首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Improved knowledge of the effects of grass and shrub cover in overland flow can provide valuable information for soil and water conservation programs.Laboratory simulated rainfall studies were conducted to determine effects of grass and shrub on runoff and soil loss and to ascertain the relationship between the rate of soil loss and the unit stream power of runoff for a 20°slope subjected to rainfall intensities of 45,87,and 127 mm/h.The results indicated that the average runoff rates ranged from 4.2 to 73.1 mm/h for grass plots and from 9.3 to 58.2 mm/h for shrub plots.Runoff rates from shrub plots were less than those from grass plots for all but the 45 mm/h rainfall intensity regime. Average soil loss rates varied from 5.7 to 120.3 g/min.m~2 for grass plots and from 5.6 to 84.4 g/min.m~2 for shrub plots.Soil loss rates from shrub plots were generally lower than those from grass plots.Runoff and soil loss were strongly influenced by soil surface conditions due to the formation of erosion pits and rills.The rate of soil loss increased linearly with the unit stream power of runoff on both grass and shrub plots.Critical unit stream power values were 0.0127 m/s for grass plots and 0.0169 m/s for shrub plots.Shrub plots showed a greater stability to resist soil detachment and transport by surface flow than grass plots.  相似文献   

2.
This paper describes laboratory testing of 148 samples collected from Southern Alberta for erosion by wash and splash. Rainfall intensity was held constant during these tests. Soil aggregation was the most significant variable explaining soil loss. The significance of other soil properties, such as organic carbon and clay content is variable, depending on the interrelationships among aggregate stability, organic content, and clay content of particular soils. Variations in erodibility of the major soils examined are explained by the resistance of aggregates to compaction and dispersion. Splash detachment and wash transport are the dominant erosion mechanisms in inter-rill areas.  相似文献   

3.
In the exploration of the hidden Haihe fault, radon and mercury in soil gas were measured by using FG-3017 radon detector and XG-4 mercury analyzer. In this paper, based on the measurement results of 12 fault gas profiles, and integrating with the exploration results of artificial seismic prospecting, the relationship between anomalous site of fault gas and fault location is analyzed. Using the relationship between anomalous strength of fault gas and fault activity, the activity of Haihe fault is studied, thus the location and activity segmentation of the Haihe fault in Tianjin region are presented. This study shows that the method of fault gas detection can not only identify the preliminary location of fault, but also make preliminary segmentation of fault activity. The fault detected by the method of fault gas measurement is shown as a band. Through contrasting with exploration results of artificial seismic prospecting and analyzing, we find that the fault is located inside the band. According to the measurements of soil gas radon, the Haihe fault can be divided into east and west segments and the activity of the east segment of Haihe fault is stronger than that of the west segment. This is only a relative result, and it is difficult to judge whether the fault is active or not with this result.  相似文献   

4.
5.
6.
7.
Soil is considered as a three-phase medium consisting of solid particles, water and air. Its behavior is very difficult to predict, especially under high rate blast loading. In this study, a new three-phase soil model for shock loading is employed to facilitate a full simulation of explosion and the subsequent stress wave propagation in soils. Upon validating the model, extended numerical calculations are carried out and the results are analyzed to demonstrate the change of characteristic parameters of the soils, the inherent distribution of the pressure on individual phases and hence the deformation mechanisms of the soils under blasting loading. Two primary deformation mechanisms exist, one is the deformation of the soil skeleton formed by the solid particles; the other is the deformation of all individual soil phases. It is found that the response of soil near the charge is dominated by the second mechanism while the first mechanism dominates in areas beyond a certain scaled range. The location of the transition zone depends primarily on the initial state of the soil. The results are useful for establishing rational and practical soil models for engineering applications concerning blasting.  相似文献   

8.
Natural piping doubles the dynamic contributing area on the upper Maesnant stream in mid-Wales, mainly through linking points well beyond the riparian zones of seepage to the stream. Both discharge and sediment transport rates in the major pipes are closely related to the size of shallow surface microtopographic hollows in which they lie, and which themselves are largely created by piping erosion. However, pipe dischrges are frequently generated by contributing areas larger than these surface depressions and some pipes run counter to the surface topography. The redistribution and acceleration of hillslope drainage processes by piping has implications for theories of hillslope development, especially through plan-form modifications, and also for channel discharge and erosion.  相似文献   

9.
Soil CO2 efflux in forest and grassland over 5 years from 2005 to 2009 in a semiarid mountain area of the Loess plateau, China, was measured. The aim was to compare the soil respiration and its annual and inter‐annual responses to the changes in soil temperature and soil water content between the two vegetation types for observing soil quality evolution. The differences among the five study years were the annual precipitation (320.1, 370.5, 508.8, 341.6, and 567.4 mm in 2005–2009, respectively) and annual distribution. The results showed that the seasonal change of soil respiration in both vegetation types was similar and controlled by soil temperature and soil water content. The mean soil respiration across 5 years in the forest (3.78 ± 2.68 µmol CO2 m?2 s?1) was less than that in the grassland (4.04 ± 3.06 µmol CO2 m?2 s?1), and the difference was significant. The drought soil in summer depressed soil respiration substantially. The Q10 value across 5‐year measurements was 2.89 and 2.94 for forest and grassland. When soil water content was between wilting point (WP) and field capacity (FC), the Q10 in both types increased with increasing soil water content, and when soil water content dropped to below WP, soil respiration and the Q10 decreased substantially. Although an exponential model was well fitted to predict the annual mean soil respiration for each single year data, it overestimated and underestimated soil respiration, respectively, in drought conditions and after rain for short periods of time during the year. The two‐variable models including temperature and water content variables could be well used to predict soil respiration for both types in all weather conditions. The models proposed are useful for understanding and predicting potential changes in the eastern part of Loess plateau in response to climate change.  相似文献   

10.
Most of the lowland in the central rift valley of Ethiopia is arid or semiarid and in degradation,with frequent occurrence of droughts.Soil erosion by water during the rainy season is a serious problem...  相似文献   

11.
本文利用绿洲系统能量与水分循环过程观测试验的2005年6月11日至15日在甘肃金塔绿洲中部观测的土壤温度、湿度和通量资料,在分析了观测期间土壤温度、湿度和通量特征的基础上,采用振幅法、相位法、谐波法和热传导对流法计算了5~20 cm土壤层的土壤热扩散率.在此基础上,以深度为5 cm的土壤层为上边界条件,计算了10 cm、20 cm深度的土壤温度和10 cm深度的热通量.结果表明:谐波法能很好地计算土壤温度,10 cm和20 cm深度的计算值相对观测值的标准差分别为:0.21 ℃和0.18 ℃;热传导对流法计算的土壤温度好于振幅法和相位法,但由于忽略了土壤水分通量密度的日变化,该方法用于土壤含水量有明显日变化的浅层土壤时,会出现计算误差.谐波法的计算土壤热通量与实测值最为接近,计算值与实测值的相关系数达到0.868.  相似文献   

12.
This paper presents results recently obtained for generating site-specific ground motions needed for design of critical facilities. The general approach followed in developing these ground motions using either deterministic or probabilistic criteria is specification of motions for rock outcrop or very firm soil conditions followed by adjustments for site-specific conditions. Central issues in this process include development of appropriate attenuation relations and their uncertainties, differences in expected motions between Western and Eastern North America, and incorporation of site-specific adjustments that maintain the same hazard level as the control motions, while incorporating uncertainties in local dynamic material properties. For tectonically active regions, such as the Western United States (WUS), sufficient strong motion data exist to constrain empirical attenuation relations for M up to about 7 and for distances greater than about 10–15 km. Motions for larger magnitudes and closer distances are largely driven by extrapolations of empirical relations and uncertainties need to be substantially increased for these cases.

For the Eastern United States (CEUS), due to the paucity of strong motion data for cratonic regions worldwide, estimation of strong ground motions for engineering design is based entirely on calibrated models. The models are usually calibrated and validated in the WUS where sufficient strong motion data are available and then recalibrated for applications to the CEUS. Recalibration generally entails revising parameters based on available CEUS ground motion data as well as indirect inferences through intensity observations. Known differences in model parameters such as crustal structure between WUS and CEUS are generally accommodated as well. These procedures are examined and discussed.  相似文献   


13.
Foundation soil of the proposed fertiliser complex in Northern India is examined for its susceptibility to liquefaction during an earthquake. Information on geotectonic set up and earthquake occurrences in the region around the site is used for defining the earthquake parameters of the ground motion. The effective peak ground acceleration for the site is estimated to be of the order of 0.15 g. Laboratory tests were carried out on soil samples obtained from the site on a horizontal vibration table. The test results were used in determining the possibility of liquefaction employing the methodology developed at the Department of Earthquake Engineering, University of Roorkee. About 10 m of a thick soil layer below the top 1.5 m stiff clay is likely to liquefy. Remedial measures used at the site to counter the possibility of liquefaction are mentioned.  相似文献   

14.
15.
16.
Four techniques for soil erosion assessment were compared over two consecutive seasons for bare-fallow plots and a maize-cowpea sequence in 1985 at IITA, Ibadan, Nigeria. The techniques used were: tracer (aluminium paint), nails (16 and 25), the rill method, and the Universal Soil Loss Equation (USLE). Soil loss estimated by these techniques was compared with that determined using the runoff plot technique. There was significantly more soil loss (P < 0·01) in bare-fallow than in plots under maize (Zea mays) or cowpea (Vigna unguiculata). In the first season, soil loss from plots sown to maize was 40·2 Mg ha?1 compared with 153·3 Mg ha?1 from bare-fallow plots. In the second season, bare-fallow plots lost 87·5 Mg ha?1 against 39·4 Mg ha?1 lost from plots growing cowpea. The techniques used for assessing erosion had no influence on the magnitude of soil erosion and did not interfere with the processes of erosion. There was no significant difference (P < 0·05) between soil erosion determined by the nails and the runoff plot technique. Soil loss determined on six plots (three under maize, three bare-fallow) by the rill technique, at the end of the season, was significantly lower (P < 0·05) than that determined by the runoff plot technique. The soil loss estimated by the rill method was 143·2, 108·8 and 121·9 Mg ha?1 for 11, 11, and 8 per cent slopes respectively, in comparison with 201·5, 162·0, and 166·4 Mg ha?1 measured by the runoff plot method. Soil loss measured on three bare-fallow plots on 10 different dates by the rill technique was also significantly lower (P < 0·01) than that measured by the runoff plot. In the first season the USLE significantly underestimated soil loss. On 11, 11, and 8 per cent slopes, respectively, soil loss determined by the USLE was 77, 92, and 63 per cent of that measured by the runoff plot. However, in the second season there was no significant difference between soil loss determined by the USLE and that determined by the conventional runoff plot technique.  相似文献   

17.
18.
Needle ice was grown in the laboratory to determine the limits of soil moisture and texture on the growth of needle ice. As the percentage of fines in the soil increases the lower limit of soil moisture required for growth decreases and may be defined by a linear boundary. The efficiency of conversion of soil water to needle ice in soil samples used, peaked at about 16 per cent soil fines. Contrary to expectations the finer textured soils produced significantly thicker ice crystals. Quantity of soil lifted by needle ice was related to ice height, the ice mass to atmospheric void ratio, soil texture and moisture and soil surface roughness. However, no definite, quantitative relationships could be determined. A test to determine if needle ice is selective in the grain sizes of particles lifted suggested no selectivity.  相似文献   

19.
20.
Forest soil is an important component of the natural environment, and is a primary medium for many biological activities. In this study, soil loss and displacement by excavator and bulldozer (heavy equipments) were measured on cut and fills slopes of forest roads located in Mazandaran province, lran. The volumes of soil losses were estimated by prismoidal analyses of cut and fill slopes deformation between two time treatments (under subgrading and two years later) in slope classes of 30-50% and 50-70%. Weights of soil losses were calculated by multiplying the volumes of soil losses (cm^3) to the general bulk density (1.3g/cm^3). Soil displaced area by heavy equipment was evaluated according to earth working width. Results indicated that heavy equipment has significant effect on deformation of cut slope gradient and fill slope length (p〈0.0001). During the two-year period, the cut (p〈0.0002) and fill (p〈0.0001) slope gradients were significantly deformed in different slope classes. The average soil loss by excavator and bulldozer were 160.35 t/ha·yr and 429.09 t/ha·yr, respectively. Moreover, the soil displaced area during the subgrading process by bulldozer was greater than excavator in both two slope classes (p〈0.05). Soil loss and displacement in forest roads can be rednced by applying powerful excavators in subgrading project, especially in steep terrains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号