首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 290 毫秒
1.
The New England and Mid‐Atlantic regions of the Northeast United States have experienced climate‐induced increases in both the magnitude and frequency of floods. However, a detailed understanding of flood seasonality across these regions, and how flood seasonality may have changed over the instrumental record, has not been established. The annual timing of river floods reflects the flood‐generating mechanisms operating in a basin, and many aquatic and riparian organisms are adapted to flood seasonality, as are human uses of river channels and flood plains. Changes in flood seasonality may indicate changes in flood‐generating mechanisms, and their interactions, with important implications for habitats, flood plain infrastructure, and human communities. I applied a probabilistic method for identifying flood seasons at a monthly resolution for 90 Northeast U.S. watersheds with natural, or near‐natural, flood‐generating conditions. Historical trends in flood seasonality were also investigated. Analyses were based on peaks‐over‐threshold flood records that have, on average, 85 years of data and three peaks per year—thus providing more information about flood seasonality than annual maximums. The results show rich detail about annual flood timing across the region with each site having a unique pattern of monthly flood occurrence. However, a much smaller number of dominant seasonal patterns emerged when contiguous flood‐rich months were classified into commonly recognized seasons (e.g., Mar–May, spring). The dominant seasonal patterns identified by manual classification were corroborated by unsupervised classification methods (i.e., cluster analyses). Trend analyses indicated that the annual timing of flood‐rich seasons has generally not shifted over the period of record, but 65 sites with data from 1941 to 2013 revealed increased numbers of June–October floods—a trend driving previously documented increases in Northeast U.S. flood counts per year. These months have been historically flood‐poor at the sites examined, so warm‐season flood potential has increased with possible implications for aquatic and riparian organisms.  相似文献   

2.
High‐magnitude floods across Europe within the last decade have resulted in the widespread reassessment of flood risk; this coupled with the introduction of the Water Framework Directive (2000) has increased the need for a detailed understanding of seasonal variability in flood magnitude and frequency. Mean day of flood (MDF) and flood seasonality were calculated for Wales using 30 years of gauged river‐flow records (1973–2002). Noticeable regional variations in timing and length of flood season are evident, with flooding occurring earlier in small catchments draining higher elevations in north and mid‐west Wales. Low‐altitude regions in West Wales exposed to westerly winds experience flooding during October–January, while large eastern draining catchments experience later flooding (January–February). In the northeast and mid‐east regions December–January months experience the greatest number of floods, while the southeast has a slightly longer flood season (December–February), with a noticeable increase in January floods. Patterns obtained from MDF data demonstrate their effectiveness and use in analysing regional patterns in flood seasonality, but catchment‐specific determinants, e.g. catchment wetness, size and precipitation regime are important factors in flood seasonality. Relatively strong correlations between precipitation and flood activity are evident in Wales, with a poorer relationship between flooding and weather types and the North Atlantic Oscillation (NAO). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Fluvial flood events have substantial impacts on humans, both socially and economically, as well as on ecosystems (e.g., hydroecology and pollutant transport). Concurrent with climate change, the seasonality of flooding in cold environments is expected to shift from a snowmelt‐dominated to a rainfall‐dominated flow regime. This would have profound impacts on water management strategies, that is, flood risk mitigation, drinking water supply, and hydro power. In addition, cold climate hydrological systems exhibit complex interactions with catchment properties and large‐scale climate fluctuations making the manifestation of changes difficult to detect and predict. Understanding a possible change in flood seasonality and defining related key drivers therefore is essential to mitigate risk and to keep management strategies viable under a changing climate. This study explores changes in flood seasonality across near‐natural catchments in Scandinavia using circular statistics and trend tests. Results indicate strong seasonality in flooding for snowmelt‐dominated catchments with a single peak occurring in spring and early summer (March through June), whereas flood peaks are more equally distributed throughout the year for catchments located close to the Atlantic coast and in the south of the study area. Flood seasonality has changed over the past century seen as decreasing trends in summer maximum daily flows and increasing winter and spring maximum daily flows with 5–35% of the catchments showing significant changes at the 5% significance level. Seasonal mean daily flows corroborate those findings with higher percentages (5–60%) of the catchments showing statistically significant changes. Alterations in annual flood occurrence also point towards a shift in flow regime from snowmelt‐dominated to rainfall‐dominated with consistent changes towards earlier timing of the flood peak (significant for 25% of the catchments). Regionally consistent patterns suggest a first‐order climate control as well as a local second‐order catchment control, which causes inter‐seasonal variability in the streamflow response.  相似文献   

4.
Rayleigh面波地震背景噪声成像技术已被成功运用到全球范围不同尺度的地球内部结构的研究中,并以背景噪声场是时空均匀分布为前提假设.然而真实的噪声源分布的时空非均匀性将导致经验格林函数提取存在偏差,最终影响噪声成像结果的精准性.近年来,噪声源分布特征研究逐步成为提高噪声成像精准度、深化地震背景噪声成像的关键问题.本文利用频率-波束域分析法对中国西北地区的一个大孔径台阵(WuTan Array,简称WTA)在2014全年的垂直分量连续记录做了聚束分析,研究了Rayleigh波噪声源分布特征.结果显示:WTA台阵成功探测到了10~20s周期范围的来自于全球不同方位的Rayleigh波噪声信号,其源区分布具有明显的季节变化特征:冬季集中分布在北大西洋方位,而夏季则转为印度洋方位噪声信号最强.此外,Rayleigh波噪声源区空间分布还表现出一定的频率依赖性,即在较低频段(0.0488~0.0635Hz)在北大西洋、北太平洋、印度洋及西太平洋四个方位均有分布;而在频率较高频段(0.0928~0.1025Hz)则集中分布于西太平洋方位.Rayleigh波噪声源时空分布特征和频率依赖性与海洋活动本身的季节性变化和频谱特征有关.并初步推测本文所观测到的Rayleigh波是由加剧的海浪运动直接作用于海岸、大陆架或海底而激发产生的第一类地脉动噪声信号.  相似文献   

5.
Surface water oxygen and hydrogen isotopic values are commonly used as proxies of precipitation isotopic values to track modern hydrologic processes while proxies of water isotopic values preserved in lake and river sediments are used for paleoclimate and paleoaltimetry studies. Previous work has been able to explain variability in USA river‐water and meteoric‐precipitation oxygen isotope variability with geographic variables. These studies show that in the western United States, river‐water isotopic values are depleted relative to precipitation values. In comparison, the controls on lake‐water isotopic values are not well constrained. It has been documented that western United States lake‐water input values, unlike river water, reflect the monthly weighted mean isotopic value of precipitation. To understand the differing controls on lake‐ and river‐water isotopic values in the western United States, we examine the seasonal distribution of precipitation, evaporation and snowmelt across a range of seasonality regimes. We generate new predictive equations based on easily measured factors for western United States lake‐water, which are able to explain 69–63% of the variability in lake‐water hydrogen and oxygen isotopic values. In addition to the geographic factors that can explain river and precipitation values, lake‐water isotopic values need factors related to local hydrologic and climatic characteristics to explain variability. Study results suggest that the spring snowmelt runs off the landscape via rivers and streams, depleting river and stream‐water isotopic values. By contrast, lakes receive seasonal contributions of precipitation in proportion to the seasonal fraction of total annual precipitation within their watershed. Climate change may alter the ratio of snow to rain fall, affecting water resource partitioning between rivers and lakes and by implication of groundwater. Paleolimnological studies must account for the multiple drivers of water isotopic values; likewise, studies based on the isotopic composition of fossil material need to distinguish between species that are associated with rivers versus lakes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Spatial and seasonal patterns of flood change across Brazil   总被引:1,自引:1,他引:0  
Brazil has some of the largest rivers in the world and has the second greatest flood loss potential among the emergent countries. Despite that, flood studies in this area are still scarce. In this paper, we used flood seasonality and trend analysis at the annual and seasonal scales in order to describe flood regimes and changes across the whole of Brazil in the period 1976–2015. We identified a strong seasonality of floods and a well-defined spatio-temporal pattern for flood occurrence. There are positive trends in the frequency and magnitude of floods in the North, South and parts of Southeast Brazil; and negative trends in the North-east and the remainder of Southeast Brazil. Trends in the magnitude (frequency) were predominant in the winter (summer). Overall, floods are becoming more frequent and intense in Brazilian regions characterized by wet conditions, and less frequent and intense in drier regions.  相似文献   

7.
Floods are the most frequently occurring natural hazard in Canada. An in-depth understanding of flood seasonality and its drivers at a national scale is essential. Here, a circular, statistics-based approach is implemented to understand the seasonality of annual-maximum floods (streamflow) and to identify their responsible drivers across Canada. Nearly 80% and 70% of flood events were found to occur during spring and summer in eastern and western watersheds across Canada, respectively. Flooding in the eastern and western watersheds was primarily driven by snowmelt and extreme precipitation, respectively. This observation suggests that increases in temperature have led to early spring snowmelt-induced floods throughout eastern Canada. Our results indicate that precipitation (snowmelt) variability can exert large controls on the magnitude of flood peaks in western (eastern) watersheds in Canada. Further, the nonstationarity of flood peaks is modelled to account for impact of the dynamic behaviour of the identified flood drivers on extreme-flood magnitude by using a cluster of 74 generalized additive models for location scale and shape models, which can capture both the linear and nonlinear characteristics of flood-peak changes and can model its dependence on external covariates. Using nonstationary frequency analysis, we find that increasing precipitation and snowmelt magnitudes directly resulted in a significant increase in 50-year streamflow. Our results highlight an east–west asymmetry in flood seasonality, indicating the existence of a climate signal in flood observations. The understating of flood seasonality and flood responses under the dynamic characteristics of precipitation and snowmelt extremes may facilitate the predictability of such events, which can aid in predicting and managing their impacts.  相似文献   

8.
《水文科学杂志》2013,58(3):456-473
Abstract

The main objective of this study is to compare the seasonality of selected precipitation and runoff characteristics in Austria and Slovakia. Monthly seasonality indices are analysed to interpret the long-term climatic behaviour, while the seasonality of extremes is analysed to understand flood occurrence. The analysis is based on mean monthly precipitation data at 555 (Austria) and 202 (Slovakia) stations, annual maximum daily precipitation at 520 (Austria) and 56 (Slovakia) stations, and mean monthly runoff and annual maximum floods at 258 (Austria) and 85 (Slovakia) gauging stations. The results suggest that the seasonality of the selected hydrological characteristics is an important indicator of flood processes, but varies considerably in space. The seasonality of extreme flood events and, hence flood processes, tends to change with the flood magnitude. This change is more pronounced in the lowland and hilly regions than it is in the mountains. Both in Austria and Slovakia, decades of flood seasonality exist.  相似文献   

9.
The pristine Okavango Delta wetland of northern Botswana is potentially under threat due to water abstraction from its tributaries. We have developed a statistical model which makes it possible to predict the extent of wetland loss which will arise from water abstraction. The model also permits prediction of the maximum area of flooding, and its spatial distribution, three months in advance of the flood maximum. The model was calibrated using maximum areas of seasonal inundation extracted from satellite imagery covering the period 1985–2000, which were correlated with rainfall and total flood discharge. A technique was developed to translate the modelled flood area into a flood map. The methodology can predict maximum area of flooding and its distribution with better than 90% accuracy. An important, although relatively minor, source of error in the spatial distribution of the flood arises from a secular change in flood distribution in the distal Delta which has taken place over the last 15 years. Reconstruction of flooding history back to 1934 suggests that the Delta may be subject to a quasi 80 year climatic oscillation. If this oscillation continues, the extent of flooding will increase in the coming decades.  相似文献   

10.
《水文科学杂志》2013,58(5):974-991
Abstract

The aim is to build a seasonal flood frequency analysis model and estimate seasonal design floods. The importance of seasonal flood frequency analysis and the advantages of considering seasonal design floods in the derivation of reservoir planning and operating rules are discussed, recognising that seasonal flood frequency models have been in use for over 30 years. A set of non-identical models with non-constant parameters is proposed and developed to describe flows that reflect seasonal flood variation. The peak-over-threshold (POT) sampling method was used, as it is considered to provide significantly more information on flood seasonality than annual maximum (AM) sampling and has better performance in flood seasonality estimation. The number of exceedences is assumed to follow the Poisson distribution (Po), while the peak exceedences are described by the exponential (Ex) and generalized Pareto (GP) distributions and a combination of both, resulting in three models, viz. Po-Ex, Po-GP and Po-Ex/GP. Their performances are analysed and compared. The Geheyan and the Baiyunshan reservoirs were chosen for the case study. The application and statistical experiment results show that each model has its merits and that the Po-Ex/GP model performs best. Use of the Po-Ex/GP model is recommended in seasonal flood frequency analysis for the purpose of deriving reservoir operation rules.  相似文献   

11.
Abstract

The flooding and drying mechanisms of the seasonal flood plains of the Sudd swamps in southern Sudan are, while dependent on the river levels, influenced by a complex interaction between soil, vegetation, topography and seasonal trends in rainfall and evapotranspiration. Based on field measurements, these components have been assessed in detail and evaluated regarding their function in the seasonal cycle of flooding and drying. A detailed analysis of soil and evapotranspiration conditions, as well as the interaction with vegetation and meteorological conditions, has been conducted using field and laboratory experiments. Sources, processes, flow directions and the fate of the floodwaters on both the river-fed seasonal flood plains and the rain-fed grasslands have been established. The results show that river spill is responsible for flooding these areas while no return flow occurs, and drying is caused by evapotranspiration. Rainfall can only cause temporary flooding in extreme events.

Citation Petersen, G. & Fohrer, N. (2010) Flooding and drying mechanisms of the seasonal Sudd flood plains along the Bahr el Jebel in southern Sudan. Hydrol. Sci. J. 55(1), 4–16.  相似文献   

12.
ABSTRACT

We coupled the hydrologic routing and flood dynamics model Terrestrial Hydrology Model with Biogeochemistry (THMB) to the Integrated LAND Surface Model (INLAND) and compared simulations of the discharge and flood extent area against gauge station and satellite-based information in the Amazon Basin. The coupled model represents well the seasonality of the flooding and discharge, but underestimates both of them. This can be related to an already discussed underestimate of the precipitation in the east of the Andes Mountains. A photosynthesis limitation on the flooded area was also included, showing changes in plant productivity and reduction in vegetation carbon stocks. Despite its limitations, the model proves to be a valuable tool for studies of the hydrological cycle and flood dynamics response to climate change projections, allowing it to be used to represent the feedbacks between continental surface water cycle and vegetation.  相似文献   

13.
The critical zone features that control run‐off generation, specifically at the regional watershed scale, are not well understood. Here, we addressed this knowledge gap by quantitatively and conceptually linking regional watershed‐scale run‐off regimes with critical zone structure and climate gradients across two physiographic provinces in the Southeastern United States. We characterized long‐term (~20 years) discharge and precipitation regimes for 73 watersheds with United States Geological Survey in‐stream gaging stations across the Appalachian Mountain and Piedmont physiographic provinces of North Carolina. Watersheds included in this analysis had <10% developed land and ranged in size from 14.1–4,390 km2. Thirty‐four watersheds were located in the Piedmont physiographic province, which is typically classified as a low relief landscape with deep, highly weathered soils and regolith. Thirty‐nine watersheds were located in the Appalachian Mountain physiographic province, which is typically classified as a steeper landscape with highly weathered, but shallower soils and regolith. From the United States Geological Survey daily mean run‐off time series, we calculated annual and seasonal baseflow indices (BFI), minimum, mean, and maximum daily run‐off, and Pearson's correlation coefficients between precipitation and baseflow. Our results showed that Appalachian Mountain watersheds systematically had higher minimum daily flows and BFI values. Piedmont watersheds displayed much larger deviations from mean annual BFI in response to year‐to‐year variability in precipitation. A series of linear regression models between 21 landscape metrics and annual BFIs showed non‐linear and complex terrestrial–hydrological relationships across the two provinces. From these results, we discuss how distinct features of critical zone architecture, with specific focus on soil depth and stratigraphy, may be dominating the regulation of hydrological processes and run‐off regimes across these provinces.  相似文献   

14.
The Mekong floodplains, which encompasses the region from Kratie Township in Central Cambodia to the Vietnamese East Sea, is a region of globally renown agricultural productivity and biodiversity. The construction of 135 dams across the Mekong basin and the development of delta‐based flood prevention systems have caused public concern given possible threats on the stability of agricultural and ecological systems in the floodplains. Mekong dams store water upstream and regulate flow seasonality, while in situ flood prevention systems re‐distribute water retention capacity in the floodplains. The main aim of this paper is to evaluate possible impacts of the recent development of both hydropower dams and flood prevention systems on hydrological regimes in the Mekong floodplains. An analysis of measured daily and hourly water level data for key stations in the Mekong floodplains from Kratie to the river mouth in Vietnam was conducted. Hydropower dam information was obtained from the hydropower database managed by the Mekong River Commission, and the MODIS satellite imagery was used to detect changes in flooding extent related to the operation of flood prevention systems in the Vietnam Mekong Delta. Results indicate that the upper part of the floodplains, the Cambodian floodplains, may buffer upstream dam impacts to the Vietnam Mekong Delta. Flood prevention up to date has had the greatest effect on the natural hydrological regime of the Mekong floodplains, evidenced by a significant increase of water level rise and fall rates in the upper delta and causing water levels in the middle delta to increase. The development of flood prevention systems has also effected spatial distribution of flooding as indicated via a time series analysis of satellite imagery. While this development leads to increase localized agricultural productivity, our historical data analysis indicates that development of one region detrimentally affects other regions within the delta, which could increase the risk of future conflicts among regions, economic sectors and the ecological value of these important floodplains. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Trends in the timing and magnitude of floods in Canada   总被引:2,自引:0,他引:2  
This study investigates trends in the timing and magnitude of seasonal maximum flood events across Canada. A new methodology for analyzing trends in the timing of flood events is developed that takes into account the directional character and multi-modality of flood occurrences. The methodology transforms the directional series of flood occurrences into new series by defining a new location of the origin. A test of flood seasonality (multi-modality) is then applied to identify dominant flood seasons. Floods from the dominant seasons are analyzed separately by a seasonal trend analysis. The Mann–Kendall test in conjunction with the method of pre-whitening is used in the trend analysis. Over 160 streamflow records from one common observation period are analyzed in watersheds with relatively pristine and stable land-use conditions. The results show weak signals of climate variability and/or change present in the timing of floods in Canada during the last three decades. Most of the significant trends in the timing of spring snowmelt floods are negative trends (earlier flood occurrence) found in the southern part of Canada. There are no significant trends identified in the timing of fall rainfall floods. However, the significance of the fall, rainfall-dominated flood season has been increasing in several analyzed watersheds. This may indicate increasing intensity of rainfall events during the recent years. Trends in the magnitude of floods are more pronounced than the trends in the timing of floods. Almost one fifth of all the analyzed stations show significant trends in the magnitude of snowmelt floods. Most of the significant trends are negative trends, suggesting decreasing magnitudes of snowmelt floods in Canada over the last three decades. Significant negative trends are found particularly in southern Ontario, northern Saskatchewan, Alberta and British Columbia. There are no significant trends in the magnitude of rainfall floods found in the analyzed streamflow records. The results support the outcomes of previous streamflow trend studies conducted in Canada.  相似文献   

16.
Abstract

Rome has been plagued by flooding since its foundation, and, in December 2008, the largest flood event over the past 20 years caused a fatality and more than €150 million in economic damage. Meteorological conditions associated with the December 2008 flooding are shown to be typical of flooding in the Tiber. The long record of discharge measurements of the Tiber River at the Ripetta station in downtown Rome was used to examine flood frequency for the Tiber, including assessment of the return interval of the December 2008 flood. Particular attention is given to examination of the stationarity assumption for flood peaks through change-point and trend analyses, quantile regression, and statistical modelling of the flood-peak distribution. Once anthropogenic changes linked to reservoir regulation of the Tiber River have been accounted for, the stationarity assumption holds and can be used for flood frequency analysis. We highlight the difficulties in detecting departures from the stationarity assumption due to climate change. In the current regime, the December 2008 flood event has a return period of the order of 10–20 years.

Citation Villarini, G., Smith, J.A., Napolitano, F. & Baeck, M.L. (2011) Hydrometeorological analyses of the December 2008 flood in Rome. Hydrol. Sci. J. 56(7), 1150–1165.  相似文献   

17.
Understanding precipitation variations on various timescales and their correlations is important for assessment of flood risk and utilization of water resources. In this study, the spatial and temporal patterns of precipitation concentration in the upper reaches of the Huai River, China, were investigated using two indices: the precipitation concentration index (PCI) and the concentration index (CI) for measuring seasonality and daily heterogeneity using monthly and daily precipitation series, respectively. In particular, the trends of PCI and CI were tested by the Mann–Kendall method, and relationship among PCI, CI and percentage of precipitation contributed by the rainiest days was analyzed by the linear correlation analysis. The results show a significant seasonality of the rainfall distribution and very in homogeneous temporal distribution of the daily rainfall in the south part of the study area, especially in the three reservoirs. Positive trends in the PCI and CI were found at most stations, although none of the PCI trends were statistically significant. Daily heterogeneity of the rainfall in a year is highly correlated with the heavy rainfall amount of the 15 % rainiest days, and seasonality in rainfall distribution over a year can be partly explained by the daily rainfall heterogeneity.  相似文献   

18.
This paper describes the use of numerical weather and climate models for predicting severe rainfall anomalies over the Yangtze River Basin (YRB) from several days to several months in advance. Such predictions are extremely valuable, allowing time for proactive flood protection measures to be taken. Specifically, the dynamical climate prediction system (IAP DCP-II), developed by the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP), is applied to YRB rainfall prediction and flood planning. IAP DCP-II employs ensemble prediction with dynamically conditioned perturbations to reduce the uncertainty associated with seasonal climate prediction. IAP DCP-II was shown to successfully predict seasonal YRB summer flooding events based on a 15-year (1980–1994) hindcast experiment and the real-time prediction of two summer flooding events (1999 and 2001). Finally, challenges and opportunities for applying seasonal dynamical forecasting to flood management problems in the YRB are discussed.  相似文献   

19.
Abstract

The spatial scaling properties of annual average streamflow is examined using records from 1 433 river basins across the continental United States. The log-linear relationship ln(E[Qr i]) = a + br ln(Ai) is representative throughout the United States, where E[Qr i] represents the expectation of the rth moment of annual streamflow at site i, and Ai represents drainage area. The scaling model parameters ar and br follow nearly perfect linear relationships ar = rα and br = rβ throughout the continental United States. We conclude that the probability distribution of annual streamflow follows simple scaling relationships in all regions of the United States. In temperate regions where climate is relatively homogeneous, scale alone describes most of the variability in the moments of annual streamflow. In the more climatically heterogeneous regions, such as in the Upper Colorado and Missouri river basins, scale alone is a poor predictor of the moments of annual flow.  相似文献   

20.
Population growth along the southeastern United States coast has precipitated the conversion of forested watersheds to suburban and urban ones. This study sampled creeks representing forested, suburban, and urban watersheds along a longitudinal gradient for indicators of water quality, including traditional indicator bacteria (fecal coliforms and enterococci) and alternative viral indicators (male-specific and somatic coliphages). Tested microorganisms were generally distributed with highest concentrations in creek headwaters and in more developed watersheds. The headwaters also showed the strongest predictive relationship between indicator concentrations and urbanization as measured by impervious cover. A seasonal pattern was observed for indicator bacteria but not for indicator viruses. Coliphage typing indicated the likely source of contamination was nonhuman. Results suggest that headwater creeks can serve as sentinel habitat, signaling early warning of public health concerns from land-based anthropogenic activities. This study also implies the potential to eventually forecast indicator concentrations under land use change scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号