首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 226 毫秒
1.
Probable maximum flood (PMF) event estimation has challenged the scientific community for many years. Although the concept of the PMF is often applied, there is no consensus on the methods that should be applied to estimate it. In PMF estimation, the spatio-temporal representation of the probable maximum precipitation (PMP) as well as the choice of modelling approach is often not theoretically founded. Moreover, it is not clear how these choices influence PMF estimation itself. In this study, combinations of three different spatio-temporal PMP representations and three different modelling approaches are applied to determine the PMF of a mesoscale basin keeping the antecedent catchment conditions and the total precipitation amount constant. The nine resulting PMF estimations are used to evaluate each combination of methods. The results show that basic methods allow for a rough estimation of the PMF. In cases where a physically plausible and reliable estimation is required, sophisticated PMP and PMF estimation approaches are recommended.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR A. Viglione  相似文献   

2.
Abstract

This analysis was undertaken to develop appropriate extreme flood design criteria for a nuclear power plant at Halileh, near Bushehr, Iran, adjacent to the Persian Gulf. Graphical relationships presented provide a convenient means of estimating the probable maximum precipitation and the 2- to 100-year return period rainfall events with durations from 5 min to 24 h. The relationships may be applied for drainage areas up to 25 km2. Probable maximum precipitation and 2- to 100-year return period rainfall events were estimated. Precipitation depth-duration relationships were derived.  相似文献   

3.
Abstract

Mixed-regime Andean basins present a complex scenario for flood analysis. In this study, we propose a methodology for incorporating orographic effects influenced by mountainous barriers in the Probable Maximum Precipitation (PMP) estimation method in sparsely-gauged basins. The proposed methodology is applied to the Puclaro Reservoir basin in Chile, which is affected by the Andes. The PMP estimations were calculated by applying statistical and hydrometeorological approaches to the baseline (1960–1999) and climate change scenarios (2045–2065) determined from projections of the ECHAM5 general circulation model. Temperature projections for the 2040–2065 period show that there would be a rise in the catchment contributing area that would lead to an increase in the average liquid precipitation over the basin. Temperature projections would also affect the maximization factors in the calculation of the PMP, as precipitable water content, raising it to 126.6% and 62.5% under scenarios A2 and B1, respectively; the probable maximum flood (PMF) would increase to +175.5% under the A2 scenario. These projections would affect the safety of dam design and would be generalizable to zones with similar mixed hydrology and climate change projections. We propose that the methodology presented could be also applied to basins with similar characteristics.
Editor Z.W. Kundzewicz; Associate editor A. Porporato  相似文献   

4.
Abstract

Flood frequency estimation is crucial in both engineering practice and hydrological research. Regional analysis of flood peak discharges is used for more accurate estimates of flood quantiles in ungauged or poorly gauged catchments. This is based on the identification of homogeneous zones, where the probability distribution of annual maximum peak flows is invariant, except for a scale factor represented by an index flood. The numerous applications of this method have highlighted obtaining accurate estimates of index flood as a critical step, especially in ungauged or poorly gauged sections, where direct estimation by sample mean of annual flood series (AFS) is not possible, or inaccurate. Therein indirect methods have to be used. Most indirect methods are based upon empirical relationships that link index flood to hydrological, climatological and morphological catchment characteristics, developed by means of multi-regression analysis, or simplified lumped representation of rainfall–runoff processes. The limits of these approaches are increasingly evident as the size and spatial variability of the catchment increases. In these cases, the use of a spatially-distributed, physically-based hydrological model, and time continuous simulation of discharge can improve estimation of the index flood. This work presents an application of the FEST-WB model for the reconstruction of 29 years of hourly streamflows for an Alpine snow-fed catchment in northern Italy, to be used for index flood estimation. To extend the length of the simulated discharge time series, meteorological forcings given by daily precipitation and temperature at ground automatic weather stations are disaggregated hourly, and then fed to FEST-WB. The accuracy of the method in estimating index flood depending upon length of the simulated series is discussed, and suggestions for use of the methodology provided.
Editor D. Koutsoyiannis  相似文献   

5.
Abstract

The concept of “catchment-scale storm velocity” quantifies the rate of storm motion up and down the basin accounting for the interaction between the rainfall space–time variability and the structure of the drainage network. It provides an assessment of the impact of storm motion on flood shape. We evaluate the catchment-scale storm velocity for the 29 August 2003 extreme storm that occurred on the 700 km2-wide Fella River basin in the eastern Italian Alps. The storm was characterized by the high rate of motion of convective cells across the basin. Analysis is carried out for a set of basins that range in area from 8 to 623 km2 to: (a) determine velocity magnitudes for different sub-basins; (b) examine the relationship of velocity with basin scale and (c) assess the impact of storm motion on simulated flood response. Two spatially distributed hydrological models of varying degree of complexity in the representation of the runoff generation processes are used to evaluate the effects of the storm velocity on flood modelling and investigate model dependencies of the results. It is shown that catchment-scale storm velocity has a non-linear dependence on basin scale and generally exhibits rather moderate values, in spite of the strong kinematic characteristics of individual storm elements. Consistently with these observations and for both models, hydrological simulations show that storm motion has an almost negligible effect on the flood response modelling.

Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Nikolopoulos, E.I., Borga, M., Zoccatelli, D., and Anagnostou, E.N., 2014. Catchment-scale storm velocity: quantification, scale dependence and effect on flood response. Hydrological Sciences Journal, 59 (7), 1363–1376. http://dx.doi.org/10.1080/02626667.2014.923889  相似文献   

6.
This paper presents the development and application of a distributed rainfall-runoff model for extreme flood estimation, and its use to investigate potential changes in runoff processes, including changes to the ‘rating curve’ due to effects of over-bank flows, during the transition from ‘normal’ floods to ‘extreme’ floods. The model has two components: a hillslope runoff generation model based on a configuration of soil moisture stores in parallel and series, and a distributed flood routing model based on non-linear storage-discharge relationships for individual river reaches that includes the effects of floodplain geometries and roughnesses. The hillslope water balance model contains a number of parameters, which are measured or derived a priori from climate, soil and vegetation data or streamflow recession analyses. For reliable estimation of extreme discharges that may extend beyond recorded data, the parameters of the flood routing model are estimated from hydraulic properties, topographic data and vegetation cover of compound channels (main channel and floodplains). This includes the effects of the interactions between the main channel and floodplain sections, which tend to cause a change to the rating curve. The model is applied to the Collie River Basin, 2545 km2, in Western Australia and used to estimate the probable maximum flood (PMF) from probable maximum precipitation estimates for this region. When moving from normal floods to the PMFs, application of the model demonstrates that the runoff generation process changes with a substantial increase of saturation excess overland flow through the expansion of saturated areas, and the dominant runoff process in the stream channel changes from in-bank to over-bank flows. The effects of floodplain inundation and floodplain vegetation can significantly reduce the magnitude of the estimated PMFs. This study has highlighted the need for the estimation of a number of critical parameters (e.g. cross-sectional geometry, floodplain vegetation, soil depths) through concerted field measurements or surveys, and targeted laboratory experiments.  相似文献   

7.
《水文科学杂志》2013,58(3):456-473
Abstract

The main objective of this study is to compare the seasonality of selected precipitation and runoff characteristics in Austria and Slovakia. Monthly seasonality indices are analysed to interpret the long-term climatic behaviour, while the seasonality of extremes is analysed to understand flood occurrence. The analysis is based on mean monthly precipitation data at 555 (Austria) and 202 (Slovakia) stations, annual maximum daily precipitation at 520 (Austria) and 56 (Slovakia) stations, and mean monthly runoff and annual maximum floods at 258 (Austria) and 85 (Slovakia) gauging stations. The results suggest that the seasonality of the selected hydrological characteristics is an important indicator of flood processes, but varies considerably in space. The seasonality of extreme flood events and, hence flood processes, tends to change with the flood magnitude. This change is more pronounced in the lowland and hilly regions than it is in the mountains. Both in Austria and Slovakia, decades of flood seasonality exist.  相似文献   

8.
ABSTRACT

Taking a representative catchment of the Yangtze River Delta region as the study area, this research evaluated sub-daily rainstorm variability and its potential effects on flood processes based on an integrated approach of the HEC-HMS model and design storm hyetographs. The results show that the intensities of rainfall on sub-daily scale are getting more extreme. The annual maximum 1-, 2- and 3-hour rainstorms followed significant upward trends with increases of 0.32, 0.43 and 0.44 mm per year, respectively, while the annual maximum 6-, 12- and 24-h events had non-significant rising trends. The detected significant trends in short-duration rainstorms were then used to redesign storm hyetographs to drive the HEC-HMS model, the results show that these changes in short-duration rainstorm characteristics would increase the flood peak discharge and flood volume. These findings indicate that regional flood control capabilities must be improved to manage the adverse impacts of rainfall variation under changing environments.  相似文献   

9.
Y. Wang  X. Zhang  M. Mu  C. Zhang  A. Lv 《水文科学杂志》2019,64(16):2006-2014
ABSTRACT

Flood-risk is affected by both climatic and anthropogenic factors. In this study, we assess changes in flood risk induced by a combination of climate change and flood prevention sets in the Baiyangdian (BYD) Lake area of China. Extreme storm events are analysed by the bias-corrected climate data from global climate models. A hydrological model is implemented and integrated with a hydrodynamic model to assess flood risk under three scenarios. The streamflow into the BYD was validated against historical flash-flood events. The results indicate that the changing climate increased extreme precipitation, upstream total inflow and the flood risk at the core region of Xiong’an New Area (XNA), the newly announced special economic zone in the BYD area. However, flood prevention measures can effectively mitigate the climatic effect. The research highlights the severe flash-flood risk at BYD and demonstrates the urgent need for a climate-resilient plan for XNA.  相似文献   

10.
Radar rainfall estimation for flash flood forecasting in small, urban catchments is examined through analyses of radar, rain gage and discharge observations from the 14.3 km2 Dead Run drainage basin in Baltimore County, Maryland. The flash flood forecasting problem pushes the envelope of rainfall estimation to time and space scales that are commensurate with the scales at which the fundamental governing laws of land surface processes are derived. Analyses of radar rainfall estimates are based on volume scan WSR-88D reflectivity observations for 36 storms during the period 2003–2005. Gage-radar analyses show large spatial variability of storm total rainfall over the 14.3 km2 basin for flash flood producing storms. The ability to capture the detailed spatial variation of rainfall for flash flood producing storms by WSR-88D rainfall estimates varies markedly from event to event. As spatial scale decreases from the 14.3 km2 scale of the Dead Run watershed to 1 km2 (and the characteristic time scale of flash flood producing rainfall decreases from 1 h to 15 min) the predictability of flash flood response from WSR-88D rainfall estimates decreases sharply. Storm to storm variability of multiplicative bias in storm total rainfall estimates is a dominant element of the error structure of radar rainfall estimates, and it varies systematically over the warm season and with flood magnitude. Analyses of the 7 July 2004 and 28 June 2005 storms illustrate microphysical and dynamical controls on radar estimation error for extreme flash flood producing storms.  相似文献   

11.
The probable maximum precipitation which is defined as the maximum precipitation at a particular location for a given duration is used as a design criterion for major dams. The assumptions of deterministic consideration and an upper limit to probable maximum precipitation have been repeatedly criticized by hydrologists. Nowadays, multifractal method which strongly contains physical bases can be used to improve the probable maximum precipitation. In this research, the universal multifractal model was used to estimate the design probable maximum precipitation for specified exceedence probability in basin of Bakhtiari Dam, southwest Iran, and its results were compared with statistical and synoptically methods. The results revealed that the return period of statistical and synoptically probable maximum precipitation, estimated for the different durations, are about 109 and 103–104 years, respectively; also, over periods ranging from 1 to 7 days, the ratios of design probable maximum precipitations, estimated based on multifractal method for return period of 103–109 years, to statistical and synoptically probable maximum precipitation estimates ranged from 0.61 to 1.1 and 1.33 to 2.37, respectively. These results indicated that the multifractal method can be used to reasonably estimate the probable maximum precipitation.  相似文献   

12.
Abstract

Abstract The identification of flood seasonality is a procedure with many practical applications in hydrology and water resources management. Several statistical methods for capturing flood seasonality have emerged during the last decade. So far, however, little attention has been paid to the uncertainty involved in the use of these methods, as well as to the reliability of their estimates. This paper compares the performance of annual maximum (AM) and peaks-over-threshold (POT) sampling models in flood seasonality estimation. Flood seasonality is determined by two most frequently used methods, one based on directional statistics (DS) and the other on the distribution of monthly relative frequencies of flood occurrence (RF). The performance is evaluated for the AM and three common POT sampling models depending on the estimation method, flood seasonality type and sample record length. The results demonstrate that the POT models outperform the AM model in most analysed scenarios. The POT sampling provides significantly more information on flood seasonality than the AM sampling. For certain flood seasonality types, POT samples can lead to estimation uncertainty that is found in up to ten-times longer AM samples. The performance of the RF method does not depend on the flood seasonality type as much as that of the DS method, which performs poorly on samples generated from complex seasonality distributions.  相似文献   

13.
Abstract

Abstract A parameter estimation method is proposed for fitting the generalized extreme value (GEV) distribution to censored flood samples. Partial L-moments (PL-moments), which are variants of L-moments and analogous to ?partial probability weighted moments?, are defined for the analysis of such flood samples. Expressions are derived to calculate PL-moments directly from uncensored annual floods, and to fit the parameters of the GEV distribution using PL-moments. Results of Monte Carlo simulation study show that sampling properties of PL-moments, with censoring flood samples of up to 30% are similar to those of simple L-moments, and also that both PL-moment and LH-moments (higher-order L-moments) have similar sampling properties. Finally, simple L-moments, LH-moments, and PL-moments are used to fit the GEV distribution to 75 annual maximum flow series of Nepalese and Irish catchments, and it is found that, in some situations, both LH- and PL-moments can produce a better fit to the larger flow values than simple L-moments.  相似文献   

14.
E. Morin  H. Yakir 《水文科学杂志》2014,59(7):1353-1362
Abstract

t Spatio-temporal storm properties have a large impact on catchment hydrological response. The sensitivity of simulated flash floods to convective rain-cell characteristics is examined for an extreme storm event over a 94 km2 semi-arid catchment in southern Israel. High space–time resolution weather radar data were used to derive and model convective rain cells that then served as input into a hydrological model. Based on alterations of location, direction and speed of a major rain cell, identified as the flooding cell for this case, the impacts on catchment rainfall and generated flood were examined. Global sensitivity analysis was applied to identify the most important factors affecting the flash flood peak discharge at the catchment outlet. We found that the flood peak discharge could be increased three-fold by relatively small changes in rain-cell characteristics. We assessed that the maximum flash flood magnitude that this single rain cell can produce is 175 m3/s, and, taking into account the rest of the rain cells, the flash flood peak discharge can reach 260 m3/s.
Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Morin, E. and Yakir, H., 2013. Hydrological impact and potential flooding of convective rain cells in a semi-arid environment. Hydrological Sciences Journal, 59 (7), 1275–1284. http://dx.doi.org/10.1080/02626667.2013.841315  相似文献   

15.
《水文科学杂志》2012,57(15):1867-1892
ABSTRACT

The flood peak is the dominating characteristic in nearly all flood-statistical analyses. Contrary to the general assumptions of design flood estimation, the peak is not closely related to other flood characteristics. Differentiation of floods into types provides a more realistic view. Often different parts of the probability distribution function of annual flood peaks are dominated by different flood types, which raises the question how shifts in flood regimes would modify the statistics of annual maxima. To answer this, a distinction into five flood types is proposed; then, temporal changes in flood-type frequencies are investigated. We show that the frequency of floods caused by heavy rain has increased significantly in recent years. A statistical model is developed that simulates peaks for each event type by type-specific peak–volume relationships. In a simulation study, we show how changes in frequency of flood event type lead to changes in the quantiles of annual maximum series.  相似文献   

16.
Abstract

Flood frequency analysis can be made by using two types of flood peak series, i.e. the annual maximum (AM) and peaks-over-threshold (POT) series. This study presents a comparison of the results of both methods for data from the Litija 1 gauging station on the Sava River in Slovenia. Six commonly used distribution functions and three different parameter estimation techniques were considered in the AM analyses. The results showed a better performance for the method of L-moments (ML) when compared with the conventional moments and maximum likelihood estimation. The combination of the ML and the log-Pearson type 3 distribution gave the best results of all the considered AM cases. The POT method gave better results than the AM method. The binomial distribution did not offer any noticeable improvement over the Poisson distribution for modelling the annual number of exceedences above the threshold.
Editor D. Koutsoyiannis

Citation Bezak, N., Brilly, M., and ?raj, M., 2014. Comparison between the peaks-over-threshold method and the annual maximum method for flood frequency analysis. Hydrological Sciences Journal, 59 (5), 959–977.  相似文献   

17.
Abstract

Event-based methods are used in flood estimation to obtain the entire flood hydrograph. Previously, such methods adopted in the UK have relied on pre-determined values of the input variables (e.g. rainfall and antecedent conditions) to a rainfall–runoff model, which is expected to result in an output flood of a particular return period. In contrast, this paper presents a method that allows all the input variables to take on values across the full range of their individual distributions. These values are then brought together in all possible combinations as input to an event-based rainfall–runoff model in a Monte Carlo simulation approach. Further, this simulation strategy produces a long string of events (on average 10 per year), where dependencies from one event to the next, as well as between different variables within a single event, are accounted for. Frequency analysis is then applied to the annual maximum peak flows and flow volumes.

Citation Svensson, C., Kjeldsen, T.R., and Jones, D.A., 2013. Flood frequency estimation using a joint probability approach within a Monte Carlo framework. Hydrological Sciences Journal, 58 (1), 1–20.  相似文献   

18.
Abstract

A procedure to identify sets of operational rules for gated spillways for optimal flood routing management of artificial reservoirs is proposed. The flood retention storage of a dam having a gated flood spillway is divided into 15 sub-storages whose surface elevations are identified as critical levels. The most suitable operation set for the downstream conditions and for the dam can be chosen from many derived operation sets. The spillway gates are operated in an optimum way for any floods from very small magnitudes to the probable maximum flood (PMF), without having to forecast the actual magnitude of the incoming flood hydrograph. Decision floods are formed by dividing the PMF into 15 sub-hydrographs by 5 and 10% increments in the ranges 5–50% and 50–100% of the PMF, respectively. Many potential spillway gate openings from closed to fully open are chosen initially. As a result of a series of routing simulations of 15 decision floods, a set of 15 gate openings is determined such that all floods from very small magnitudes to the PMF may be routed without overtopping the dam crest. Next, a few more 15-stage operation rules are determined such that the gate openings of the initial stages are decreased as their critical levels are increased stepwise, with the objective of attenuating smaller floods more effectively and releasing higher outflows for larger floods close to and including the PMF. The developed model is applied to the Catalan and Aslantas dams in Turkey, both of which serve for flood mitigation as well as hydropower generation.

Citation Haktanir, T., Citakoglu, H., and Acanal, N., 2013. Fifteen-stage operation of gated spillways for flood routing management through artificial reservoirs. Hydrological Sciences Journal, 58 (5), 1013–1031.

Editor Z.W. Kundzewicz; Associate editor A. Montanari  相似文献   

19.
Abstract

Pooling of flood data is widely used to provide a framework to estimate design floods by the Index Flood method. Design flood estimation with this approach involves derivation of a growth curve which shows the relationship between XT and the return period T, where XT ?=?QT /QI and QI is the index flood at the site of interest. An implicit assumption with the Index Flood procedure of pooling analysis is that the XT T relationship is the same at all sites in a homogeneous pooling group, although this assumption would generally be violated to some extent in practical cases, i.e. some degree of heterogeneity exists. In fact, in only some cases is the homogeneity criterion effectively satisfied for Irish conditions. In this paper, the performance of the index-flood pooling analysis is assessed in the Irish low CV (coefficient of variation) hydrology context considering that heterogeneity is taken into account. It is found that the performance of the pooling method is satisfactory provided there are at least 350 station years of data included. Also it is found that, in a highly heterogeneous group, it is more desirable to have many sites with short record lengths than a smaller number of sites with long record lengths. Increased heterogeneity decreases the advantage of pooling group-based estimation over at-site estimation. Only a heterogeneity measure (H1) less than 4.0 can render the pooled estimation preferable to that obtained for at-site estimation for the estimation of 100-year flood. In moderately to highly heterogeneous regions it is preferable to conduct at-site analysis for the estimation of 100-year flood if the record length at the site concerned exceeds 50.

Editor Z.W. Kundzewicz; Associate editor A. Carsteanu

Citation Das, S. and Cunnane, C., 2012. Performance of flood frequency pooling analysis in a low CV context. Hydrological Sciences Journal, 57 (3), 433–444.  相似文献   

20.
Abstract

The impulse response of a linear convective-diffusion analogy (LD) model used for flow routing in open channels is proposed as a probability distribution for flood frequency analysis. The flood frequency model has two parameters, which are derived using the methods of moments and maximum likelihood. Also derived are errors in quantiles for these parameter estimation methods. The distribution shows that the two methods are equivalent in terms of producing mean values—the important property in case of unknown true distribution function. The flood frequency model is tested using annual peak discharges for the gauging sections of 39 Polish rivers where the average value of the ratio of the coefficient of skewness to the coefficient of variation equals about 2.52, a value closer to the ratio of the LD model than to the gamma or the lognormal model. The likelihood ratio indicates the preference of the LD over the lognormal for 27 out of 39 cases. It is found that the proposed flood frequency model represents flood frequency characteristics well (measured by the moment ratio) when the LD flood routing model is likely to be the best of all linear flow routing models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号