首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Magmatism in SE China was dormant during 204–180 Ma, but was reactivated in 180–170 Ma (early J2), and then became more and more intensive towards the end of early Cretaceous. The small-scale early J2 magmatism is the incipience to long-term and large-scale magmatism in this region. A near east-west (EW) trend volcanic belt was distributed across south Hunan, south Jiangxi and southwest Fujian was formed during early J2 time. Along this belt from the inland toward the coast, the lithology of basalts changes from alkali into tholeiite, and the amount of erupted volcanic rocks and the proportions of rhyolites coexisting with the basalts increase. On the basis of geochemical characteristics of these basalts, we infer that the melting degree of source rocks and the extent of fractional crystallization and crustal contamination all increased whereas the depth of mantle source decreased from the inland to the coast, which led to the variations of geological characteristics of the volcanic belt. In early J2, the western spreading Pacific plate began to subduct underneath SE China continental block, reactivating near EW trend deep fault that was originally formed during the Indosinian event. The stress of the western spreading Pacific plate and the extent of asthenosphere upwelling increased from the inland to the coast, which is consistent with the generation and evolution of early J2 basalts.  相似文献   

2.
Rubini  Soeria-Atmadja  Dardji  Noeradi 《Island Arc》2005,14(4):679-686
Abstract   The evolution of volcanism in Sumatra and Java during Tertiary and Quaternary time can be divided into three phases: (i) lava flows of the Early Tertiary event (43–33 Ma) consisting of island arc tholeiites; followed by (ii) eruption of tholeiitic pillow basalt at the beginning of the Late Tertiary (11 Ma); and succeeded by (iii) medium-K calc-alkaline magmatism in the Pliocene and Quaternary. The present available field data on the occurrence of Paleogene volcanic rocks and subsurface data in south Sumatra and northern west Java indicate a much larger area of distribution of the volcanic rocks than previously recognized. Because the eastward continuation of the northern west Java volcanic rocks had not been found, early investigators were inclined to assume that they continued to south Kalimantan. In contrast, the early Tertiary volcanic rocks that occupy the south coast of Java can be traced further east as far as Flores. The occurrence of Paleogene volcanics in south Sumatra and northern west Java can be interpreted as a Paleogene volcanic arc that was presumably related to the late Cretaceous–Paleogene trench parallel to Sumatra and west Java due to subduction of the Indian Plate toward the northeast (Meratus trend).  相似文献   

3.
Kenshiro  Otsuki 《Island Arc》1992,1(1):51-63
Abstract The Izanagi plate subducted rapidly and obliquely under the accretionary terrane of Japan in the Cretaceous before 85 Ma. A chain of microcontinents collided with it at about 140 Ma. In southwest Japan the major part of it subducted thereafter, but in northeast Japan it accreted and the trench jumped oceanward, resulting in a curved volcanic front. The oblique subduction and the underplated microcon-tinent caused uplifting of high-pressure (high-P) metamorphic rocks and large scale crustal shortening in southwest Japan. The oblique subduction caused left-lateral faulting and ductile shearing in northeast Japan. The arc sliver crossed over the high-temperature (high-T) zone of arc magmatism, resulting in a wide high-T metamorphosed belt. At about 85 Ma, the subduction mode changed from oblique to normal and the tectonic mode changed drastically. Just after this the Kula/Pacific ridge subducted and the subduction rate of the Pacific plate decreased gradually, causing the intrusion of huge amounts of granite magma and the eruption of acidic volcanics from large cauldrons. The oblique subduction of the Pacific plate resumed at 53 Ma and the left-lateral faults were reactivated.  相似文献   

4.
K–Ar ages have been determined for 14 late Miocene to Pliocene volcanic rocks in the north of the Kanto Mountains, Japan, for tracking the location of the volcanic front through the time. These samples were collected from volcanoes located behind the trench–trench–trench (TTT) triple junction of the Pacific, Philippine Sea, and North American plates. This junction is the site of subduction of slabs of the Pacific and the Philippine Sea plates, both of which are thought to have influenced magmatism in this region. The stratigraphy and K–Ar ages of volcanic rocks in the study area indicate that volcanism occurred between the late Miocene and the Pliocene, and ceased before the Pleistocene. Volcanism in adjacent areas of the southern NE Japan and northern Izu–Bonin arcs also occurred during the Pliocene and ceased at around 3 Ma with the westward migration of the volcanic front, as reported previously. Combining our new age data with the existing data shows that before 3 Ma the volcanic front around the TTT junction was located about 50 km east of the preset‐day volcanic front. We suggest that northward subduction of the Philippine Sea Plate slab ended at ~3 Ma as a result of collision between the northern margin of the plate with the surface of the Pacific Plate slab. This collision may have caused a change in the subduction vector of the Philippine Sea Plate from the original north‐directed subduction to the present‐day northwest‐directed subduction. This indicates that the post ~3 Ma westward migration of the volcanic front was a result of this change in plate motion.  相似文献   

5.
Kozo  Uto Yoshmjki  Tatsumi 《Island Arc》1996,5(3):250-261
Abstract Quaternary volcanism of the Japanese Islands is examined from the perspective of experimental petrology, geographic distribution of volcanoes and spatial geochemical variations. The dehydration of amphibole and chlorite at a 110 km depth and of phlogopite at ∼180 km in the downdragged hydrous mantle layer would result in the occurrence of two volcanic chains parallel to the trench axis. Long-term subduction of the old Pacific plate and recent subduction of the young Philippine Sea plate beneath East Japan and West Japan volcanic belts respectively, would be critical for the significant difference in intensity, style and geochemistry of Quaternary volcanism between the two volcanic belts. The geochemistry of volcanic rocks in Northeast Japan and those in the Ryukyu arc is typical of 'island-arcs' having low LIL/HFS element ratios, while alkalic basalts along the Japan Sea coast side in Southwest Japan have high LIL/HFS ratios similar to intra-continental or oceanic island basalts. Across-arc variations in eruptive volume and distributional density of volcanoes and in geochemistry are documented in Northeast Japan and are well explained by the decreasing degrees of partial melting toward back-arc side, and the difference in geochemistry of fluids supplied by the downdragged hydrous layer.  相似文献   

6.
Two volcanic zones (Bukavu and Kamituga) south of Lake Kivu (southeastern Zaire) are part of the western branch of the Eastern African rift. They were formed during three volcanic cycles, one pre-rift (70-7 Ma old) and the other two syn-rift (7.8-1.9 Ma old and 14,000 y.-sub-Recent, respectively), and evolved from quartz tholeiites of the pre-rift period to alkali basalts of the rift stage. The basaltic rocks, which strongly predominate, are compositionally similar to other rift-related basalts and also to oceanic-island rocks. Most of the basalts have undergone only limited fractional crystallization (5–10%) dominated by olivine and clinopyroxene. The distinct variations of incompatible elements even in rocks of very similar major-element composition imply that the basaltic rocks were derived from a heterogeneous source by variable degrees of melting. The inferred source composition closely resembles that of metasomatized peridotite xenoliths from alkali basalts.  相似文献   

7.
Hautere (Solander Island) and five nearby, mainly submerged volcanic centres represent the only known subduction-related volcanism on the Australian–Pacific plate boundary south of New Zealand. Two new Ar–Ar biotite ages from Hautere indicate magmatism they were active between 150 and 400ka (middle to late Quaternary). This contrasts with the previously proposed Pliocene to early Quaternary age range based on less well constrained K–Ar dating. The new radiometric ages are consistent with revised pollen ages. New trace element analyses confirm the subduction-related and adakitic nature of the igneous rocks.  相似文献   

8.
Early Yanshanian magmatic suites predominate absolutely in the Nanling granite belt. They consist mainly of monzogranite and K-feldspar granite. There occur associations of early Yanshanian A-type granitoids (176 Ma-178 Ma) and bimodal volcanic rocks (158 Ma-179 Ma) in southern Jiangxi and southwestern Fujian in the eastern sector of the granite belt and early Yanshanian basalts (177 Ma-178 Ma) in southern Hunan in the central sector of the belt. Both the acid end-member rhyolite in the bimodal volcanic rock association and A-type granitoids in southern Jiangxi have the geochemical characteristics of intraplate granitic rocks and the basic end-member basalt of the association is intraplate tholeiite, while the basaltic rocks in southern Hunan include not only intraplate tholeiite but also intraplate alkali basalt. Therefore the early Yanshanian magmatic suites in the Nanling region are undoubtedly typical post-orogenic rock associations. Post-orogenic suites mark the end of a post-collision or late orogenic event and the initiation of Pangaea break-up, indicating that a new orogenic Wilson cycle is about to start. Therefore it may be considered that the early Yanshanian geodynamic settings in the Nanling region should be related to post-orogenic continental break-up after the Indosinian orogeny and the break-up did not begin in the Cretaceous.  相似文献   

9.
Early Yanshanian magmatic suites predominate absolutely in the Nanling granite belt.They consist mainly of monzogranite and K-feldspar granite.There occur associations of early Yanshanian A-type granitoids(176 Ma-178 Ma) and bimodal volcanic rocks(158 Ma-179 Ma) in southern Jiangxi and southwestern Fujian in the eastern sector of the granite belt and early Yanshanian basalts(177 Ma-178 Ma) in southern Hunan in the central sector of the belt.Both the acid end-member rhyolite in the bimodal volcanic rock association and A-type granitoids in southern Jiangxi have the geochemical characteristics of intraplate granitic rocks and the basic end-member basalt of the association is intraplate tholeiite,while the basaltic rocks in southern Hunan include not only intraplate tholeiite but also intraplate alkali basalt.Therefore the early Yanshanian magmatic suites in the Nanling region are undoubtedly typical post-orogenic rock associations.Post-orogenic suites mark the end of a post-collision or late orogenic event and the initiation of Pangaea break-up,indicating that a new orogenic Wilson cycle is about to start.Therefore it may be considered that the early Yanshanian geodynamic settings in the Nanling region should be related to post-orogenic continental break-up after the Indosinian orogeny and the break-up did not begin in the Cretaceous.  相似文献   

10.
Olivier  Monod  Michel  Faure  Juan-Carlos  Salinas 《Island Arc》1994,3(1):25-34
Abstract The pre-Oligocene structure of southwest Mexico, south of the trans-Mexico volcanic axis, is investigated from Taxco (Guerrero state, abbreviation: Gro) to the Pacific coast. Three volcano-sedimentary units are recognized; from east to west the calc-alkaline Teloloapan, tholeiitic Arcelia and calc-alkaline Zihuatanejo suites. Structural and stratigraphic data show that the Teloloapan volcanic arc, active during ?Late Jurassic and early Cretaceous, was built upon continental basement. The Teloloapan lavas are overlain by the Albian–Cenomanian Morelos platform carbonates and followed by the Upper Cretaceous Mexcala flysch. In contrast, the Arcelia pillow lavas are associated with sandstones and cherts of Albian-?Cenomanian age. The Zihuatanejo arc was also installed upon continental basement and its magmatic activity was in part coeval with Arcelia magmatism. Unlike the almost undeformed Zihuatanejo volcanic rocks, all the other volcanic units are involved in east-vergent thrusting and recumbent folding associated with ductile tectonics, as well as the Late Cretaceous Mexcala flysch overlying the Morelos platform carbonates. Contrasting with previous views, the present results do not support a major mid-Cretaceous thrusting event in the study area. The new geodynamic interpretation proposed here considers that the Arcelia rocks were formed in a marginal basin situated east of the Zihuatanejo arc. Closure of this basin in Paleocene times is responsible for the east vergent thrust tectonics in SW Mexico.  相似文献   

11.
Greenstone bodies emplaced upon or into clastic sediments crop out ubiquitously in the Hidaka belt (early Paleogene accretionary and collisional complexes exposed in the central part of northern Hokkaido, NE Japan), but the timing and setting of their emplacement has remained poorly constrained. Here, we report new zircon U–Pb ages for the sedimentary complexes surrounding these greenstones. The Hidaka Supergroup in the northern Hidaka belt is divided into four zones from west to east: zones S, U, and R, which contain in situ greenstones; and zone Y, which does not. Detrital zircons in zones S, U, and R have early Eocene U–Pb ages (55–47 Ma) and these strata are intruded by early Eocene granites (46–45 Ma), indicating that they were deposited between 55 and 46 Ma. Therefore, in situ greenstones in the northern Hidaka belt can only be explained by the subduction of the Izanagi–Pacific Ridge during 55–47 Ma. In contrast, the deposition of zone Y (the Yubetsu Group, younging to the west) began by 73–71 Ma, indicating that the accretionary prism in front of the paleo-Kuril arc formed at the same time as that in the Idonnappu zone and grew continuously until 48 Ma. The plutonic rocks that intruded the Hidaka belt are roughly divided into three stages: (1) early Eocene granites intruded the northern Hidaka belt at 46–45 Ma, during subduction of the Izanagi–Pacific Ridge; (2) the upper sequence of the Hidaka metamorphic zone was metamorphosed by magmatism at 40–37 Ma associated with the collision of the paleo-Kuril arc and NE Asia; and (3) younger granites intruded the entire Hidaka belt at 20–17 Ma in association with asthenospheric upwelling caused by back-arc expansion.  相似文献   

12.
Independent of Indochina extrusion, the South China Sea experienced a process from passive continental rifting to marginal sea drifting. According to the fault patterns in the Beibu Gulf basin and the Pearl River Mouth basin, the continental rifting and early spreading stage from 32 to 26 Ma were controlled by extensional stress field, which shifted clockwise from southeastward to south southeastward. From 24 Ma on, the sea spread in NW-SE direction and ceased spreading at around 15.5 Ma. Integrated geological information with the assumption that the South China Sea developed along a pre-Cenozoic weakness zone, we did analogue experiments on the South China Sea evolu- tion. Experiments revealed that the pre-existing weakness zone goes roughly along the uplift zone between the present Zhu-1 and Zhu-2 depression. The pre-existing weakness zone is composed of three segments trending NNE, roughly EW and NEE, respectively. The early opening of the South China Sea is accompanied with roughly 15° clockwise rotation, while the SE sub-sea basin opened with SE extension. Tinjar fault was the western boundary of the Nansha block (Dangerous Ground), while Lupar fault was the eastern boundary of the Indochina, NW-trending rift belt known as Zengmu basin developed between above two faults due to block divergent of Indochina from Nansha. In the experiment, transtensional flower structures along NW-trending faults are seen, and slight inversion occurs along some NE-dipping faults. The existence of rigid massifs changed the orientations of some faults and rift belt, and also led to deformation concentrate around the massifs. The rifting and drifting of the South China Sea might be caused by slab pull from the proto South China Sea subducting toward Borneo and/or mantle flow caused by India-Asia collision.  相似文献   

13.
Paleocene volcanic rocks in West Greenland and Baffin Island were among the first products of the Iceland mantle plume, forming part of a larger igneous province that is now submerged beneath the northern Labrador Sea. A 40Ar/39Ar dating study shows that volcanism commenced in West Greenland between 60.9 and 61.3 Ma and that 80% of the Paleocene lava pile was erupted in 1 million years or less (weighted mean age of 60.5±0.4 Ma). Minimum estimates of magma production rates (1.3×10−4 km3 year−1 km−1) are similar to the present Iceland rift, except for the uppermost part of the Paleocene volcanic succession where the rate decreases to <0.7×10−4 km3 year−1 km−1 (rift). The timing of onset of volcanism in West Greenland coincides with the opening of the northern Labrador Sea and is also strikingly similar to the age of the oldest Tertiary volcanic rocks from offshore SE Greenland and the British–Irish province. This is interpreted as manifesting the impact and rapid (>1 m/year) lateral spreading of the Iceland plume head at the base of the Greenland lithosphere at 62 Ma. We suggest that the arrival, or at least a major increase in the flux, of the Iceland mantle plume beneath Greenland was a contributing factor in the initiation of seafloor spreading in the northern Labrador Sea. Our study has also revealed a previously unrecognised Early Eocene volcanic episode in West Greenland. This magmatism may be related to movement on the transform Ungava Fault System which transferred drifting from the Labrador Sea to Baffin Bay. A regional change in plate kinematics at 55 Ma, associated with the opening of the North Atlantic, would have caused net extension along parts of this fault. This would have resulted in decompression and partial melting of the underlying asthenosphere. The source of the melts for the Eocene magmatism may have been remnants of still anomalously hot Iceland plume mantle which were left stranded beneath the West Greenland lithosphere in the Early Paleocene.  相似文献   

14.
The study of the geochemical compositions and K-Ar or Ar-Ar ages of ca. 350 Neogene and Quaternary lavas from Baja California, the Gulf of California and Sonora allows us to discuss the nature of their mantle or crustal sources, the conditions of their melting and the tectonic regime prevailing during their genesis and emplacement. Nine petrographic/geochemical groups are distinguished: ??regular?? calc-alkaline lavas; adakites; magnesian andesites and related basalts and basaltic andesites; niobium-enriched basalts; alkali basalts and trachybasalts; oceanic (MORB-type) basalts; tholeiitic/transitional basalts and basaltic andesites; peralkaline rhyolites (comendites); and icelandites. We show that the spatial and temporal distribution of these lava types provides constraints on their sources and the geodynamic setting controlling their partial melting. Three successive stages are distinguished. Between 23 and 13 Ma, calc-alkaline lavas linked to the subduction of the Pacific-Farallon plate formed the Comondú and central coast of the Sonora volcanic arc. In the extensional domain of western Sonora, lithospheric mantle-derived tholeiitic to transitional basalts and basaltic andesites were emplaced within the southern extension of the Basin and Range province. The end of the Farallon subduction was marked by the emplacement of much more complex Middle to Late Miocene volcanic associations, between 13 and 7 Ma. Calc-alkaline activity became sporadic and was replaced by unusual post-subduction magma types including adakites, niobium-enriched basalts, magnesian andesites, comendites and icelandites. The spatial and temporal distribution of these lavas is consistent with the development of a slab tear, evolving into a 200-km-wide slab window sub-parallel to the trench, and extending from the Pacific coast of Baja California to coastal Sonora. Tholeiitic, transitional and alkali basalts of subslab origin ascended through this window, and adakites derived from the partial melting of its upper lip, relatively close to the trench. Calc-alkaline lavas, magnesian andesites and niobium-enriched basalts formed from hydrous melting of the supraslab mantle triggered by the uprise of hot Pacific asthenosphere through the window. During the Plio-Quaternary, the ??no-slab?? regime following the sinking of the old part of the Farallon plate within the deep mantle allowed the emplacement of alkali and tholeiitic/transitional basalts of deep asthenospheric origin in Baja California and Sonora. The lithospheric rupture connected with the opening of the Gulf of California generated a high thermal regime associated to asthenospheric uprise and emplaced Quaternary depleted MORB-type tholeiites. This thermal regime also induced partial melting of the thinned lithospheric mantle of the Gulf area, generating calc-alkaline lavas as well as adakites derived from slivers of oceanic crust incorporated within this mantle.  相似文献   

15.

Timing of the intermediate-basic igneous rocks developed in the area of Kuhai-A’nyêmaqên along the southern east Kunlun tectonic belt is a controversial issue. This paper presents new zircon SHRIMP U-Pb dating data for igneous zircons from the Kuhai gabbro and the Dur’ngoi diorite in the Kuhai-A’nyemaqen tectonic belt, which are 555±9 Ma and 493±6 Ma, respectively. The trace element geochemical features of the Kuhai gabbro and the Dur’ngoi diorite are similar to those of ocean island basalts (OIB) and island arc basalts (IAB), respectively. Thus, the Kuhai gabbro with the age of 555±9 Ma and OIB geochemical features is similar to the Yushigou oceanic ophiolite in the North Qilian orogen, whereas the Dur’ngoi diorite with the age of 493±6 Ma and IAB geochemical features is similar to the island arc volcanic rocks developed in the north Qaidam. The Late Neoproterozoic to Early Ordovician ophiolite complex in the area of Kuhai-A’nyêmaqên suggests that the southern margin of the “Qilian-Qaidam-Kunlun” archipelagic ocean in this period was located in the southern east Kunlun tectonic belt. Therefore, the southern east Kunlun tectonic belt in the early Paleozoic is not comparable to the Mianlüe tectonic belt in the Qinling orogenic belt.

  相似文献   

16.
Abundances of major and trace elements were determined for the Tertiary volcanic rocks from SW Hokkaido. The Late Miocene to Pliocene volcanic rocks of this region show geochemical features similar to those of the Quaternary rocks, that is, K/Si, Th/Si and LREE/HREE ratios increasing across the arc, east to west, from the Pacific to the Japan Sea side. In contrast, the Early Miocene volcanic rocks, which are geographically restricted to the Japan Sea coast, are distinct from all later volcanics and show “within-plate” characteristics — in particular, high concentrations of HFS elements. The Quaternary basalts have low Hf/Yb ratios and Hf contents, whereas the Early Miocene basalts are high in Hf/Yb and Hf, similar to Hawaiian alkali basalts. The compositional variation with time may result from the progressive depletion of incompatible HFS elements in the mantle source. Th/Yb ratios increase from Early Miocene to Quaternary, possibly reflecting increase in the LIL element contribution to the mantle source during that time.  相似文献   

17.
The 1875-1840-Ma Great Bear magmatic zone is a 100-km wide by at least 900-km-long belt of predominantly subgreenschist facies volcanic and plutonic rocks that unconformably overlie and intrude an older sialic basement complex. The basement complex comprises older arc and back-arc rocks metamorphosed and deformed during the Calderian orogeny, 5–15 Ma before the onset of Great Bear magmatism. The Great Bear magmatic zone contains the products of two magmatic episodes, separated temporally by an oblique folding event caused by dextral transpression of the zone: (1) a 1875-1860-Ma pre-folding suite of mainly calc-alkaline rocks ranging continuously in composition from basalt to rhyolite, cut by allied biotite-hornblende-bearing epizonal plutons; and (2) a 1.85-1.84-Ga post-folding suite of discordant, epizonal, biotite syenogranitic plutons, associated dikes, and hornblende-diorites, quartz diorites, and monzodiorites. The pre-folding suite of volcanic and plutonic rocks is interpreted as a continental magmatic arc generated by eastward subduction of oceanic lithosphere. Cessation of arc magmatism and subsequent dextral transpression may have resulted from ridge subduction and resultant change in relative plate motion. Increased heat flux due to ridge subduction coupled with crustal thickening during transpression may have caused crustal melting as evidenced by the late syenogranite suite. Final closure of the western ocean by collision with a substantial continental fragment, now forming the neoautochthonous basement of the northern Canadian Cordillera, is manifested by a major swarm of transcurrent faults found throughout the Great Bear zone and the Wopmay orogen.Although there is probably no single evolutionary template for magmatism at convergent plate margins, the main Andean phase of magmatism, exemplified by the pre-folding Great Bear magmatic suite, evolves as larger quantities of subduction-related mafic magma rise into and heat the crust. This results in magmas that are more homogeneous, siliceous, and explosive with time, ultimately leading to overturn and fractionation of the continental crust.  相似文献   

18.
Fifty-two new K-Ar dates for Upper Cenozoic volcanic rocks from north Chile and southwest Bolivia are presented, together with a compilation of previously available dates from this region. These dates are combined with calculations of volumes of lava and ignimbrite for a segment of the volcanic province (19°30′S to 22°30′S) to identify fluctuations in the level of volcanic activity during the last 24 Ma. Histograms of volumes against time have been plotted for each half-degree quadrant. In the southern half of the study area, there were peaks of activity in the periods 12 to 9 Ma and 6 to 3 Ma. In the northern half, a large proportion of the material was erupted in the period 6 to 0 Ma. This regional variation suggests that localized factors may govern the rate of volcanic output and complicates attempts at correlation with “pulses” of volcanic activity recognized elsewhere in the Pacific region. There is no conclusive evidence for volcanic episodes synchronous over such wide areas. A simple correlation between changes in spreading behaviour and changes in levels of volcanic activity is unlikely, in view of the complexity of the interactions at destructive plate margins. The rate of continental crust accretion from volcanic processes must be much less than that due to intrusive processes to account for the thickening of the Andean crust since the Jurassic.  相似文献   

19.
The Chile Triple Junction is a natural laboratory to study the interactions between magmatism and tectonics during the subduction of an active spreading ridge beneath a continent. The MLBA plateau (Meseta del Lago Buenos Aires) is one of the Neogene alkali basaltic plateaus located in the back-arc region of the Andean Cordillera at the latitude of the current Chile Triple Junction. The genesis of MLBA can be related with successive opening of slabs windows beneath Patagonia: within the subducting Nazca Plate itself and between the Nazca and Antarctic plates. Detailed 40Ar/39Ar dating and geochemical analysis of bimodal magmatism from the western flank of the MLBA show major changes in the back-arc magmatism which occurred between 14.5 Ma and 12.5 Ma with the transition from calc-alkaline lavas (Cerro Plomo) to alkaline lavas (MLBA) in relation with slab window opening. In a second step, at 4–3 Ma, alkaline felsic intrusions were emplaced in the western flank of the MLBA coevally with the MLBA basalts with which they are genetically related. These late OIB-like alkaline to transitional basalts were generated by partial melting of the subslab asthenosphere of the subducting Nazca plate during the opening of the South Chile spreading ridge-related slab window. These basalts differentiated with small amounts of assimilation in shallow magma chambers emplaced along transtensional to extensional zones. The close association of bimodal magmatism with extensional tectonic features in the western MLBA is a strong support to the model of Patagonian collapse event proposed to have taken place between 5 and 3 Ma as a consequence of the presence of the asthenospheric window (SCR-1 segment of South Chile Ridge) below the MLBA area.  相似文献   

20.
The existence and subduction of the eastern Mianlue oceanic basin in the south Qinling belt are keys to understand the Qinling orogen. Based on geological mapping, several volcanic slices have been identified in Tumen, Zhoujiawan, Xiaofu and Yuantan areas, which distribute in the northern margin of the Dahong Mountains (DHM), and thrust into the Sanligang-Sanyang fault. These slices consist mainly of diabases, basaltic-andesitic lavas, pyroclastic rocks and a minor tuff. The geochemistry of the basalts, andesites, and diabases is characterized by depleting in Nb and Ta, enriching in Th and LILE (e.g.K, Rb, Ba), and undifferentiating in HFSE. These geochemical characteristics suggest that the original magma of these rocks was derived from a mantle wedge above a subduction zone, and formed in an island-arc setting in Carboniferous-early Triassic. Comparing with the ophiolites and island-arc volcanic rocks in Mianxian-Lueyang area to the west, it is reasonable to consider that there had been an oceanic basin connecting with the Mianlue ancient ocean to the westward, distributing along the south edge of the Tongbai-Dabie block. In view of the ophiolite in Huashan area and these island-arc volcanic rocks along the north of the Dahong Mountains, it is suggested that there had been a plate tectonic evolutionary history with oceanic basin rifting and subduction in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号