首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper presents a masonry panel model for the nonlinear static and dynamic analysis of masonry buildings suitable for the seismic assessment of new and existing structures. The model is based on an equivalent frame idealization of the structure and stems from previous research on force‐based frame elements. The element formulation considers axial, bending, and shear deformations within the framework of the Timoshenko beam theory. A phenomenological cyclic section law that accounts for the shear panel response is coupled, through equilibrium between shear and bending forces along the element, with a fiber‐section model that accounts for the axial and bending responses. The proposed panel model traces with a low computational burden and numerical stability the main aspects of the structural behavior of masonry panels and is suitable for analyses of multi‐floor buildings with a relatively regular distribution of openings and with walls and floors organized to grant a box‐like behavior under seismic loads. The model capabilities are validated though analyses of simple unreinforced masonry panels and comparisons with published experimental results. The model accuracy is strongly dependent on the fiber and shear constitutive laws used. However, the formulation is general, and laws different from those employed in this study are easily introduced without affecting the model formulation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The response of calcium silicate unreinforced masonry construction to horizontal cyclic loading has recently become the focus of experimental and numerical research, given its extensive use in some areas of the world that are now exposed to induced earthquakes (eg, north of the Netherlands). To assess the seismic behaviour of such construction, a relatively wide range of modelling methodologies are available, amongst which the discrete elements approach, which takes into account the intrinsic heterogeneity of a brick‐mortar assembly, can probably be deemed as the most appropriate computational procedure. On the other hand, however, since discrete elements numerical methods are based on a discontinuum domain, often they are not able to model every stage of the structural response adequately, and because of the high computational burden required, the analysis scale should be chosen carefully. The applied element method is a relatively recent addition to the discrete elements family, with a high potential for overcoming the aforementioned limitations or difficulties. Initially conceived to model blast events and concrete structures, its use in the earthquake engineering field is, of late, increasing noticeably. In this paper, the use of the applied element method to model the in‐plane cyclic response of calcium silicate masonry walls is discussed and scrutinised, also through the comparison with experimental results of in‐plane cyclic shear‐compression tests on unreinforced masonry walls.  相似文献   

3.
This paper proposes a new analytical model for masonry‐infilled R/C frames to evaluate the seismic performance considering R/C frame–infill interactions. The proposed analytical model replaces masonry infill with a diagonal compression strut, which represents distributed compression transferred between frame and infill interfaces. The equivalent strut width is presented as a function of the frame–infill contact length, which can be evaluated by static equilibriums related to compression balance and lateral displacement compatibility at the frame–infill interfaces. The proposed analytical model was verified through comparisons with experimental results obtained for several brick masonry‐infilled R/C frames representing a typical R/C building with nonstructural masonry infill in Indonesia. As a result, good agreements were observed between the experimental and analytical values of the lateral strength and ductility of the infilled frames. The seismic performances of two earthquake‐damaged R/C buildings with different damage conditions were evaluated considering infill effects by applying the proposed analytical model. Consequently, the nonstructural brick masonry infill significantly affected the seismic resistances of the buildings, which seemed to lead to differing levels of damage for each building. These results indicate that the proposed analytical model can be an effective tool for more precisely screening earthquake‐vulnerable existing R/C buildings in Indonesia. Copyright © 2016 The Authors. Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd.  相似文献   

4.
The macroelement technique for modelling the nonlinear response of masonry panels is particularly efficient and suitable for the analysis of the seismic behaviour of complex walls and buildings. The paper presents a macroelement model specifically developed for simulating the cyclic in‐plane response of masonry walls, with possible applications in nonlinear static and dynamic analysis of masonry structures. The model, starting from a previously developed macroelement model, has been refined in the representation of flexural–rocking and shear damage modes, and it is capable of fairly simulating the experimental response of cyclic tests performed on masonry piers. By means of two internal degrees of freedom, the two‐node macroelement permits to represent the coupling of axial and flexural response as well as the interaction of shear and flexural damage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This paper investigates the accuracy of pushover-based methods in predicting the seismic response of slender masonry towers, through comparison with the results from a large number of nonlinear time-history dynamic analyses. In particular, conventional pushover analyses, in both their force- and displacement-based variants, are considered, and seismic assessment through the well-established N2 method is also addressed. The study is conducted by applying a simple non-linear elastic model recently developed and implemented in the computational code MADY to represent slender masonry structures. The model enables both pushover analyses and non-linear dynamic analyses to be performed with a minimum of effort. A multi-record incremental dynamic analysis carried out for a quite large number of structural cases, each of which is subjected to a comprehensive set of dynamic nonlinear analyses, is used to evaluate the accuracy of pushover methods in predicting the global structural response, as represented by the usual capacity curve together with a damage curve, both of which are compared with dynamic envelopes. Local responses, in terms of lateral displacements and the distribution of damage along the tower height are also compared. The results reveal that the key issue in the accuracy of pushover methods is the nature of the lateral load applied, that is, whether it is a force or a displacement. Different ranges of expected deformation are suggested for adopting each type of lateral load to better represent the actual behaviour of masonry towers and their damage under seismic events through pushover methods.  相似文献   

6.
The conservation and rehabilitation of monuments is a matter of important investigation, and the need for accurate structural analysis, capable of effectively predicting the structural behaviour of this type of constructions, under static and dynamic loads, is increasing. Currently there are numerous computational methods and tools, supported by different theories and strategies with different levels of complexity, computation time and cost which are available to perform such analyses. A complex analysis is not always synonym of a better result and the choice of a method over another depends mostly on the purpose of the analysis. This work aims at evaluating the capacity of a non linear continuum damage model (Faria et al. in Int J Solids Struct 35(14):1533–1558, 1998), originally developed for concrete structures, to simulate the behaviour of stone masonry structures. In particular, the seismic response of an old stone masonry construction, the Gondar church, is analysed considering different levels of geometrical and material complexity. The verification and calibration procedures use the experimental results from tests performed on stone masonry walls at the Laboratory for Earthquake and Structural Engineering of the Faculty of Engineering of Porto University and from other tests found in the bibliography (Vasconcelos in Experimental investigations on the mechanics of stone masonry: Characterization of granites and behaviour of ancient masonry shear walls. PhD Thesis, Universidade do Minho, Guimar?es, Portugal, 2005). The results are compared, assessing the differences and the importance of using complex tools, such as the continuum damage model, to better simulate and understand the global behaviour of such constructions.  相似文献   

7.
对4榀相同特性的砖墙进行不同程度的酸雨腐蚀试验及低周反复荷载试验,得出其在不同腐蚀循环次数下的滞回曲线。基于陆新征-曲哲恢复力模型对砖墙试件进行模拟分析,并与试验结果进行对比,验证得出三弹簧单元模型能够较准确预测砌体构件的滞回性能。利用三弹簧单元模型对不同腐蚀次数下砌体结构进行IDA分析,得出不同腐蚀次数下砌体结构的易损性曲线,通过对"小震"、"中震"、"大震"下结构失效概率的分析得出,酸雨腐蚀能够严重影响结构的力学性能,使得结构的抗震性能显著下降。  相似文献   

8.
A seismic assessment of two multi-tier pagodas by numerical analysis is presented herein.The Changu Narayan temple and the Kumbeshwar temple in Nepal are used as the case studies.Both pagodas are built of brick masonry in earthen mortar,with timber columns and crossbeams.The Changu Narayan temple is a two-tier pagoda,and was seriously damaged during the 2015 Gorkha earthquake.The Kumbeshwar temple is a five-tier pagoda,and its top-tier collapsed due to the Gorkha earthquake.A seismic assessment was carried out using finite element(FE)analysis.The FE models were prepared,and dynamic identification tests and penetrometer tests were conducted.Pushover analysis and nonlinear dynamic analysis were performed as part of the seismic assessment.The main shock of the 2015 Gorkha earthquake was considered as the input accelerograms.The behavior between the two pagodas was compared with the collapse mechanisms and damage patterns observed in the actual structures.The comparison suggested common structural features of multi-tier pagodas.This study is dedicated to providing a better understanding of the seismic behavior of multi-tier pagoda-type structures and provides suggestions for their effective analysis.  相似文献   

9.
为探讨村镇建筑低层砌体结构在大震下的动力响应及损伤分布情况,基于农居结构性能实地调查与检测,在有限元软件ABAQUS中建立了不同抗震构造措施的砌体结构有限元模型,并进行结构动力特性及大震下弹塑性时程的分析,对比它们的自振特性参数、位移响应参数及损伤破坏形态。分析表明,低层砌体结构合理设置构造柱后结构自振周期略有减小,但振型不变;在弹性变形阶段构造柱能有效约束结构的动力位移响应,进入塑性变形后构造柱可提高砌体结构的耗能能力,但值得注意的是,结构刚度退化后构造柱会加剧纵横向抗侧刚度的不均衡性;低层砌体结构合理设置圈梁构造柱可有效抑制承重横墙的裂缝发展及楼屋盖发生支座失效破坏,且可以明显削弱结构的扭转效应。  相似文献   

10.
采用脉动测试法测试带纵向加强肋复合墙结构示范工程房屋的动力特性,从而确定结构的自振频率;建立结构有限元数值模型,对该结构进行弹性及弹塑性时程分析,研究结构的动力反应,进而评估低层带纵向加强肋复合墙结构的抗震能力。动力反应分析结果表明:结构的破坏按先砌块后框格的顺序分阶段进行,带纵向加强肋复合墙结构具有两道抗震防线。结构变形以剪切变形为主,罕遇地震作用下结构损伤主要集中在门窗联肢墙体上,且门窗联肢墙体中窗洞两侧砌块的损伤程度最大,洞顶肋格砌块次之,洞底肋格砌块最小。最大层间位移角为1/773,结构表现出较强的抗倒塌能力。  相似文献   

11.
砌体结构的震害现象表明楼层侧向刚度不均匀分布是造成其破坏的重要原因之一。本文开展楼层侧向刚度变化对结构易损性的影响分析。以3层和6层砌体结构为例,采用等效多自由度层间剪切模型,基于非线性动力时程分析,定量研究了竖向刚度不规则性对砌体结构易损性的影响。以结构最大层间位移角为地震反应参数,借助增量动力分析及回归拟合方法,建立了基于峰值加速度的结构易损性曲线。通过改变楼层的侧向刚度值来模拟薄弱层,研究了楼层刚度变化对结构不同破坏状态超越概率的影响。通过改变底层与二层的侧向刚度比,分析了底部刚度突变对结构不同破坏状态超越概率分布的影响。研究表明:与规则结构相比,当刚度突变位于结构底层时,在地震作用下结构易损性相对较高;随着底层与二层的侧向刚度比从0.5增大至1.2,结构易损性逐渐降低。当刚度比为1.5时,结构薄弱层由底层转移至二层,结构整体易损性增加;当底层与二层侧向刚度比小于1时,结构倒塌易损性要显著高于规则结构。  相似文献   

12.
Masonry buildings worldwide exhibited severe damage and collapse in recent strong earthquake events. It is known that their brittle behavior, which is mainly due to the combination of low tensile strength, large mass and insufficient connection between structural elements, is the main limitation for their structural implementation in residential buildings. A new construction system for masonry buildings using concrete blocks units and trussed reinforcement is presented here and its seismic behavior is validated through shaking table tests. Dynamic tests of two geometrically identical two-story reduced scale (1:2) models have been carried out, considering artificial accelerograms compatible with the elastic response spectrum defined by the Eurocode 8. The first model was reinforced with the new proposed system while the second model was built with unreinforced masonry. The experimental analysis encompasses local and global parameters such as cracking patterns, failure mechanisms, and in-plane and out-of-plane behavior in terms of displacements and lateral drifts from where the global dynamic behavior of the two buildings is analyzed comparatively. Finally, behavior factors for the design recommendations in case of unreinforced masonry are also evaluated.  相似文献   

13.
Seismic assessment of existing unreinforced masonry buildings represents a current challenge in structural engineering. Many historical masonry buildings in earthquake regions were not designed to withstand seismic loading; thus, these structures often do not meet the basic safety requirements recommended by current seismic codes and need to be strengthened considering the results from realistic structural analysis. This paper presents an efficient modelling strategy for representing the nonlinear response of unreinforced masonry components under in‐plane cyclic loading, which can be used for practical and accurate seismic assessment of masonry buildings. According to the proposed strategy, generic masonry perforated walls are modelled using an equivalent frame approach, where each masonry component is described utilising multi‐spring nonlinear elements connected by rigid links. When modelling piers and spandrels, nonlinear springs are placed at the two ends of the masonry element for describing the flexural behaviour and in the middle for representing the response in shear. Specific hysteretic rules allowing for degradation of stiffness and strength are then used for modelling the member response under cyclic loading. The accuracy and the significant potential of the proposed modelling approach are shown in several numerical examples, including comparisons against experimental results and the nonlinear dynamic analysis of a building structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A simple constitutive model is proposed for an in‐plane numerical analysis of unreinforced masonry structures, which are subject to cyclic loading, by using explicit dynamic procedures. The proposed model is implemented by using two‐dimensional plane‐stress finite elements. Three different constitutive relations that are based on the total strain in the global material system are used. Cracking and crushing are controlled through normal strains, whereas shear is controlled through shear strain. Separate hysteretic rules are adopted for each mode of damage. A numerical analysis of masonry walls that are subject to cyclic loading has demonstrated that the use of explicit procedures in conjunction with the proposed model results in an acceptable accuracy when compared with the experimental results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
基于BP神经网络模型的多层砖房震害预测方法   总被引:8,自引:2,他引:8  
针对传统的基于地震烈度的建筑物震害预测方法的不足,本文以地震动峰值加速度作为建筑物震害预测的地震动指标,结合几次大地震中多层砖房的震害实例,提出了一种基于BP神经网络模型的建筑物震害预测方法,模型的输入为反映结构抗震性能的各类物理参数,输出为给定地震动峰值加速度下建筑物破坏状态的概率。研究表明:基于BP网络模型的多层砖房的震害预测结果与震害实例的实际情况比较吻合,本文的思路和方法可推广于其他不同类型的建筑结构的震害预测。  相似文献   

16.
详细的建筑结构特征参数是得到合理地震易损性分析结果的基础.本文给出了一种结合已有地震易损性分析成果,在具备有限特征参数的情况下,利用BP神经网络进行单体或群体结构震害等级推演的方法.以陕西省渭南市607栋设防砌体易损性评估结果为样本构建了一个3层BP神经网络模型,并对北京市海淀区近2万栋设防砌体不同地震烈度下的可能破坏...  相似文献   

17.
The recent large interest in nonlinear seismic analysis methods, static and dynamic, has required proper strategies of modeling based on reliable, and at the same time easy to use, constitutive laws for the structural elements. Regarding the behavior of framed structures, special attention has to be devoted to infills because of the key role they play in modifying overall stiffness, strength and ductility under seismic excitation. Pointing out the attention on this topic the paper discusses a criteria for modeling the structural behavior of infills based on a macromodeling approach, that is to say on the substitution of infills with diagonal pin jointed struts. Is here shown how multilinear plastic link elements governed by a hysteretic Pivot model, available in different FEM codes, can be appropriately used to model the equivalent struts to perform linear or nonlinear analyses. In order to enlarge experimental knowledge on cyclic behavior of infilled frames structures and as reference for developing the above mentioned modeling strategy, an experimental campaign on single-storey, single-bay, fully infilled frames with different kinds of masonry and subjected to lateral cyclical loads, was carried out, and some others available in the literature are referred to. Validation of Pivot modeling approach was carried out comparing experimental results and computer simulations of the experimental tests. In the paper hysteresis parameters values calibrating Pivot law are also given for involved masonry infills typologies and some proposals for correlation between strength and stiffness of infilled frames and of masonry infills are provided as a tool for the quick calibration of the Pivot model in practical applications.  相似文献   

18.
雷江 《地震工程学报》2018,40(3):432-437
传统低层建筑砌体结构动力特性分析中,易受到外界环境的干扰,砌体结构的完整性欠缺,导致动力特性分析的准确度较低。为提高低层建筑砌体结构的抗震性能,提出地震作用下低层建筑砌体结构的动力特性分析方法。首先利用低层建筑砌体结构反应自功率谱,完成砌体结构的自振频率辨认;然后通过941B型超低频率测振仪测试自振频率,筛出振动波形中噪声干扰的区域,获取时域波形和频域波形;最后依据时域波形和频域波形塑造低层建筑砌体三维精细化模型,在该模型基础上,通过子空间迭代算法获取低层建筑砌体结构的模拟结果,分析地震作用下芯柱、圈梁等构造措施对建筑砌体结构动力特征的影响,完成砌体结构的动力特性分析。实验结果表明,利用所提方法对地震作用下低层建筑砌体结构的动力特性进行分析,得到的分析结果准确度较高。  相似文献   

19.
To improve the seismic performance of masonry structures, confined masonry that improves the seismic resistance of masonry structures by the confining effect of surrounding bond beams and tie columns is constructed. This study investigated the earthquake resisting behaviour of confined masonry structures that are being studied and constructed in China. The structural system consists of unreinforced block masonry walls with surrounding reinforced concrete bond beams and tie columns. The characteristics of the structure include: (1) damage to blocks is reduced and brittle failure is avoided by the comparatively lower strength of the joint mortar than that of the blocks, (2) the masonry walls and surrounding reinforced concrete bond beams and tie columns are securely jointed by the shear keys of the tie columns. In this study, wall specimens made of concrete blocks were tested under a cyclic lateral load and simulated by a rigid body spring model that models non‐linear behaviour by rigid bodies and boundary springs. The results of studies outline the resisting mechanism, indicating that a rigid body spring model is considered appropriate for analysing this type of structure. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
The seismic behavior of tall concrete face rockfill dams in narrow canyons is investigated, based on numerical simulation of the staged construction, creep settlements, reservoir impoundment and seismic shaking of the dam. The study takes into account the flexibility of the canyon rock, the hydrodynamic effects and potential dynamic rockfill settlements. The static analysis uses a hyperbolic model for the rockfill, whereas the dynamic analysis uses a nonlinear hysteretic model, which accounts for the initial dynamic stiffness and produces hysteresis loops in agreement with the experimental data regarding the shear modulus and damping ratio. A damage plasticity model is used for the reinforced concrete, whereas frictional contact behavior is considered at the base and vertical walls of the concrete slab panels. An existing 150-m-high dam is used to investigate some key issues on the seismic behavior of such dams subjected to upstream−downstream and vertical excitation. Emphasis is placed on the evaluation of the tensile stresses within the slab panels, the compressive stresses at the slab-to-slab vertical interfaces and the opening of the joints. Moreover, the effect of potential dynamic settlements on both the slab stresses and joint openings is investigated. Recommendations for increasing the dam safety and reducing the water leakage through the dam body are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号