震线吻合,但范围均向西、向北各扩展约20 km;(2)与2008年汶川M8地震滑坡相比,面积<10^3 m^2的滑坡大量缺失,面积10^3~10^4 m^2的滑坡部分缺失,面积>10^4 m^2的滑坡数量相当;(3)尽管通渭地震滑坡数据库并不完整,但是能够反映极震区中大型滑坡的总体特征,可据此确定极震区范围;(4)通渭地震极震区至少有27处以“泄山”等记录地震滑坡的地名,这些受滑坡影响的居民点集中在通渭断裂两侧,占比超过50%,是致7万人死亡的重要致灾因素.研究认为,在黄土高原地区,确认密集的中大型滑坡体可能由单次历史强震触发,且排除其他远场强震影响之后,可以利用现今多时相的高分辨率卫星影像解译获得“相对完整”的历史地震滑坡数据库,为历史强震震源参数的修订提供基础资料.  相似文献   

11.
This study constructs a preliminary inventory of landslides triggered by the MS 6.8 Luding earthquake based on field investigation and human-computer interaction visual interpretation on optical satellite images. The results show that this earthquake triggered at least 5 007 landslides, with a total landslide area of 17.36 ?km2, of which the smallest landslide area is 65 ?m2 and the largest landslide area reaches 120 747 ?m2, with an average landslide area of about 3 500 ?m2. The obtained landslides are concentrated in the IX intensity zone and the northeast side of the seismogenic fault, and the area density and point density of landslides are 13.8%, and 35.73 ?km?2 peaks with 2 ?km as the search radius. It should be noted that the number of landslides obtained in this paper will be lower than the actual situation because some areas are covered by clouds and there are no available post-earthquake remote sensing images. Based on the available post-earthquake remote sensing images, the number of landslides triggered by this earthquake is roughly estimated to be up to 10 000. This study can be used to support further research on the distribution pattern and risk evaluation of the coseismic landslides in the region, and the prevention and control of landslide hazards in the seismic area.  相似文献   

12.
长期、缓慢的地貌演化具有阶段性的特点,构造抬升与侵蚀相互作用引起山坡物质运移,使地貌单元具有向相对稳定状态转变的趋势。滑坡作为山坡物质运移的一种主要方式,在地貌演化过程中起到了重要作用。2014年鲁甸MS6.5地震诱发了异常多的滑坡,可以看作是该区地貌物质在短时间内发生的集中调整过程。这些滑坡主要沿河流分布,表明河流侵蚀使河岸地形变陡、强度降低,形成发生物质运移的有利条件,从而增强了地震滑坡的易发性。文中以SRTM 30m数字高程模型(DEM)为基础,通过对鲁甸地震滑坡分布区的网格化划分,对研究区滑坡分布及其与地形特征的关系进行了定量分析。除计算网格单元内的高程、高差及算数平均坡度外,还提出期望坡度的计算方法以对网格单元内的地形进行平滑。在此基础上,对该区域地貌特征参数自相关性进行了分析和比较,以判断地表物质分布是否均衡并寻找其中的分异性单元(滑坡易发区)。结果表明,研究区的高程与坡度、地形高差呈负相关,反映出显著的河流侵蚀效应;其中地形特征在分析单元的期望坡度与算数平均坡度这2个不同尺度下表现出很高的一致性,可能代表着研究区地貌在演化中具有的一种动态稳定特征,而与此特征不符的地貌单元则是可能发生滑坡进行物质调整的区域,是地貌自适应调整的一种表现。2014年鲁甸地震触发的大部分规模较大的滑坡发生在期望坡度与平均坡度差异较大的区域,这些区域大多位于河谷,显示河流侵蚀及其所造成的地形特征对滑坡易发性的控制作用。基于这样的认识,认为该区未来的物质运移区域仍然受到河流侵蚀的控制,滑坡易发性高的位置仍将沿河流分布。作为对比的九寨沟地震震区的地貌参数分析结果则表现出不同的特点,这种地形地貌分布上的差异性与滑坡空间分布及滑坡规模等之间的关系值得深入探讨。  相似文献   

13.
许冲  徐锡伟 《地震地质》2014,36(1):90-104
自2008年5月12日汶川MW7.9地震发生以来,针对地震滑坡与光学遥感影像的特点,制定了地震滑坡编录新原则、遥感影像选取新原则及地震滑坡属性库建立原则。文中介绍了21世纪初4次大地震事件触发滑坡基础数据建设成果:包括2008年5月12日汶川MW7.9地震,此次地震触发了至少197 481处滑坡;2010年4月14日玉树MW6.9地震至少触发2 036处滑坡;2010年1月12日海地MW7.0地震至少触发30 828处滑坡;2007年4月21日智利艾森峡湾MW6.2地震至少触发1 000处滑坡。分析了地震触发滑坡基础数据建设成果与以往研究的不同。最后从地震滑坡基础数据建设成果对地震滑坡分布规律与危险性评价的影响,对震区滑坡与泥石流防灾减灾的意义,对地震震级、活动断层运动习性、地震烈度等的反馈,对震区河流与地貌演化研究的基础意义,对全球地震震级与触发滑坡关系研究的意义等几个方面,分析了地震滑坡基础数据建设的实际应用价值与科学研究意义。  相似文献   

14.
为提高地震人员伤亡预评估的准确性,完善地震灾害损失评估模型,科学评估地震地质灾害可能造成的人员伤亡数量,以2014年鲁甸MS6.5地震滑坡人员死亡数据为样本,建立了一种基于公里网格单元的地震滑坡人员死亡率logistic回归模型。采用F检验法对所建模型的合理性进行检验,计算得到的F值无限接近于1,表明模型无限接近于完全模型,具有极好的数学统计意义。根据模型评估的死亡率反演得到鲁甸地震灾区滑坡致死人数为233人,比实际少17人,总精确度为93.20%,实际死亡人数与模型识别人数在空间上也有很好的一致性,说明计算得到的地震滑坡人员死亡率是实际死亡人数的良好指标。  相似文献   

15.
Summary statistics derived from the frequency–area distribution (FAD) of inventories of triggered landslides allows for direct comparison of landslides triggered by one event (e.g. earthquake, rainstorm) with another. Such comparisons are vital to understand links between the landslide‐event and the environmental characteristics of the area affected. This could lead to methods for rapid estimation of landslide‐event magnitude, which in turn could lead to estimates of the total triggered landslide area. Previous studies proposed that the FAD of landslides follows an inverse power‐law, which provides the basis to model the size distribution of landslides and to estimate landslide‐event magnitude (mLS), which quantifies the severity of the event. In this study, we use a much larger collection of earthquake‐induced landslide (EQIL) inventories (n=45) than previous studies to show that size distributions are much more variable than previously assumed. We present an updated model and propose a method for estimating mLS and its uncertainty that better fits the observations and is more reproducible, robust, and consistent than existing methods. We validate our model by computing mLS for all of the inventories in our dataset and comparing that with the total landslide areas of the inventories. We show that our method is able to estimate the total landslide area of the events in this larger inventory dataset more successfully than the existing methods. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

16.
The 3 August 2014 Ludian, Yunnan MS6.5 earthquake has spawned more than 1, 000 landslides which are from several tens to several millions and over ten millions of cubic meters in volumes. Among them, the Hongshiya and Ganjiazai landslides are the biggest two with volumes over 1 000×104m3. The Hongshiya and Ganjiazai landslides are two typical landslides, the former belongs to tremendous rock avalanche, and the latter belongs to unconsolidated werthering deposit landslide developed in concave mountain slope. Based on field investigations, causes and formation mechanism of the two landslides are discussed in this study. The neotectonic movement in the area maintains sustainable uplifting violently all the time since Cenozoic. The landform process accompanied with the regional tectonic uplifting is the violent downward erosion along the Jinshajiang River and its tributary, forming landforms of high mountains and canyons, deeply cut valleys, with great height difference. The regional seismo-tectonics situation suggests that:Ludian earthquake region is situated on the southern frontier boundary of Daliangshan secondary active block, and is seismically the strongest active area with one earthquake of magnitude greater than M5.0 occurring every 6 years. Frequent and strong seismicity produces accumulated effects on the ground rock to gradually lower the mechanical strength of slopes and their stability, which is the basis condition to generate large-scale collapse and landslide at Hongshiyan and Ganjiazhai. The occurring of Hongshiyan special large rock avalanche is associated with the large terrain height difference, steep slope, soft interlayer structure and unloading fissures and high-angle joints. The formation mechanism of Hongshiyan rock avalanche may have three stages as follows:Stage 1, when P wave arriving, under the situation of free surface, rocks shake violently, the pre-existent joints(in red)parallel to and normal to the river and unloading cracks are opened and connected. Stage 2, on the basis of the first stage, when S wave arriving, the ground movement aggravates. Joints(in green)along beds develop further, resulting in rock masses intersecting each other. Stage 3, rock masses lose stability, sliding downward, collapsing, and moving over a short distance along the sliding surface to the inside of the valley, blocking the river to form the dammed lake. The special large landslide at Ganjiazhai is a weathering layer landslide occurring in the middle-lower of a large concave slope. Its formation process may have two stages as follows:Firstly, under strong ground shaking and gravity, the ground rock-soil body around moves and assembles to the lower of the central axis of the large concave slope, which suffers the largest earthquake inertia force and firstly yields plastic damage to generate compression-expansion deformation, because of the largest water content and volume-weight within the loose soil of it. Secondly, in view of the steep slope, along with the compression, the plastic deformation area enlarges further in the lower of slope, giving rise to a tensional stress area along the middle of the slope. As soon as the tensional stress exceeds the tensile strength of the weathering layer, a tensional fracture will occur and the landslide rolls away immediately making use of momentum. This two large landslides are the basic typical ones triggered by the MS6.5 Ludian earthquake, and their causes and mechanism have a certain popular implication for the landslides occurring in this earthquake region.  相似文献   

17.
Over the past geological and historical period, tens of thousands of landslides occurred in the upper reaches of the Minjiang River, an area which is characterized by alpine valleys and has been densely populated over the past several hundreds of years. Discussing the triggering factor of these landslides is of great significance to geological hazard mitigation and prevention in this region. In this paper, we focus on four aspects of regional rainfall, shape features of landslide slopes, the corresponding relationship between landslide area and earthquake magnitude, and the recurring features of the reconstructed palaeoearthquake record at Diexi. Compared with those in Nepal, both mean seasonal rainfall accumulation and mean daily rainfall for the past 30 years are too low to reach the threshold values triggering landslides in the upper reaches of the Minjiang River. Secondly, landslides in the study area are usually absent of inner gorges(canyon topography)on the hillslope toes, which are confirmed in previous studies as typical features of landslides triggered by storms. Thirdly, wide distribution of the landslides in the study area supports our notion of earthquake-triggering because the landslides triggered by storms commonly distribute locally. Fourthly, periodicity analysis of the reconstructed palaeoearthquake record at Diexi provides a few cycles of twenty to thirty years, possibly corresponding to the earthquakes of magnitudes>5.0 or 5.5 which are believed to have caused soft-sediment deformation in the study area. In contrast, like the 2008 MS8.0 Wenchuan earthquake, the average recurrence interval of the large earthquakes in the study area is 2.6ka. They caused tens of thousands of landslides and provided more coarse silt particles for the nearby lake sediments at least in 330 years for each time. This is consistent with exponential increase of earthquake magnitude from large to medium and of the landslide area with the increased earthquake magnitude. To sum up, we suggest that tens of thousands of landslides in the upper reaches of the Minjiang River were most likely triggered by earthquakes instead of storms. This preliminary viewpoint needs further examination in the future.  相似文献   

18.
为了充分识别和有效减轻滑坡灾害风险,对滇西南南涧(约470 km2)和凤庆—昌宁(约2300 km2)两个研究区开展了基于GIS和专家知识的滑坡敏感性模糊逻辑评价研究。通过检查模型计算得到的历史滑坡点敏感性值与整个研究区域的滑坡敏感性平均值是否不同来评价本方法的性能,用Z值检查来测试差异的统计显著性。计算结果显示,南涧地区的Z值为4.1,相应的P值小于0.001,表明通过模型计算得到的滑坡敏感性值是该区域滑坡事件发生的良好指标;凤庆—昌宁地区的Z值为8.93,相应的P值小于0.001。在此基础上,采用自然断点法对滑坡敏感性值进行分类,根据分类结果将滑坡敏感性水平划分成5个等级:极低(0.0~0.001)、较低(0.001~0.051)、中等(0.051~0.394)、较高(0.394~0.557)和极高(0.557~1.0)。敏感性极低和较低的地区没有发现历史滑坡记录;敏感性极高地区的历史滑坡密度约是敏感性较高地区的4倍,约为敏感性中等地区的10倍。凤庆—昌宁地区的研究结果表明,从区域专家群中提取的滑坡敏感性与环境因子关系的知识可以外延到滇西南其它地区。  相似文献   

19.
潜在地震滑坡危险区区划方法   总被引:5,自引:0,他引:5       下载免费PDF全文
不同地区地震活动的强度和频率是不同的.基于地震危险性分析的地震滑坡危险研究在综合了地震烈度、位置、复发时间等因素的基础上,考虑了地震动峰值加速度时空分布的特点,可以有效地应用于潜在地震滑坡危险区区划.以汶川地震灾区为研究对象,根据研究区的地质构造、地震活动特点等划分出灾区的潜在震源区,对该区进行地震危险性分析,并在此基础上采用综合指标法做出基于地震危险性分析的地震滑坡危险性区划.所得地震滑坡危险性区划按照滑坡危险程度分为高危险、较高危险、较低危险和低危险四级,表示未来一段时间内研究区在遭受一定超越概率水平的地震动作用下,不同地区地震滑坡发生的可能程度. 本文给出的地震滑坡危险性区划结果中,汶川地震滑坡崩塌较发育的汶川、北川、茂县等部分区域均处于高危险或较高危险区域;在对具有较高DEM精度的北川擂鼓镇地区所作的地震滑坡危险性区划中,汶川地震中实际发生的地震滑坡灾害与地震滑坡危险区划结果表现出较好的一致性.对区域范围而言,基于地震危险性分析的地震滑坡区划,可为初期阶段的土地规划使用及重大工程选址提供参考.  相似文献   

20.
The topography, occurrence mechanism and lithology are the important factors of landslide movement. The lithology, seismic intensity, geological structure and topography in the travel path of 215 incomplete obstruction landslides with volumes more than 104m3 induced by Wenchuan earthquake were studied. Based on the classification of the factors established, we studied the factors influencing the movement distance of incomplete obstruction landslides. The following results are drawn. In the influence factors of topography in the travel path, the distance is largest in the straight valley topography, followed by the concave, ladder, turning valley, slope toe-type and slope-type landslides, in turn. The topography not only has remarkable influence on the distance of large-scale landslides, but also on the medium and small-scale landslides as well, which is the most important factor influencing the distance. The formation mechanism controlled by lithology, seismic intensity and geological structure has little influence on the mobility of medium-and small-scale landslides. For the large-scale landslides with volume more than 106m3, the distance of landslide with medium hard rock is larger than landslides with hard and soft rock. In the seismic intensity Ⅸ to Ⅺ areas, the landslide distance decreases with intensity increasing, contrary to the distribution of landslide-point density and landslide-area density. The geological structure has influence on the slide aspect of landslides and occurrence mechanism, but the influence is not remarkable to the landslide movement distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号