首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
以太湖重度蓝藻水华发生的西北湖区为研究对象,从河口至湖心区设置5个采样点,于2012年10月至2013年10月逐月采集表层水体样品,测定了水温、溶解氧和浮游细菌丰度,并分析了浮游植物群落结构的组成、溶解性无机氮(DIN)和有机氮(DON)浓度以及氮磷比.研究结果表明,太湖西北湖区浮游植物主要由蓝藻、硅藻、绿藻和隐藻组成.可能由于风、浪等混合作用使太湖西北湖区不同采样点之间蓝藻细胞密度没有显著差异.蓝藻生物量在浮游植物中所占比例最高为34%±15%,春季部分点位隐藻生物量高于50%,表明隐藻与蓝藻的相互竞争趋势显著.CCA排序图结果表明,DIN、DON浓度以及总氮∶总磷比(TN∶TP比)是影响西北湖区浮游植物优势属分布的重要环境因子.5个采样点铵态氮(NH_4~+-N)与DIN浓度具有显著差异,与DON浓度没有显著差异.夏季蓝藻水华暴发期间,可能由于蓝藻的吸收利用引起NH_4~+-N和硝态氮(NO_3~--N)浓度迅速降低.此外,由于NH_4~+-N浓度还可能受到沉积物NH_4~+-N释放的影响,因此,蓝藻细胞密度与NO_3~--N的相关系数和显著水平均高于NH_4~+-N.夏季TN∶TP比和DIN∶TP比降至最低,表明该湖区浮游植物,尤其是蓝藻的生长可能受到氮限制.蓝藻细胞密度与DON浓度呈显著负相关,表明在氮限制条件下,DON可能是蓝藻氮素利用的重要补充.  相似文献   

2.
太湖浮游植物和各形态无机氮的时空分布特征   总被引:6,自引:1,他引:5  
冯露露  李正魁  周涛 《湖泊科学》2012,24(5):739-745
为研究太湖浮游植物和各形态无机氮的时空分布特征及其相互关系,于2010年3月至2011年2月在太湖全湖范围内选取9个采样点进行每月采样分析,结果表明:太湖无机氮主要以硝态氮和铵氮形式存在,前者占76%,后者占22%;太湖北部靠近西北沿岸的湖区以及竺山湾的铵氮和亚硝态氮浓度通常要明显高于其他点位.太湖各采样点TIN(总溶解性无机氮)的季节变化趋势很相似,都表现为春季最高,夏秋季降低,冬季又有所升高;夏季北部湖区TIN降幅明显大于南部,使得前者TIN/TSP(总溶解性磷)远小于后者.春季太湖南部的微囊藻复苏量大于北部,但夏秋季微囊藻的暴发主要发生在太湖北部,此时微囊藻大暴发的点位(如梅梁湾)通常都伴随着很低的硝态氮浓度和TIN/TSP,使得这些点位比其他地方更容易发生N限制;Chl.a/浮游植物的比值与浮游植物总数呈极显著负相关,而与TIN/TSP的比值呈极显著正相关,这说明当藻类大量暴发而TIN/TSP下降时,浮游植物单个细胞内的平均Chl.a含量会有所下降,这种现象的原因有待进一步研究;绿藻、硅藻、裸藻和隐藻在时空分布上有一定相似性,而这四种藻与微囊藻则有较大差异.  相似文献   

3.
采用野外调查的方法,结合趋势对应分析(DCA)及典范对应分析(CCA)的手段,研究春季巢湖流域河湖水体浮游植物群落结构特征及其与环境因子的相关性.结果表明,共鉴定出浮游植物73种,分属8门(硅藻门、绿藻门、蓝藻门、隐藻门、金藻门、甲藻门、裸藻门和黄藻门).在巢湖水体中,硅藻门、蓝藻门及绿藻门的数量之和占总数量的93.5%,为优势种群;蓝藻门中的项圈藻占总数量的21.9%,成为优势种.巢湖流域出入湖河流水体中,硅藻门、蓝藻门及绿藻门的数量也最多,占总数量的82.6%,为优势种群;蓝藻门中的席藻和束丝藻数量分别占总数量的38.3%、32.6%,成为出入湖河流水体中的绝对优势种.DCA分析表明巢湖流域水体浮游植物群落存在明显的空间差异.CCA分析表明巢湖水体浮游植物空间分布主要受水温、浊度和硝态氮浓度的影响;南淝河和柘皋河浮游植物空间分布受叶绿素a和硝态氮浓度的影响;而裕溪河、兆河和白石山河、杭埠河和丰乐河、派河浮游植物空间分布则受叶绿素a和磷酸根浓度的影响.  相似文献   

4.
在不同温度下,对太湖河蚬进行了室内短期氮、磷释放模拟实验.结果表明,温度对河蚬(Corbicula fluminea)不同形态氮、磷的排泄都有重要的影响.总磷(TP)、总氮(TN)、总溶解性氮(TDN)、总溶解性磷(TDP)和正磷酸盐(PO3-4-P)排泄率随温度的升高都显著升高,而亚硝态氮(NO-2-N)排泄率先升高后下降.铵态氮(NH+4-N)排泄率在5和15℃间变化不显著,温度对硝态氮(NO-3-N)排泄率有影响但不显著.同时实验发现河蚬为排氨动物,NH+4-N排泄占TN排泄的50.78%~100%,TDN排泄占TN排泄的89.14%~100%,而NO-3-N、NO-2-N虽都有检出,但所占比例相对较小.在河蚬磷排泄中,TDP占TP比例范围为83.01%~100%,PO3-4-P在36.60%~96.59%之间,且所占比例都有随温度升高而增加的趋势.同时对排泄率与干重和温度之间的关系进行了回归分析,发现不同氮、磷排泄率(NO-3-N和NO-2-N除外)与温度和干重的关系均符合方程R(X)=a Wb·ec T+d,决定系数R2都在0.967以上.  相似文献   

5.
滇池沉水植物生长过程对间隙水氮、磷时空变化的影响   总被引:4,自引:0,他引:4  
2015年6-10月通过原位采集滇池沉水植物分布区和无植物对照区柱状沉积物间隙水,分析其溶解性总氮(DTN)和溶解性总磷(DTP)、溶解性无机氮(DIN)和溶解性无机磷(DIP)及溶解性有机氮(DON)和溶解性有机磷(DOP)浓度的时空变化,探讨沉水植物分布对间隙水氮、磷浓度、形态贡献及氮磷比的影响.结果表明:滇池沉水植物生长过程显著影响间隙水氮、磷浓度.与无植物对照区相比,沉水植物生长过程对间隙水氮浓度的削减主要发生在6、8月,而对间隙水磷浓度的削减主要发生在7月,反映了沉水植物对氮、磷两种元素的生物地球化学循环作用机制不同;间隙水氮形态贡献受季节性影响较大,6-7月以DON贡献为主,沉水植物分布区和无植物对照区分别达到61%和84%;而8-10月以DIN贡献为主,沉水植物分布区和无植物对照区分别为76%和75%;沉水植物分布区磷形态贡献随季节波动变化,沉水植物分布区以DOP贡献为主(63%),无植物对照区以DIP贡献为主(62%);沉水植物生长对沉积物间隙水各形态氮磷比影响显著.沉水植物生长显著增加间隙水DTN/DTP比,尤其是DIN/DIP比,相反降低DON/DOP比.沉水植物对间隙水氮、磷吸收及转化过程改变了沉积物氮、磷释放机制,从而影响上覆水氮、磷组成及氮磷比,很可能会影响到浮游植物生长及藻类水华过程,这对于湖泊水质管理具有重要意义.  相似文献   

6.
不同密度藻屑堆积下沉积物碳氮磷释放特征   总被引:2,自引:2,他引:0  
蓝藻碎屑分解引起氮磷释放已受到广泛关注,但堆积的藻屑与沉积物交互作用引发污染物释放的效应知之甚少.采集于桥水库沉积物柱状样,设置5个藻屑添加组和对照组(无藻屑添加),恒温培养(27±1℃),模拟夏季温度条件下不同密度藻屑堆积下沉积物中碳氮磷释放特征.结果表明:藻屑堆积后加强了上覆水中溶解氧与硝态氮的消耗,5个藻屑添加组18小时后上覆水均处于厌氧状态.各实验组上覆水中的溶解性有机碳(DOC)浓度在第3小时增加,且SUVA254值处于0.54~1.74 L/(mg·m)之间,说明DOC可能来源于藻源性释放.各藻屑添加组培养过程中上覆水的溶解性有机氮(DON)、铵态氮和正磷酸盐浓度持续增加,最高平均释放速率分别达4.44、0.20和0.03 mg/(L·h),分别为对照组的21.73、1.76和67.58倍;其中DON为溶解性总氮主要存在形态,在实验结束时DOC/DON比值降低,说明藻屑或者沉积物有机质短期内并未完全矿化,且DOC优先DON被微生物利用.因此蓝藻碎屑堆积增强了沉积物需氧量,加快沉积物与水之间的氮磷营养盐、DOC循环,从而对沉积物中污染物地球化学循环过程造成进一步的影响.  相似文献   

7.
南京玄武湖隆腺溞(Daphnia carinata)牧食对浮游植物的影响   总被引:1,自引:1,他引:0  
隆腺溞(Daphnia carinata)是许多湖泊的常见大型浮游动物,习居于富营养的水域中,以浮游植物为食,且滤食效率较高.通过浮游动物添加实验,研究了隆腺潘对南京玄武湖叶绿素和浮游植物群落结构的影响.结果表明,在隆腺涵组,浮游植物密度较对照组降低了83%,叶绿素较对照组下降了81%,氮、磷营养盐与叶绿素的相关性不显著.浮游植物的群落结构较对照组也发生了很大变化,蓝藻、绿藻和硅藻的比例有显著上升,隐藻呈显著下降趋势,金藻、甲藻和裸藻在实验结束时已没有检出.说明隆腺潘的摄食能有效控制浮游植物的生物量,可对浮游植物的群落结构产生显著影响.  相似文献   

8.
为了解不同农业施肥管理方式对水体浮游植物群落的影响,本研究以江苏句容戴庄有机示范村和常规农业管理区池塘浮游植物为对象,分析冬夏两季浮游植物群落特征及相关水环境因子.结果表明:冬季有机和常规农业区域的浮游植物分别检到7门95种和7门111种,夏季分别检到7门102种和6门112种,有机农业区浮游植物由冬季的隐藻-绿藻型向夏季的蓝藻-绿藻型变化,常规农业区从隐藻-绿藻型向蓝藻-硅藻型变化,蓝藻逐渐取代隐藻的优势地位.夏季各池塘浮游植物alpha多样性没有显著的区域差异,但冬季常规农业区浮游植物物种丰富度、蓝藻和裸藻的Shannon-Wiener多样性指数显著较高.指示物种分析显示,谷皮菱形藻(Nitzschia palea)和梅尼小环藻(Cyclotella meneghiniana)为有机农业区指示物种,而梭形裸藻(Euglena acus)、针形纤维藻(Ankistrodesmus acicularis)、肘状针杆藻(Synedra ulna)和狭形纤维藻(Ankistrodesmus angustus)为常规农业区指示物种,此6种藻为中、富营养化藻类,说明水体氮磷营养盐浓度较高,这与周围农田氮磷流失密切相关.Pearson相关性分析表明,有机农业区浮游植物alpha多样性与氮磷浓度的相关性不显著,但常规农业区浮游植物物种丰富度和Pielou均匀度与磷酸盐、总氮、氨氮和pH值显著相关.Mantel检验表明,有机农业区群落相异性仅在冬季受到总氮和氨氮的显著影响;而常规农业区在冬夏季受到氮磷两类营养盐的交替影响.本研究结果初步揭示了有机和常规农业区水体浮游植物群落结构特征及其影响因素,为区域水生生物多样性保护与稻田施肥管理的优化提供科学基础.  相似文献   

9.
湖光岩玛珥湖春季浮游植物对溶解态氮的吸收   总被引:1,自引:1,他引:0  
利用15N稳定同位素示踪技术,采用现场挂瓶培养的方法测定了湖光岩玛珥湖浮游植物群落对铵态氮、硝态氮和尿素态氮的吸收速率,研究了湖光岩玛珥湖浮游植物群落氮吸收及其吸收动力学特征.结果表明:湖光岩玛珥湖共检测到浮游植物7门54种(包括变种和变型),主要为蓝藻门、硅藻门和绿藻门种类,分别占浮游植物总量的44.68%、26.70%和19.21%,其中水华微囊藻(Microcystis flos-aquae)与铜绿微囊藻(Microcystis aeruginosa)为绝对优势种,优势度分别为0.39与0.28.湖光岩玛珥湖浮游植物群落对铵态氮的绝对吸收速率最高,分别是对硝态氮、尿素态氮绝对吸收速率的5.8和4.2倍,占3种溶解态氮总吸收量的73.3%.铵态氮、硝态氮和尿素态氮的相对优先指数分别为2.907、0.190和1.192,说明浮游植物群落优先吸收铵态氮,其次为尿素态氮,最后为硝态氮.铵态氮、硝态氮和尿素态氮的周转时间分别为3.72、57.03和9.07 h.湖光岩玛珥湖浮游植物对溶解态氮的吸收可用Michaelis-Menten酶动力学方程描述,最大比吸收速率表现为铵态氮尿素态氮硝态氮,亲和力表现为硝态氮铵态氮尿素态氮.湖光岩玛珥湖浮游植物群落对铵态氮具有较高的吸收潜力,并且对硝态氮具有一定的亲和力,具备利用硝态氮的能力.  相似文献   

10.
于2008-2009年按照季节调查了西藏尼洋河浮游植物群落的组成、丰度和多样性,并运用多元统计方法定量分析了浮游植物的空间和季节变化特征及其与主要环境因子之间的关系.结果显示,尼洋河浮游植物共计7门29科48属,其中硅藻为优势浮游藻类.浮游植物Shannon-Wiener多样性指数(Pielou均匀度指数)在尼洋河中游(尼洋河下游)最高,其他河段呈下降趋势,符合中间高度膨胀假说.尼洋河沿程浮游植物的总丰度、物种丰富度、Shannon-Wiener多样性指数以及Pielou均匀度指数不存在显著差异,夏季的浮游植物物种丰富度与其他季节的存在显著差异,夏季总丰度与秋、冬季的存在显著差异,冬季的浮游植物Shannon-Wiener多样性指数与春季的存在显著差异,冬季的均匀度指数与其他3个季节的存在显著差异.尼洋河浮游植物季节演替依赖于外源性水源补充,沿程演替则与河道底质有着很大关系.典范对应分析(CCA)表明,尼洋河硅藻门舟形藻科的藻类与理化因子铵态氮、表层pH、表层水温相关,部分蓝藻以及绿藻与水质理化因子也存在着关联.分类回归树(CART)模型预测了尼洋河着生藻类时空分布与主要环境因子之间的定量关系,尼洋河浮游植物群落总丰度和均匀度指数受pH值影响较大,pH值低于8.0的水域浮游植物均匀度指数比pH值高于8.0的水域大,尼洋河浮游植物Shannon-Wiener多样性指数受到河道底质影响较大,底质为黏土的水域浮游植物Shannon-Wiener多样性指数较底质为砂石的大.这些关键环境因子对尼洋河水域浮游植物的时空变化有着重要的指示作用,建议加强对浮游植物及这些环境因子的关注,保障尼洋河水域生态环境的可持续发展.  相似文献   

11.
蓝藻碎屑分解速率及氮磷释放形态的实验分析   总被引:19,自引:8,他引:11  
李柯  关保华  刘正文 《湖泊科学》2011,23(6):919-925
在试验条件下研究了水华蓝藻堆积使叶绿素浓度达到1600μg/L时,水体所含蓝藻形成的碎眉在水中的分解速率及其营养盐释放情况.结果表明:蓝藻碎屑的总氮含量为88.56±4.10mg/g,其在水体中有较高的分解速率,2d内即分解掉41.9%的生物量;蓝藻碎屑磷释放速率要高于氮,但其导致的水体中溶解性总氮浓度的升高则较溶解性...  相似文献   

12.
This study presents input–output budgets of total dissolved nitrogen (TDN), dissolved organic N (DON) and dissolved inorganic N (DIN) for a reservoir in a peatland catchment in the south Pennines (UK). This site receives high levels of atmospheric inorganic N deposition, in the range of 26 kg N ha?1 yr?1. The results show that the reservoir retains ~21 to 31% of the annual TDN input (8806 ± 741 kg N). Approximately 39 to 55% of DON (3782 ± 653 kg N) and 6 to 13% of DIN (5024 ± 349 kg N) were retained/processed. A long water retention time (104 days), average annual pH of 6.5, high concentrations of DIN in the reservoir water and a deep water column suggest that denitrification is potentially a key mechanism of N retention/removal. The results also demonstrate that DON is potentially photodegraded and utilized within the reservoir, particularly during the summer season when 58 to 80% of DON input (682 ± 241 kg N) was retained, and a net export of DIN (~34 kg N) was observed. The findings therefore suggest that DON may play a more crucial role in the biogeochemistry of peat‐dominated acid sensitive upland freshwater systems than previously thought. Reservoirs, impoundments and large lakes in peatland catchments may be important sites in mediating downstream N transport and speciation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Expression of intracellular ammonium assimilation enzymes were used to assess the response of nitrogen (N) metabolism in bacterioplankton to N-loading of sub-tropical coastal waters of Key West, Florida. Specific activities of glutamine synthetase (GS) and total glutamate dehydrogenase (GDHT) were measured on the bacterial size fraction (<0.8 μm) to assess N-deplete versus N-replete metabolic states, respectively. Enzyme results were compared to concentrations of dissolved organic matter and nutrients and to the biomass and production of phytoplankton and bacteria. Concentrations of dissolved inorganic N (DIN), dissolved organic N (DON), and dissolved organic carbon (DOC) positively correlated with specific activities of GDHT and negatively correlated with that of GS. Total dissolved N (TDN) concentration explained 81% of variance in bacterioplankton GDHT:GS activity ratio. The GDHT:GS ratio, TDN, DOC, and bacterial parameters decreased in magnitude along a tidally dynamic trophic gradient from north of Key West to south at the reef tract, which is consistent with the combined effects of localized coastal eutrophication and tidal exchange of seawater from the Southwest Florida Shelf and Florida Strait. The N-replete bacterioplankton north of Key West can regenerate ammonium which sustains primary production transported south to the reef. The range in GDHT:GS ratios was 5–30 times greater than that for commonly used indicators of planktonic eutrophication, which emphasizes the sensitivity of bacterioplankton N-metabolism to changes in N-bioavailability caused by nutrient pollution in sub-tropical coastal waters and utility of GDHT:GS ratio as an bioindicator of N-replete conditions.  相似文献   

14.
Wetlands often form the transition zone between upland soils and watershed streams, however, stream–wetland interactions and hydrobiogeochemical processes are poorly understood. We measured changes in stream nitrogen (N) through one riparian wetland and one beaver meadow in the Archer Creek watershed in the Adirondack Mountains of New York State, USA from 1 March to 31 July 1996. In the riparian wetland we also measured changes in groundwater N. Groundwater N changed significantly from tension lysimeters at the edge of the peatland to piezometer nests within the peatland. Mean N concentrations at the peatland perimeter were 1·5, 0·5 and 18·6 µmol L?1 for NH4+, NO3? and DON (dissolved organic nitrogen), respectively, whereas peatland groundwater N concentration was 56·9, 1·5 and 31·6 µmol L?1 for NH4+, NO3? and DON, respectively. The mean concentrations of stream water N species at the inlet to the wetlands were 1·5, 10·1 and 16·9 µmol L?1 for NH4+, NO3? and DON, respectively and 1·6, 28·1 and 8·4 µmol L?1 at the wetland outlet. Although groundwater total dissolved N (TDN) concentrations changed more than stream water TDN through the wetlands, hydrological cross‐sections for the peatland showed that wetland groundwater contributed minimally to stream flow during the study period. Therefore, surface water N chemistry was affected more by in‐stream N transformations than by groundwater N transformations because the in‐stream changes, although small, affected a much greater volume of water. Stream water N input–output budgets indicated that the riparian peatland retained 0·16 mol N ha?1 day?1 of total dissolved N and the beaver meadow retained 0·26 mol N ha?1 day?1 during the study period. Nitrate dominated surface water TDN flux from the wetlands during the spring whereas DON dominated during the summer. This study demonstrates that although groundwater N changed significantly in the riparian peatland, those changes were not reflected in the stream. Consequently, although in‐stream changes of N concentrations were less marked than those in groundwater, they had a greater effect on stream water chemistry—because wetland groundwater contributed minimally to stream flow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
In watersheds impacted by nitrate from agricultural fertilizers, nitrification and denitrification may be decoupled as denitrification in the hyporheic zone is not limited to naturally produced nitrate. While most hyporheic research focuses on the 1–2 m of sediment beneath the stream bed, there are a limited number of studies that quantify nitrogen (N) cycling at larger hyporheic scales (10s of metres to kms). We conducted an investigation to quantify N cycling through a single meander of a low gradient, meandering stream, draining an agricultural watershed. Chemistry (major ions and N species) and hydrologic data were collected from the stream and groundwater beneath the meander. Evidence indicates that nearly all the shallow groundwater flowing beneath the meander originates as stream water on the upgradient side of the meander, and returns to the stream on the downgradient side. We quantified the flux of water beneath the meander using a numerical model. The flux of N into and out of the meander was quantified by multiplying the concentration of the important N species (nitrate, ammonium, dissolved organic nitrogen (DON)) by the modelled water fluxes. The flux of N into the meander is dominated by nitrate, and the flux of N out of the meander is dominated by ammonium and DON. While stream nitrate varied seasonally, ammonium and DON beneath the meander were relatively constant throughout the year. When stream nitrate concentrations are high (>2 mg litre?1), flow beneath the meander is a net sink for N as more N from nitrate in stream water is consumed than is produced as ammonium and DON. When stream nitrate concentrations are low (<2 mg litre?1), the flux of N entering is less than exiting the meander. On an annual basis, the meander hyporheic flow serves as a net sink for N. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The availability and partition of nitrogen (N) and phosphorus (P) in inorganic and organic compartments, as well as their stoichiometric ratio, are influenced by both physical and biological forcing factors. On this basis, the temporal and spatial dynamics in N:P atomic ratios in different compartments may provide information on the functioning of marine ecosystems. Here we explore the relative importance of water temperature, river inputs, wind mixing, stratification, ingression of nutrient-depleted Eastern Adriatic Current and phytoplankton biomass on concentrations and ratios between nitrogen and phosphorus in a semi-enclosed bay (the Gulf of Trieste), using data from monitoring programs carried out during 8 years. Water samples are first classified in 6 water types based on N:P ratios in different components, and then relationships between water type space-time distribution and a set of forcing factors is sought. Results show that the gulf is characterised by relatively stable N:P ratios in all compartments (about 23-26), always exceeding the classical Redfield ratio. In the surface layer, however, nitrogen and phosphorus dynamics are decoupled because of river input and plankton productivity, and a significant spatial and temporal variability is observed in terms of stoichiometric balance, nutrient concentrations and partition among the different pools. Deviations from stable N:P ratios follow a seasonal evolution. In spring, continental inputs alter inorganic nutrient compartments (N:P up to 115); later on, during the seasonal succession of biological processes (e.g. late spring phytoplankton blooms, summer increase in microbial activities and autumn phytoplankton blooms), a change is also seen in the organic dissolved and particulate pools. Multivariate statistical analysis suggests that, among the considered forcing factors, the most relevant in modulating the N:P stoichiometry in the Gulf of Trieste are river inputs and ingression of the Eastern Adriatic Current (acting in opposite directions) along with phytoplankton dynamics. During the whole period, besides variations in N:P stoichiometry, in the Gulf of Trieste dissolved organic matter represents the largest pool of N and P, which can provide a source of nutrients for the planktonic community alternative to inorganic nutrient.  相似文献   

17.
Nitrogen (N) and phosphorus (P) dynamics in the Kuparuk River in arctic Alaska were characterized in a 3‐year study using routine samples near the mouth of the river at the Arctic Ocean, synoptic whole‐river surveys, and temporally intense sampling during storms in three headwater basins. The Lower Kuparuk River has low nitrate concentrations (mean [NO3]‐N] = 17 µg l?1 ± 1·6 SE) and dissolved inorganic N (DIN, mean [N] = 31 µg l?1 ± 1·2 SE) compared with rivers in more temperate environments. Organic forms constituted on average 90% of the N exported to the Arctic Ocean, and high ratios of dissolved organic N (DON) to total dissolved N (TDN) concentrations (mean 0·92) likely result from waterlogged soils formed by reduced infiltration due to permafrost and low hydrologic gradients. Annual export of TDN, DON, and particulate N averaged 52 kg km?2, 48 kg km?2, and 4·1 kg km?2 respectively. During snowmelt, the high volume of runoff typically results in the highest nutrient loads of the year, although high discharge during summer storms can result in substantial nutrient loading over short periods of time. Differences in seasonal flow regime (snowmelt versus rain) and storm‐driven variation in discharge appear to be more important for determining nutrient concentrations than is the spatial variation in processes along the transect from headwaters towards the ocean. Both the temporal variation in nitrate:DIN ratios of headwater streams and the spatial variation in nitrate:DIN between larger sub‐basins and smaller headwater catchments is likely controlled by shifts in nitrification and soil anoxia. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
太湖草/藻型湖区沉积物-水界面环境特征差异   总被引:3,自引:0,他引:3  
在太湖草、藻型湖区进行冬、夏两季多点采样,分别对采样点的水环境特征、泥面以上5 cm上覆水中营养盐以及沉积物的含水量、中值粒径、有机碳、氮、磷、金属元素和溶解氧进行测定.结果表明:夏季藻型湖区表层水体pH高于中、底层,冬季草型湖区各层水体pH高于藻型;草型湖区水体浊度夏季低于藻型,冬季反之;藻型湖区上覆水中的硝态氮和磷酸根浓度显著高于草型;草型湖区沉积物中含水量冬季显著高于夏季;草型湖区沉积物中总有机碳显著高于藻型;Fe、Zn、Ca、Pb、Na和K等元素在草、藻型湖区间差异显著;沉积物中溶解氧表现为冬季深于夏季,藻型深于草型的规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号