首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 401 毫秒
1.
Drainage networks are the basis for segmentation of watersheds, an essential component in hydrological modelling, biogeochemical applications, and resource management plans. With the rapidly increasing availability of topographic information as digital elevation models (DEMs), there have been many studies on DEM‐based drainage network extraction algorithms. Most of traditional drainage network extraction methods require preprocessing of the DEM in order to remove “spurious” sink, which can cause unrealistic results due to removal of real sinks as well. The least cost path (LCP) algorithm can deal with flow routing over sinks without altering data. However, the existing LCP implementations can only simulate either single flow direction or multiple flow direction over terrain surfaces. Nevertheless, terrain surfaces in the real world are usually very complicated including both convergent and divergent flow patterns. The triangular form‐based multiple flow (TFM) algorithm, one of the traditional drainage network extraction methods, can estimate both single flow and multiple flow patterns. Thus, in this paper, it is proposed to combine the advantages of the LCP algorithm and the TFM algorithm in order to improve the accuracy of drainage network extraction from the DEM. The proposed algorithm is evaluated by implementing a data‐independent assessment method based on four mathematical surfaces and validated against “true” stream networks from aerial photograph, respectively. The results show that when compared with other commonly used algorithms, the new algorithm provides better flow estimation and is able to estimate both convergent and divergent flow patterns well regarding the mathematical surfaces and the real‐world DEM.  相似文献   

2.
Abstract

Data unavailability is the main reason for limited applications of hydrodynamic models for predicting inundation in the developing world. This paper aims to generate moderately high-resolution hybrid terrain data by merging height information from low-cost Indian Remote Sensing satellite (IRS) Cartosat-1 stereo satellite images, freely-available Shuttle Radar Topograph Mission (SRTM) digital elevation model (DEM) data, and limited surveyed channel cross-sections. The study reach is characterized by anabranching channels that are associated with channel bifurcation, loops and river islands. We compared the performance of a simple 1D–2D coupled LISFLOOD-FP model and a complex fully 2D finite element TELEMAC-2D model with the hybrid terrain data. The results show that TELEMAC-2D produced significantly improved simulated inundation with the hybrid terrain data, as compared to the SRTM DEM. LISFLOOD-FP was found unsuitable to work with the hybrid DEM in a complicated fluvial environment, as it failed to efficiently divert water in the branches from the main channel.
Editor D. Koutsoyiannis; Associate editor A. Viglione  相似文献   

3.
Digital elevation models (DEMs) at different resolutions (180, 360, and 720 m) are used to examine the impact of different levels of landscape representation on the hydrological response of a 690‐km2 catchment in southern Quebec. Frequency distributions of local slope, plan curvature, and drainage area are calculated for each grid size resolution. This landscape analysis reveals that DEM grid size significantly affects computed topographic attributes, which in turn explains some of the differences in the hydrological simulations. The simulations that are then carried out, using a coupled, process‐based model of surface and subsurface flow, examine the effects of grid size on both the integrated response of the catchment (discharge at the main outlet and at two internal points) and the distributed response (water table depth, surface saturation, and soil water storage). The results indicate that discharge volumes increase as the DEM is coarsened, and that coarser DEMs are also wetter overall in terms of water table depth and soil water storage. The reasons for these trends include an increase in the total drainage area of the catchment for larger DEM cell sizes, due to aggregation effects at the boundary cells of the catchment, and to a decrease in local slope and plan curvature variations, which in turn limits the capacity of the watershed to transmit water downslope and laterally. The results obtained also show that grid resolution effects are less pronounced during dry periods when soil moisture dynamics are mostly controlled by vertical fluxes of evaporation and percolation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
首先分析了获取数字高程模型(DEM)的高分遥感立体测量、合成孔径雷达干涉测量技术、激光雷达测距技术和运动重建技术等技术手段,以及现阶段高空间分辨率数字高程模型(VHR DEM)提取技术的主要特点,实际应用中需根据研究区地形地貌特点选择合适的VHR DEM获取技术;然后,结合最新研究成果着重阐述了VHR DEM在活断层识别及几何结构分析、同震位移与累积位移获取和古地震研究等领域的最新应用;最后指出,VHR DEM由于其高精度、高空间分辨率的特点,正逐步改变传统活断层的研究方法,使得对活断层的研究进入到了前所未有的精细化水平.   相似文献   

5.
Abstract

A dry pond is an urban drainage component designed to temporarily store stormwater runoff and to encourage infiltration of surface water to the subsurface layer. This paper investigates field measurement of a dry pond at Taiping Health Clinic, Perak, Malaysia that has been functioning well for five years. The pond has a surface area of 195 m2, maximum depth of 32 cm, and a storage capacity of 31.88 m3. The study focused on the infiltration functionality of the constructed dry pond and the results show that it has an average infiltration rate of 125 mm/h and dries up in 330 min after being filled to a depth of 31 mm. A public-domain hydrological model was then employed to simulate hydrographs of ponding and draining, the results of which matched observations with 86–98% accuracy. These results can lead to better understanding of the system and allow duplication of such a drainage design elsewhere.

Editor D. Koutsoyiannis

Citation Lai, S.H. and Mah, D.Y.S., 2012. Field investigation of a dry detention pond with underground detention storage. Hydrological Sciences Journal, 57 (6), 1249–1255.  相似文献   

6.
Abstract

Ecological flow needs (EFN) frameworks incorporate a range of ecologically-relevant hydrological variables based on prior knowledge of river regime characteristics. However, when applied in cold regions, these approaches have largely ignored the influence of winter ice cover and the spring freshet on hydrological regimes: key components of river systems in cold regions with important direct effects on water quality, aquatic habitat and ecology. Here, we combine a review of the published literature on cold-regions hydrology and hydro-ecology with available hydrometric information for sites across Canada, a major cold-region country, to explore phenomena unique to these systems. We identify several ecologically-relevant hydrological measures (i.e. annual ice on/off dates, ice-cover duration, spring freshet initiation, peak water level during river ice break-up), pairing these with established metrics for incorporation into an enhanced suite of indicators specifically designed for cold regions. This paper presents the Cold-regions Hydrological Indicators of Change (CHIC), which can provide the basis for the assessment of EFN and climate change assessments in cold-region river ecosystems.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Peters, D.L., Monk, W.A., and Baird, D.J., 2014. Cold-regions Hydrological Indicators of Change (CHIC) for ecological flow needs assessment. Hydrological Sciences Journal, 59 (3–4), 502–516.  相似文献   

7.
流域水系自动提取的方法和应用   总被引:28,自引:3,他引:28  
李昌峰  冯学智  赵锐 《湖泊科学》2003,15(3):205-212
讨论由栅格数字高程模型(DEM)自动提取流域水系的原理和方法,并以西苕溪中上游流域为研究区进行了河网生成实验. 研究表明:在山地丘陵区和平均地形坡度不小于3°的区域,所生成河网具有很高的可靠性. 为了解决在平均地形坡度小于3°的平坦区域河网生成中产生的虚拟河网与自然水系偏差较大的问题,提出了利用主干河道和平原水系数字化作为约束条件的生成河网的方法,取得了与实际情况比较接近的结果,从而使水文要素的模拟更具有实际意义.  相似文献   

8.
Abstract

A glacier submodel was successfully integrated into the distributed hydrological model WaSiM-ETH to simulate the discharge of a heavily glaciated drainage basin. The glacier submodel comprises a distributed temperature index model including solar radiation to simulate the melt rate of glaciated areas. Meltwater and rainfall are transformed into glacier discharge by using a linear reservoir approach. The model was tested on a high-alpine sub-basin of the Rhone basin (central Switzerland) of which 48% is glaciated. Continuous discharge simulations were performed for the period 1990–1996 and compared with hourly discharge observations. The pronounced daily and annual fluctuations in discharge were simulated well. The obtained efficiency criterion, R2, exceeds 0.89 for all years. The good performance of the glacier submodel is also demonstrated by integrating it into the hydrological model PREVAH.  相似文献   

9.
The role of hummocky terrain in governing runoff routing and focussing groundwater recharge in the Northern Prairies of North America is widely recognised. However, most hydrological studies in the region have not effectively utilised information on the surficial geology and associated landforms in large-scale hydrological characterization. The present study uses an automated digital elevation model (DEM) analysis of a 6500-km2 area in the Northern Prairies to quantify hydrologically relevant terrain parameters for the common types of terrains in the prairies with different surficial deposits widespread in the prairies, namely, moraines and glaciolacustrine deposits. Runoff retention (and storage) capacity within depressions varies greatly between different surficial deposits and is comparable in magnitude with a typical amount of seasonal snowmelt runoff generation. The terrain constraint on potential runoff retention varies from a few millimetres in areas classified as moraine to tens of millimetres in areas classified as stagnant ice moraine deposits. Fluted moraine and glaciolacustrine deposits have intermediate storage capacity values. The study also identified the probability density function describing a number of immediate upstream neighbours for each depression in a fill-and-spill network. A relationship between depression parameters and surficial deposits, as well as identified depression network structure, allows parametrisation of hydrologic models outside of the high-resolution DEM coverage, which can still account for terrain variation in the Prairies.  相似文献   

10.
The automatic mapping of drainage networks from terrain representation has been an interesting topic in hydrological and geomorphological modeling. However, the existing methods often suffer from high sensitivity to terrain noise or lose significant stream branches and accurate channel paths. In this paper, we propose a contour-based framework in drainage network extraction. The proposed framework incorporates discrete curve evolution (DCE) to eliminate the noise influence by dynamically segmenting the contour lines (CLs) into valley bends, and to detect the valley feature points. The skeleton construction technique is then applied to distill more accurate channel paths in complex terrain. Finally, a linking step is undertaken to generate the channel network. The proposed method was tested on a series of elevation datasets, with varied resolution, region size, and local relief. The experiments verified that the proposed method can achieve highly accurate channel networks and is robust, even in regions with high-contrast relief, and/or in cases with significant terrain noise and irregularities.  相似文献   

11.
New methods for obtaining and quantifying spatially distributed subsurface moisture are a high research priority in process hydrology. We use simple linear regression analyses to compare terrain electrical conductivity measurements (EC) derived from multiple electromagnetic induction (EMI) frequencies to a distributed grid of water‐table depth and soil‐moisture measurements in a highly instrumented 50 by 50 m hillslope in Putnam County, New York. Two null hypotheses were tested: H0(1), there is no relationship between water table depth and EC; H0(2), there is no relationship between soil moisture levels and EC. We reject both these hypotheses. Regression analysis indicates that EC measurements from the low frequency EM31 meter with a vertical dipole orientation could explain over 80% of the variation in water‐table depth across the test hillslope. Despite zeroing and sensitivity problems encountered with the high frequency EM38, EC measurements could explain over 70% of the gravimetrically determined soil‐moisture variance. The use of simple moisture retrieval algorithms, which combined EC measurements from the EM31 and EM38 meters in both their vertical and horizontal orientations, helped increase the r2 coefficients slightly. This first hillslope hydrological analysis of EMI technology in this way suggests that it may be a promising method for the collection of a large number of distributed soilwater and groundwater depth measurements with a reasonable degree of accuracy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Global digital elevation models (DEMs) are an invaluable source of information in large area studies. Of particular interest are shuttle radar topography mission (SRTM) data that are freely available for the scientific community worldwide. Prior to any application, global datasets should be evaluated using reference data of higher accuracy. Therefore, the main objective of this study was to assess the accuracy of the SRTM C-band (version 4) DEM and SRTM X-band DEM of mountainous areas located in Poland and to examine the quality of data in relation to topographic parameters, radar beam geometry, initial voids in data and the presence of forest cover. A DEM from the Central National Geodetic and Cartographic Inventory, Poland, served as a reference. The study consisted of three steps: (i) the computation of vertical errors of the SRTM C- and X-band DEMs, (ii) the examination of any systematic bias in the data, and (iii) the analysis of the relationships between the elevation errors and terrain slope, aspect, local incidence angle, occurrence of voids and land cover. We found that the SRTM C- and X-band DEMs have mean errors equal to 4.31 ± 14.09 and 9.03 ± 37.40 m and root mean square errors equal to 14.74 and 38.47 m, respectively. Only 82 % of the C-band DEM and 74 % of the X-band DEM vertical errors had absolute values below 16 m. We found that the most important factors determining the occurrence of high errors were the distribution of initial voids and high slope angles for the C-band DEM, and local incidence angle, slope, aspect and radar beam geometry for the X-band DEM. In both cases, the presence of forest cover increased the mean error by approximately 10 m.  相似文献   

13.
The digital elevation model (DEM) has become an essential tool for an increasing array of mountain runoff analyses, particularly the derivation and mapping of stream channel networks. This study examines how well commonly applied DEM‐based channel derivation methods at different spatial resolutions can represent the channel network for a glaciated Rocky Mountain headwater catchment. The specific objectives are to (1) examine how differences in gridded DEM resolution affect spatially distributed values of local slope, specific contributing area, and topographic wetness index derived from both eight and infinite directional flow algorithms, (2) map the actual stream channel network to examine the influence of surface variables on channel initiation, and (3) assess accuracy of DEM‐derived networks compared with the field surveyed network. Results show that for the same contributing area threshold, increasing grid cell size leads to increased channelization of modeled networks. A plot of local slope versus contributing area reveals a negative relationship similar to that of prior studies in un‐glaciated areas but with breaks in slope at contributing areas that are too small to represent thresholds for channelization. Field survey results and evaluation of DEM‐derived channel networks suggest that channel network formation is not clearly related to surface topographic variables at Loch Vale. Digitally derived channel networks do not accurately predict low order channel locations, but approximations of the channel network with drainage density and headward extent of channelization similar to the observed network can be derived with both a 1 m and 10 m DEM using a contributing area threshold of approximately 4x104 m2. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Hydrogen and oxygen isotopes of water are common environmental tracers used to investigate hydrological processes, such as evaporation, vegetation water use, surface water–groundwater interaction, and groundwater recharge. The water isotope signature in surface water and groundwater evolves from the initial rain signature. In mountain terrain, rain water stable isotope composition spatially varies due to complex orographic precipitation processes. Many studies have examined the isotope–elevation relationships, while few have quantitatively investigate the terrain aspect and slope effect on rain isotope distribution. In this paper, we examine the orographic effects more completely, including elevation, terrain slope and aspect, on stable isotope distribution in the Mount Lofty Ranges (MLR) of South Australia, using a multivariate regression model. The regression of precipitation isotope composition suggests that orographic effects are the dominant controls on isotope spatial variability. About 75% of spatial variability in δ18O and deuterium excess is represented by the regression using solely orography-related variables (elevation, terrain aspect and slope), with about 25% of δ18O spatial variability attributed to the terrain aspect and slope effect. The lapse rate is about −0.25‰ for every 100 m at both windward and leeward slopes. However, at the same elevation, δ18O at the leeward slope (eastern MLR) is 0.5‰ larger than that at the windward slope. The difference can be explained by different mechanisms – continuous rain-out processes on the windward side and sub-cloud evaporation on the leeward side. Both δ18O and deuterium excess maps (1 km resolution) are constructed based on the regression results for the MLR. Both maps are consistent with groundwater of local precipitation origin, and useful to examine groundwater recharge.  相似文献   

15.
The role of lithology in influencing basin form and function is explored empirically by investigating correlations between a range of catchment variables, where the spatial unit of analysis is not surface catchments but lithologically coherent groundwater units. Using the Thames basin, UK, as a case study, nine groundwater units have been identified. Values for 11 hydrological and geomorphological variables, including rainfall, drainage density, Baseflow Index, aquifer porosity, storage coefficient and log‐hydraulic conductivity, aquifer and drainage elevation, river incision, and hypsometric integral have been estimated for each of the groundwater units in the basin, and Pearson correlation coefficients calculated for all pairs of variables. Seven of the correlation coefficients are found to be significant at a confidence level of > 99%. Negative correlations between drainage density and log aquifer hydraulic conductivity, and between drainage density and river incision, and positive correlations between log‐hydraulic conductivity and river incision, log‐hydraulic conductivity and Baseflow Index, and between Baseflow Index and river incision are inferred to have consistent causal explanations. For example, incision of rivers into aquifers leads to relative increases in hydraulic gradients in the vicinity of rivers which, in turn, promotes the development of secondary porosity increasing both aquifer hydraulic conductivity and, hence, Baseflow Index. The implication of this interpretation is that the geomorphological evolution of basins is intimately linked to the evolution of hydraulic conductivity of the underlying aquifers. This is consistent with, and supports the notion of a coupled complexly evolving surface water‐groundwater system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The aim of this study was to identify the mechanisms of runoff generation and routing and their controlling factors at the hillslope scale, on artificial slopes derived from surface coal mining reclamation in a Mediterranean–continental area. Rainfall and runoff at interrill and microcatchment scales were recorded for a year on two slopes with different substrata: topsoil cover and overburden cover. Runoff coefficient and runoff routing from interrill areas to microcatchment outlets were higher in the overburden substratum than in topsoil, and greater in the most developed rill network. Rainfall volume is the major parameter responsible for runoff response on overburden, suggesting that this substratum is very impermeable—at least during the main rainfall periods of the year (late spring and autumn) when the soil surface is sealed. In such conditions, most rainfall input is converted into runoff, regardless of its intensity. Results from artificial rainfall experiments, conducted 3 and 7 years after seeding, confirm the low infiltration capacity of overburden when sealed. The hydrological response shows great seasonal variability on the overburden slope in accordance with soil surface changes over the year. Rainfall volume and intensities (I30, I60) explain runoff at the interrill scale on the topsoil slope, where rainfall experiments demonstrated a typical Hortonian infiltration curve. However, no correlation was found at the microcatchment level, probably because of the loss of functionality of the only rill as ecological succession proceeded. The runoff generation mechanism on the topsoil slope is more homogeneous throughout the year. Runoff connectivity, defined as the ratio between runoff rates recorded at the rill network scale and those recorded at the interrill area scale in every rainfall event, was also greater on the rilled overburden slope, and in the most developed rill network. The dense rill networks of the overburden slope guarantee very effective runoff drainage, regardless of rainfall magnitude. Rills drain overland flow from interrill‐sealed areas, reducing the opportunity of reinfiltration in areas not affected by siltation. Runoff generation and routing on topsoil slopes are controlled by grass cover and soil moisture content, whereas on overburden slopes rill network density and soil moisture content are the main controlling factors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

This study evaluated the hydrological significance of mountain regions, comparing them with the lowlands of the Ebro River basin (northeast Iberian Peninsula). It was based on records obtained from measuring stations. An altitude of 1000 m above mean sea level was adopted as the criterion for distinguishing between lowland and mountain areas. We analysed 12 sub-basins whose rivers flow directly into the River Ebro, and which covered 66% of the total surface area, 91% of the mountain area and accounted for 77% of total annual runoff. For the River Ebro basin, we found that the mean precipitation depth, the runoff volume per unit of surface area, and the runoff coefficient were all greater in the mountains than in the adjacent lowlands, with respective differences of 70%, 180% and 60%. These results and the particular fragility of the Mediterranean mountain ecosystems confirm the mountain regions of the Ebro basin as strategic zones for hydrological and territorial planning.

Citation López, R. & Justribó, C. (2010) The hydrological significance of mountains: a regional case study, the Ebro River basin, northeast Iberian Peninsula. Hydrol. Sci. J. 55(2), 223–233.  相似文献   

18.
The Natural Resource Conservation Service – Curve Number (NRCS-CN) methodology is a widely used tool for estimating surface runoff, which is of prime importance in hydrological engineering, agricultural planning and management, environmental impact assessment, flood forecasting, and others fields. This article reviews the methodology and associated hydrological models used for runoff estimation along with their advantages and limitations. Furthermore, discussion focuses on the potential applications of Remote Sensing (RS) and Geographical Information System (GIS) techniques for estimating hydrological variables, such as rainfall, soil moisture and CN required for the NRCS-CN methodology, as well as future research and opportunities for improved runoff estimation at the macro scale.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Efstratiadis  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号