首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1INTRODUCTIONNon-equilibriumsedimenttransportina"at'Uralstreamwithnon-uniformbedmaterialisasubjectofilltensiveresearch.ThesedimentconcentrationmaybenotequaltothetransportcapacityofflowinanalluvialrivedItgraduallyapproachesequilibriumbydegradationoraggradationinalongdistance.usuallyover100kilometers.Thisproblemisofgreatimportancetothepredictionofthedistributionoferosionordepositionalongachannel,especiallyforlargeriversinChina.Scientistsstudiednonequilibriumsedimenttransportandthemainresul…  相似文献   

2.
1 INTRODUCTION Flow and sediment transport in natural rivers are generally unsteady, and exhibit temporal and spatial lags. Traditionally, in most hydraulic engineering problems the unsteady flow and sediment transport are approximately treated as steady …  相似文献   

3.
A MATHEMATICAL MODEL FOR RESERVOIR SEDIMENTATION AND FLUVIAL PROCESSES   总被引:3,自引:1,他引:3  
I. INTRODUCTIONAt present moot sediment transport models applied in engineering practice are based on equilibriumsediment transport approach, i. e. sediment--carrying Capacity is used to replace the actual sediment concentration (ref. 1 -- 9). However, the sediment--carrying capacity, in general, is not equal to sedimentconcentration, they may differ a lot especially for the case of reservoir sedimentation process and/orthe scouring process of river channel in the downstream of a reservoi…  相似文献   

4.
《国际泥沙研究》2016,(4):376-385
Twenty runs of experiments are carried out to investigate non-equilibrium transport of graded and uniform bed load sediment in a degrading channel. Well-sorted gravel and sand are employed to compose four kinds of sediment beds with different gravel/sand contents, i.e., uniform 100%gravel bed, uniform 100% sand bed, and two graded sediment beds respectively with 53% gravel and 47% sand as well as 22%gravel and 78%sand. For different sediment beds, the experiments are conducted under the same discharges, thereby allowing for the role of sediment composition in dictating the bed load transport rate to be identified. A new observed dataset is generated concerning the flow, sediment transport and evolution of bed elevation and composition, which can be exploited to underpin devel-opments of mathematical river models. The data shows that in a degrading channel, the sand greatly promotes the transport of gravel, whilst the gravel considerably hinders the transport of sand. The promoting and hindering effects are evaluated by means of impact factors defined based on sediment transport rates. The impact factors are shown to vary with flow discharge by orders of magnitude, being most pronounced at the lowest discharge. It is characterized that variations in sand or gravel inputs as a result of human activities and climate change may lead to severe morphological changes in degrading channels.  相似文献   

5.
1 INTRODUCTION The transport of sediment in rivers with active floodplains is a two-dimensional process because the main channel and the floodplain can have very different transport capacities. Therefore, two-dimensional (2D) models are often used to simulate the streamwise and transverse variations of sediment erosion and deposition. Many 2D numerical models have been presented to simulate sediment transport in floodplains (James, 1985; Pizzuto, 1987; Howard, 1992; Nicholas and Walli…  相似文献   

6.
冯雪  夏军强  周美蓉  邓珊珊 《湖泊科学》2021,33(6):1898-1905
三峡工程运用后,坝下游荆江段来沙量大幅度减小,处于严重的不平衡输沙状态,次饱和水流冲刷河床使悬沙量沿程恢复.基于实测水沙资料,分析了三峡工程运用后荆江段非均匀悬沙恢复特点.提出了恢复效率的概念用以表征悬移质沿程恢复的程度,并根据实测水沙资料计算了荆江段1994-2017年非均匀悬沙的恢复效率.结果表明:三峡工程运用前,荆江段各粒径组悬沙恢复效率绝对值均接近0,故该时期内各粒径组泥沙冲淤幅度不大;三峡工程运用后,各粒径组悬沙恢复效率绝对值均明显增大,且粗沙(d>0.125 mm)恢复效率绝对值远大于细沙(d<0.125 mm),故粗沙恢复程度更高.这主要是由于荆江段床沙组成中粗沙部分含量大,而细沙含量小.最后建立了三峡水库蓄水后非均匀悬沙恢复效率与来水来沙条件(来沙系数)的关系,结果表明:各粒径组悬移质恢复效率均与来沙系数呈正相关关系,全沙、细沙和中沙的决定系数(R2)分别为0.89、0.67和0.69,相关性较高,故荆江段各粒径组悬移质泥沙恢复效率较大程度上受到来水来沙条件的影响.  相似文献   

7.
An updated linear computer model for meandering rivers with incision has been developed. The model simulates the bed topography, flow field, and bank erosion rate in an incised meandering channel. In a scenario where the upstream sediment load decreases (e.g., after dam closure or soil conservation), alluvial river experiences cross section deepening and slope flattening. The channel migration rate might be affected in two ways: decreased channel slope and steeped bank height. The proposed numerical model combines the traditional one-dimensional (1D) sediment transport model in simulating the channel erosion and the linear model for channel meandering. A non-equilibrium sediment transport model is used to update the channel bed elevation and gradations. A linear meandering model was used to calculate the channel alignment and bank erosion/accretion, which in turn was used by the 1D sediment transport model. In the 1D sediment transport model, the channel bed elevation and gradations are represented in each channel cross section. In the meandering model, the bed elevation and gradations are stored in two dimensional (2D) cells to represent the channel and terrain properties (elevation and gradation). A new method is proposed to exchange information regarding bed elevations and bed material fractions between 1D river geometry and 2D channel and terrain. The ability of the model is demonstrated using the simulation of the laboratory channel migration of Friedkin in which channel incision occurs at the upstream end.  相似文献   

8.
Streams and rivers, particularly smaller ones, often do not maintain steady flow rates for long enough to reach equilibrium conditions for sediment transport and bed topography. In particular, streams in small watersheds may be subject to rapidly changing hydrographs, and relict bedforms from previous high flows can cause further disequilibrium that complicates the prediction of sediment transport rates. In order to advance the understanding of how bedforms respond to rapid changes in flow rate,...  相似文献   

9.
The question: ‘how does a streambed change over a minor flood?’ does not have a clear answer due to lack of measurement methods during high flows. We investigate bedload transport and disentrainment during a 1.5‐year flood by linking field measurements using fiber optic distributed temperature sensing (DTS) cable with sediment transport theory and an existing explicit analytical solution to predict depth of sediment deposition from amplitude and phase changes of the diurnal near‐bed pore‐water temperature. The method facilitates the study of gravel transport by using near‐bed temperature time series to estimate rates of sediment deposition continuously over the duration of a high flow event coinciding with bar formation. The observations indicate that all gravel and cobble particles present were transported along the riffle at a relatively low Shields Number for the median particle size, and were re‐deposited on the lee side of the bar at rates that varied over time during a constant flow. Approximately 1–6% of the bed was predicted to be mobile during the 1.5‐year flood, indicating that large inactive regions of the bed, particularly between riffles, persist between years despite field observations of narrow zones of local transport and bar growth on the order ~3–5 times the median particle size. In contrast, during a seven‐year flood approximately 8–55% of the bed was predicted to become mobile, indicating that the continuous along‐stream mobility required to mobilize coarse gravel through long pools and downstream to the next riffle is infrequent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
三峡工程运用后,长江中游荆江河段持续冲刷,床沙与推移质、悬移质泥沙不断交换,从而造成该河段床沙发生不同程度的调整,对长江中下游河床演变及非平衡输沙机理的研究具有重要影响.在新水沙条件下,总结分析了沙波运动特性及床沙交换方式,引入Markov三态转移概率及非均匀沙隐暴系数,得到基于状态转移概率的沙质河段床沙级配调整的计算模型.研究结果表明:(1)20092014年,沙市站年内床沙中值粒径有先增大后减小的趋势,而监利站年内床沙中值粒径则先减小后增大,且荆江河段年际床沙中值粒径总体呈上升趋势,粗化程度约为6.9%~9.3%;(2)20092014年,沙市站床沙组成中粒径d<0.062 mm的泥沙所占比重不变,0.062 mm≤d<0.25 mm的泥沙所占比重逐年减少(累计减少11.4%),d≥0.25 mm的泥沙所占比重逐年增加(累计增加11.4%),而监利站床沙组成均存在波动性变化;(3)荆江河段床沙转换为推移质的概率随着泥沙粒径的增大而增大,床沙转换为悬移质的概率随着泥沙粒径的增大而减小,而推移质和悬移质转换为床沙的概率均随着泥沙粒径的增大而增大,河床发生冲刷粗化时泥沙输移的主要形式为悬移质(概率为81%~87%),而淤积细化时床沙补给主要来源于推移质(概率为8%~12%).通过验证,本文概率模型的计算结果与实测资料符合较好,能够应用于长江中游沙质河段年际床沙粗化及年内床沙级配调整过程预报,为进一步开展三峡工程下游非均匀悬移质泥沙沿程恢复机理的研究提供理论基础.  相似文献   

11.
Non-uniform sediment deposited in a confined, steep mountain channel can alter the bed surface composition. This study evaluates the contribution of geometric and resistance parameters to bed sta-bilization and the reduction in sediment transport. Flume experiments were done under various hydraulic conditions with non-uniform bed material and no sediment supply from upstream. Results indicate that flume channels respond in a sequence of coarsening and with the formation of bedform-roughness features such as rapids, cascades, and steps. A bedform development coefficient is introduced and is shown to increase (i.e. vertical sinuosity develops) in response to increasing shear stress during the organization process. The bedform development coefficient also is positively correlated with the critical Shields number and Manning's roughness coefficient, suggesting the evolution of flow resistance with increasing bedform development. The sediment transport rate decreases with increasing bed shear stress and bedform development, further illustrating the effect of bed stabilization. An empirical sedi-ment transport model for an equilibrium condition is proposed that uses the bedform development coefficient, relative particle submergence (i.e. the ratio of mean water depth and maximum sediment diameter), modified bed slope, and discharge. The model suggests bedform development can play a primary role in reducing sediment transport (increasing bed stabilization). The model is an extension of Lane's (1955) relation specifically adapted for mountain streams. These results explain the significance of bedform development in heightening flow resistance, stabilizing the bed, and reducing sediment transport in coarse, steep channels.  相似文献   

12.
Most gravel‐bed streams exhibit a surface armour in which the median grain size of the surface particles is coarser than that of the subsurface particles. This armour has been interpreted to result when the supply of sediment is less than the ability of the stream to move sediment. While there may be certain sizes in the bed for which the supply is less than the ability of the stream to transport these sizes, for other sizes of particles the supply may match or even exceed the ability of the channel to transport these particles. These sizes of particles are called ‘supply‐limited’ and ‘hydraulically limited’ in their transport, respectively, and can be differentiated in dimensionless sediment transport rating curves by size fractions. The supply‐ and hydraulically limited sizes can be distinguished also by comparing the size of particles of the surface and subsurface. Those sizes that are supply‐limited are winnowed from the bed and are under‐represented in the surface layer. Progressive truncation of the surface and subsurface size distributions from the ?ne end and recalculation until the size distributions are similar (collapse), establishes the break between supply‐ and hydraulically limited sizes. At sites along 12 streams in Idaho ranging in drainage area from about 100 to 4900 km2, sediment transport rating curves by size class and surface and subsurface size distributions were examined. The break between sizes that were supply‐ and hydraulically limited as determined by examination of the transport rate and surface and subsurface size distributions was similar. The collapse size as described by its percentile in the cumulative size distribution averaged D36 of the surface and D73 of the subsurface. The discharge at which the collapse size began to move averaged 88 per cent of bankfull discharge. The collapse size decreased as bed load yield increased and increased with the degree of selective transport. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Modelling dam-break flows over mobile beds using a 2D coupled approach   总被引:1,自引:0,他引:1  
Dam-break flows usually propagate along rivers and floodplains, where the processes of fluid flow, sediment transport and bed evolution are closely linked. However, the majority of existing two-dimensional (2D) models used to simulate dam-break flows are only applicable to fixed beds. Details are given in this paper of the development of a 2D morphodynamic model for predicting dam-break flows over mobile beds. In this model, the common 2D shallow water equations are modified, so that the effects of sediment concentrations and bed evolution on the flood wave propagation can be considered. These equations are used together with the non-equilibrium transport equations for graded sediments and the equation of bed evolution. The governing equations are solved using a matrix method, thus the hydrodynamic, sediment transport and morphological processes can be jointly solved. The model employs an unstructured finite volume algorithm, with an approximate Riemann solver, based on the Roe-MUSCL scheme. A predictor–corrector scheme is used in time stepping, leading to a second-order accurate solution in both time and space. In addition, the model considers the adjustment process of bed material composition during the morphological evolution process. The model was first verified against results from existing numerical models and laboratory experiments. It was then used to simulate dam-break flows over a fixed bed and a mobile bed to examine the differences in the predicted flood wave speed and depth. The effects of bed material size distributions on the flood flow and bed evolution were also investigated. The results indicate that there is a great difference between the dam-break flow predictions made over a fixed bed and a mobile bed. At the initial stage of a dam-break flow, the rate of bed evolution could be comparable to that of water depth change. Therefore, it is often necessary to employ the turbid water governing equations using a coupled approach for simulating dam-break flows.  相似文献   

14.
The process of dam removal establishes the channel morphology that is later adjusted by high-flow events. Generalities about process responses have been hypothesized, but broad applicability and details remain a research need. We completed laboratory experiments focused on understanding how processes occurring immediately after a sediment release upon dam removal or failure affect the downstream channel bed. Flume experiments tested three sediment mixtures at high and low flow rates. We measured changes in impounded sediment volume, downstream bed surface, and rates of deposition and erosion as the downstream bed adjusted. Results quantified the process responses and connected changes in downstream channel morphology to sediment composition, temporal variability in impounded sediment erosion, and spatial and temporal rates of bedload transport. Within gravel and sand sediments, the process response depended on sediment mobility. Dam removals at low flows created partial mobility with sands transporting as ripples over the gravel bed. In total, 37% of the reservoir eroded, and half the eroded sediment remained in the downstream reach. High flows generated full bed mobility, eroding sands and gravels into and through the downstream reach as 38% of the reservoir eroded. Although some sediment deposited, there was net erosion from the reach as a new, narrower channel eroded through the deposit. When silt was part of the sediment, the process response depended on how the flow rate influenced reservoir erosion rates. At low flows, reservoir erosion rates were initially low and the sediment partially exposed. The reduced sediment supply led to downstream bed erosion. Once reservoir erosion rates increased, sediment deposited downstream and a new channel eroded into the deposits. At high flows, eroded sediment temporarily deposited evenly over the downstream channel before eroding both the deposits and channel bed. At low flows, reservoir erosion was 17–18%, while at the high flow it was 31–41%.  相似文献   

15.
Field experiments were conducted on bed load transport in the Diaoga River, a mountain stream in southwest China, to study the variation of bed load transport with varying sediment supply. The rate of bed load transport is greatly affected by incoming sediment (load and size). Under the same flow conditions, bed load transport rates may differ by three orders of magnitude depending on whether measurements were taken before or after the first flood of the year. The relation of the "bed load transport rate versus flow intensity" appears to have similar characteristics as a clockwise looped-rating curve. Experiments also were conducted during the non-flood season to study bed load transport processes with different incoming load from an upstream section. Bed load with different sizes can be grouped into two types: traveling bed load and structural bed load. Traveling bed load is composed of sediment finer than a critical size, De, and its transport rate depends mainly on the incoming sediment rate. The incoming sediment rate can alter the rate of bed load transport by three orders of magnitude. Structural bed load is composed of coarser sediment and its transport rate closely relies on the flow intensity.  相似文献   

16.
This paper analyses the processes and mechanisms of a three‐stage channel adjustment over a cycle of the Yellow River mouth channel extension based on data comprising hydrologic measurements and channel geometric surveys. Rapid siltation in the mouth channel takes place in the young stage when the channel is being built by deposits and in the old stage when the channel cannot further adjust itself to keep sediment transport in equilibrium. It is disclosed that the bankfull width–depth ratio, bed material size and slope decrease in the young and mature stages but do not change in the old stage. The reduction of bankfull width–depth ratio and bed material size during the young and mature stages is found to be able to offset the effect of the slope reduction on sediment transport due to continuous mouth progradation. They reach their limits in old stage, and a constant slope is kept by unceasing sediment accumulation. The grain size composition of incoming sediment and the fining mechanism are responsible for the occurrence of lower limit of bed material size. The reason for the existence of a limit of bankfull cross‐sectional shape is that the large flows can fully transport the sediment load they are carrying, and siltation in the channel in the old stage takes place mainly in the low flows. It is suggested that the bankfull discharge plays an important role in shaping the channel but that the entire channel form is the product of both the large and low flows plus the effects of interaction between them. Channel pattern change shows a process from a braided pattern in the young stage to a straight pattern in the mature and old stages, and the straight channel becomes gradually sinuous. The occurrence and transformation of the channel patterns are supported by two planform predictors, but are also facilitated by some other conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The last two decades have witnessed the development and application of well-balanced numerical models for shallow flows in natural rivers.However,until now there have been no such models for flows with non-uniform sediment transport.This paper presents a 1D well-balanced model to simulate flows and non-capacity transport of non-uniform sediment in alluvial rivers.The active layer formulation is adopted to resolve the change of bed sediment composition.In the framework of the finite volume Slope Llmiter Centred(SLIC) scheme,a surface gradient method is incorporated to attain well-balanced solutions to the governing equations.The proposed model is tested against typical cases with irregular topography,including the refilling of dredged trenches,aggradation due to sediment overloading and flood flow due to landslide dam failure.The agreement between the computed results and measured data is encouraging.Compared to a non-well-balanced model,the well-balanced model features improved performance in reproducing stage,velocity and bed deformation.It should find general applications for non-uniform sediment transport modelling in alluvial rivers,especially in mountain areas where the bed topography is mostly irregular.  相似文献   

18.
《国际泥沙研究》2020,35(2):115-124
Bed-load transport plays a critical role in river morphological change and has an important impact on river ecology.Although there is good understanding of the role of the variation of river bed grain size on transport dynamics in equilibrium conditions,much less is understood for non-equilibrium conditions when the channel is either aggrading or degrading.In particular,the relative role of different grain sizes in the promotion and hindering of the transport of coarse and fine fractions in a degrading channel has yet to be investigated.The current study attempts to provide new understanding through a series of flume experiments done using uniform and graded sediment particles.The experiments revealed coarser grain-size fractions for a poorly-sorted sediment,relative to uniform-sized sediment,reduced the transport of finer grains and finer fractions enhanced the transport of coarse grains.This hinderingpromotion effect,caused by relative hiding and exposure of finer and coarse fractions,increased with bed slope and decreased with relative submergence.In particular,as relative submergence increased,the graded fractions tended towards behaving more like their unifo rm-sized counterparts.Also,the bed-load parameter of the graded fractions increased more with a rise in bed slope than observed for the uniformsized counterparts.These results revealed,for degrading channel conditions,such as downstream of a dam,bed-load equations developed for uniform bed sediment are inappropriate for use in natural river systems,particularly in mountain streams.Furthermore,changes in river bed composition due to activities that enhance the input of hill-slope sediment,such as fire,logging,and agricultural development,are likely to cause significant changes in river morphology.  相似文献   

19.
This paper presents the application of the multi-stage first-order centered scheme GMUSTA to solve a two-phase flow model with four equations for simulating dam-break floods without and with sediment transport.Computation of generalized Riemann invariants can be particularly complex and costly in simulating dam-break floods with sediment transport.GMUSTA numerical scheme,which does not require complete knowledge of the eigenstructure of the hyperbolic mathematical model,offers a suitable and attractive option.The quality of the dam-break flood simulations with GMUSTA scheme is verified by comparing the results against laboratory tests and some experimental data available in the literature,on fixed and mobile bed conditions,with different bed materials and flush or stepped bottoms.The numerical results reproduce quite well the experimental evidence,proving that the model is capable of predicting the temporal evolution of the free-surface and the bed.The GMUSTA scheme,which is not only simple to implement but also both accurate and computationally efficient,is proposed as an appropriate tool for integrating non-equilibrium sediment-transport models.  相似文献   

20.
Field data are essential in evaluating the adequacy of predictive equations for sediment transport. Each dataset based on the sediment transport rates and other relevant information gives an increased understanding and improved quantification of different factors influencing the sediment transport regime in the specific environment. Data collected for 33 sites on 31 mountain streams and rivers in Central Idaho have enabled the analysis of sediment transport characteristics in streams and rivers with different geological, topographic, morphological, hydrological, hydraulic, and sedimentological characteristics. All of these streams and rivers have armored, poorly sorted bed material with the median particle size of surface layer coarser than the subsurface layer. The fact that the largest particles in the bedload samples did not exceed the median particle size of the bed surface material indicates that the armor layer is stable for the observed flow discharges (generally bankfull or less, and in some cases two times higher than bankfull discharge). The bedload transport is size‐selective. The transport rates are generally low, since sediment supply is less than the ability of flow to move the sediment for one range of flow discharges, or, the hydraulic ability of the stream is insufficient for entrainment of the coarse bed material. Detailed analyses of bedload transport rates, bedload and bed material characteristics were performed for each site. The obtained results and conclusions are used to identify different influences on bedload transport rates in analyzed gravel‐bed rivers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号