首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
黄漪平  诸敏 《湖泊科学》1998,10(S1):85-94
Lake Taihu, the third largest fresh water lake in China, with a surface area of 2 338 km2, is located in the Changjiang River Delta, the most advanced economic zone in China. During the last two decades, the rapid economic development of local agriculture and industry both in the urban and rural areas of the region has made great advances. Great quantieis of pollutants have been discharged into the lake, its nutrient content has increased continuously, and phytoplankton blooms have occurred in some areas. Water quality protection in Lake Taihu is very important because of its close relation with economical development and people''s daily life. It is urgent to have comprehensive pollution control in Lake Taihu. Based on water quality monitoring data in Lake Taihu from 1987 to 1994, the dynamic variations of water quality and eutrophication trends have been analyzed, showing obvious spatial and temporal variations. The main water quality factors were compared with the standard for drinking water and indicate considerable change with the seasons. Some basic strategies to protect water quality and prevent eutrophication are discussed.  相似文献   

2.
《国际泥沙研究》2016,(2):110-119
Rivers play an important role in people's living and agricultural production, however, intense human activities have broken the original ecological balance, and affected structures and functions of the river ecosystem. To restore the damaged river ecosystem back to a healthy status, effective ecological restoration measures need to be implemented. The main problems that the damaged rivers face are either the locally altered hydrological processes affected by construction of hydraulic facilities, or the deterioration of water quality resulted from pollution emissions, or both. In this study, ecological restoration techniques of the rivers affected by engineering control or pollution are reviewed respec-tively. In addition, three kinds of methods, i.e. physical, chemical and biological–ecological methods are introduced in details for the rivers affected by water pollution. At present, the development of river restoration techniques shows the following trends: 1) the scale of ecological restoration is becoming larger; 2) ecological restoration measures are required to meet multiple objectives; and 3) the man-agement of water environment is changing from water quality management to aquatic ecosystem management.  相似文献   

3.
The hydrogen isotopic composition(δD) of leaf wax long-chain n-alkanes(C27, C29, and C31) from lacustrine sediments has been widely applied to reconstruct terrestrial paleoclimatic and paleohydrological changes. However, few studies have addressed whether the aquatic-derived n-alkanes can affect the δD values of lake sedimentary long-chain n-alkanes, which are usually regarded as a recorder of the terrestrial hydrological signals. Here we systematically investigated δD values of long-chain n-alkanes from modern aquatic plants, both near-shore and off-shore surface sediments, surrounding terrestrial plant litters, as well as river water and lake water in Lake Qinghai and its satellite lakes on the northeastern Qinghai-Tibet Plateau. Our data showed that(i) δD values of long-chain n-alkanes from aquatic plants varied from-184‰ to-132‰ for n-C27, from-183‰ to-138‰ for n-C29, and from-189‰ to-130‰ for n-C31, respectively, with no significant differences among the three n-alkanes homologues;(ii) δD values of long-chain n-alkanes from aquatic plants were generally more positive than those from surrounding terrestrial plants, possibly because that they recorded the D-enrichment of lake water in this semi-arid region;(iii) δD values of long-chain n-alkanes from surface sediments showed significant differences among the three n-alkanes homologues, due to the larger aquatic input of n-C27 to the sedimentary lipid pool than that of n-C31, and(iv) n-C27 δD values of near-shore aquatic plants and near-shore sediments are more negative than those from off-shore as a result of lower δD values of near-shore lake water. Our findings indicate that in this region(i) the offset between sedimentary n-C27 and n-C31 δD values(ΔδDC27-C31) could potentially be used to evaluate if sedimentary long-chain n-alkanes are derived from a single source;(ii) while δD values of n-C27 may be influenced by lake water hydrological changes, sedimentary n-C31 is derived predominantly from terrestrial plants and thus its δD can serve as a relatively reliable indicator for terrestrial paleoclimatic and paleohydrological reconstructions.  相似文献   

4.
张圣照  濮培民  王国祥 《湖泊科学》1998,10(S1):529-538
In the barren lake, algae-type eutrophication lake, fifteen aquatic vascular plants were introduced and vegetated in our enclosures of physical-ecological engineering. The area of each enclosure is 200 m2, with length of 40m, width of 5m and depth of 1.8m. From 1995 to 1997, we had successfully vegetated 15 communities with the propagation techniques of pot-culture and sturdy seedling. The communities included floating, leave-floating and submerged macrophytes, such as Altemanthera phyiloxeroides, Eichhomia crassipes, Trapa maximowiczii, Nymphoides peltata, Potamogeton maackianus, P. crispus, Myriophyllum spicatum, Hydrilla verticillata, Elodea nuttallii, etc. These aquatic macrophytes not only adapted themselves to the environment but also purified the lake water.  相似文献   

5.
翟淑华 《湖泊科学》1998,10(S1):123-128
Taihu Lake is the third largest fresh water lake in China, locating in Yangtze Delta as the richest area of China. At present, eutrophication problem is severe in Taihu Lake. This paper, in view of ecological system, presents analysis of the composition structural characteristics of Taihu Lake environment regarded as a whole ecological system, energy and substances circulation between ecological factors. The Taihu Lake ecological environment is proceeding a lake evolution period, i.e. middle-eutrophic to eutrophic. Therefore the diversion water''from Yangtze River to Taihu Lake through the Wangyu River acts to change external agent function for Taihu ecological system, i.e. increasing water quantity of Taihu Lake may rise water level and speed up flow exchanging. Moreover, with harnessing measures for pollution sources to reduce input of nutrients, natural evolution procedure of Taihu ecological environment may slow down to subsequently improve Taihu ecological environment.  相似文献   

6.
陈荷生  范成新 《湖泊科学》1998,10(S1):117-122
The eutrophication of Lake Taihu is becoming more serious day by day and more urgent to be comprehensively harnessed. The lake sludge is considered as a important polluting factor. To control the internal pollution source of Lake Taihu and restore its water ecological environment, this paper put forward an idea of the dredging for environmental purposes. It was on the basis of the research on the sludge storage and physical/chemical characteristics. The technical keys are sludge-dredging depth, time, method and sludge treatment. The requirements and scheme for the environmental dredging work in Lake Taihu were also analyzed in detail.  相似文献   

7.
陈伟民  陈宇炜  高锡云 《湖泊科学》1998,10(S1):347-356
Following the development of local industries, agriculture and the increase of living standard of people, Lake Taihu is in the meso-eutrophication stage. The main eutrophication part in this lake is the Meiling Bay. The dominant phytoplankton species are Microcystis, Anabena, Melosira, Cyclotella and Cryptomonas. In summer, Microcystis spp. occupys 85% of algae biomass and form the water bloom. This causes the trouble for the people lived around the lake, especially for the drinking water of Wuxi City.The Microcystis intrinsic rate was high, the Max. growth rate 1.27. Besides Microcystis own characteristics, its growth depended on irradiation, temperature and nutrients, especially the phosphorus. This paper also discussed the possibility of biomanipulation for restoration of lake ecology and the control strategy of lake eutrophication.  相似文献   

8.
Growing developments in lake basins in China, have adversely affected, the water quality of lake, in particular, the water bodies of many famous shallow lake are seriously polluted in recent years. Some projects have been built up to improve the water quality, for example, the sewage interception project (i.e. Xiyuan tunnel project) and four sewage treatment plants etc. have been built up in Dianchi Lake. In order to predict and evaluate the effects of projects on the water quality, it is necessary to develop a coupled model system, which should mainly include wind, circulation and water quality parameters. This paper describes the development and application of a coupled modeling system in a shallow lake, which include a 3D micro-meteorology model (3DMM), a 2D hydrodynamic model (2DHM) and a 2D water quality model(2DWM).The coupled modeling system has been applied to predict the ejfects of environmental protection projects on water quality in Dianchi Lake.  相似文献   

9.
Based on the total phosphorous (TP) concentration in sediment core, the TP concentration in lake water quantitatively reconstructed from fossil diatoms and diatom-TP transfer function in the Longgan Lake during the last 200 years, the temperature and precipitation data from meteorological observation for the last 50 years, the temperatures and precipitation sequences of climate simulation for the last 200 years, as well as the amount of the agricultural phosphate fertilizer in Longgan area for nearly 50 years, the characteristic and the law of the nutrient status evolution were analyzed, and the influence of the climatic factor, the anthropologic factor and the aquatic biology factor on the nutrient status evolution and its mechanism were discussed for the Longgan Lake during the last 200 years. The results showed that, in the nearly 200 years, the TP concentration in the sediment core of the Longgan Lake gradually increased, its range of variation was situated between 330-580 mg/kg, the mean value was 388 mg/kg, a nearly 30-year vibration adjustment period existed at 1950 around. The TP concentration in lake water changed in a different way. Before 1950, it had a slow increasing tendency in fluctuated background, to 1950 around it reached up to the mean value (52.18μg/L), and vibrated and adjusted around the mean value, then it fast declined, its change range was situated between 37.75-62.33μg/L. The analyses indicated that, in the centennial time scale, the climate change was the main controlling factor, while in the decadal time scale in the recent 50 years, human activities were the leading factors for the nutrient status evolution of the Longgan Lake. 60% of the variability of the TP concentration in the sediments and 57% of that in lake water were due to human activities. The differentiation between phosphorus concentration in the sediment and in the lake water reflected the response processes and the adjustment abilities of the lake aquatic ecosystems to the lake nutrient level, implying the maintenance and the destruction of the balances between the algae and the aquatic plants, as well as the corresponding accumulating characteristics of the phosphorus.  相似文献   

10.
The hydrogen isotopic composition(δD) of n-alkanes in lacustrine sediments is widely used in palaeoenvironmental studies, but the heterogeneous origins and relative contributions of these lipids provide challenges for the interpretation of the increasing dataset as an environment and climatic proxy. We systematically investigated n-alkane δD values from 51 submerged plants(39 Potamogeton, 1 Myriophyllum, and 11 Ruppia), 13 algae(5 Chara, 3 Cladophora, and 5 Spirogyra) and 20 terrestrial plants(10 grasses and 10 shrubs) in and around 15 lakes on the Tibetan Plateau. Our results demonstrate that δD values of C_(29) nalkane are correlated significantly with the lake water δD values both for algae(R~2=0.85, p0.01, n=9) and submerged plants(R~2=0.90, p0.01, n=25), indicating that δD values of these algae and submerged plants reflect the δD variation of lake water. We find that apparent hydrogen isotope fractionation factors between individual n-alkanes and water(εa/w) are not constant among different algae and submerged plants, as well as in a single genus under different liminological conditions, indicating that the biosynthesis or environmental conditions(e.g. salinity) may affect their δD values. The δD values of submerged plant Ruppia in the Xiligou Lake(a closed lake) are significant enriched in D than those of terrestrial grasses around the lake(one-way ANOVA,p0.01), but the algae Chara in the Keluke Lake(an open lake) display similar δD values with grasses around the lake(one-way ANOVA, p=0.8260.05), suggesting that the n-alkane δD values of the algae and submerged plants record the signal of D enrichment in lake water relative to precipitation only in closed lakes in arid and semi-arid area. For each algae and submerged plant sample, we find uniformed δD values of different chain length n-alkanes, implying that, in combination with other proxies such as Paq and Average Chain Length, the offset between the δD values of different chain length n-alkanes can help determine the source of sedimentary n-alkanes as well as inferring the hydrological characteristics of an ancient lake basin(open vs closed lake).  相似文献   

11.
滇池生态系统退化成因、格局特征与分区分步恢复策略   总被引:5,自引:3,他引:2  
选取生态系统中重要的组成成份:浮游植物、底栖动物、水生植物的历史演变和现在分布状况数据,结合水质变化情况,揭示了滇池生态系统退化原因:在外因上,污染物持续输入以及围湖造田、直立堤岸和水量交换缓慢等外力干扰加剧系统组分失衡是直接原因;在内因上,由于滇池所处的地理位置、气候等原因,蓝藻生物量对营养盐增加的响应远高于其他湖泊(太湖、巢湖),草型向藻型湖泊的转换进程更快;与太湖和东湖的生态系统比较,高原湖泊滇池生态系统相对脆弱,如物种的同域分化、窄生态位,导致系统的稳定性差、自我修复能力弱.通过对滇池生态格局特征、湖岸带结构的分析,将滇池划分为5个生态区:草海重污染区、藻类聚集区、沉水植被残存区、近岸带受损区和水生植被受损区,并提出"五区三步,南北并进,重点突破,治理与修复相结合"的滇池生态系统分区分步治理的新策略和"南部优先恢复;北部控藻治污;西部自然保护;东部外围突破"的总体方案.  相似文献   

12.
五里湖富营养化过程中水生生物及生态环境的演变   总被引:15,自引:1,他引:14  
李文朝 《湖泊科学》1996,8(Z1):37-45
五里湖是太湖西北部一个小型浅水湖湾,是无锡市的饮用水源和主要风景游览区。50年代时,该湖基本保持着原始状态,全湖以大型水生植物占优势。湖水清澈见底,水质为中营养水平,溶氧接近饱和,对外来的N、P污染冲击具有很强的缓冲能力。底泥的氧化程度较高,磷和有机物含量仅为0.023%和0.75%。浮游藻类受到了大型水生植物的强烈抑制,年均数量为26.7×10~4个/L,以硅藻和隐藻为主;从春季至秋季,随着大型水生植物的增长,浮游藻类数量大幅度减少。浮游动物多达190种,年均数量为5660ind./L。大型底栖动物较多,以日本沼虾和螺、蚌类为主。鱼类资源十分丰富,63种鱼中以凶猛性鱼类占优势,并有较多的底栖性鱼类。 自50年代以来,大约有1/2的湖面被围垦,沿岸带生态条件被破坏,失去了最适合于大型水生植物生长的浅水区。加之60年代后期在全湖放养草鱼,水生植被遭到彻底毁灭。外源污染加剧,引起了水质的严重富营养化。围垦和修建水闸隔断了五里湖与太湖间的通道,限制了两个水体间的水流交换,妨碍了污染物的稀释扩散,使得来自无锡市区的污水成了五里湖的主要补给水源,加速了富营养化的进程。五里湖水质已达重富营养水平,透明度小于0.5m,缺氧较为严重。营养物在底泥中大量积累,TP和TOC含量分别增高了4.17倍和1.87倍。在春末  相似文献   

13.
郑丙辉  曹晶  王坤  储昭升  姜霞 《湖泊科学》2022,34(3):699-710
目前,我国湖泊富营养化及蓝藻水华问题十分突出,国家高度重视湖泊的生态环境保护.自“九五”以来,国家就投入太湖、巢湖、滇池“老三湖”等重污染湖泊的治理,但成本巨大,且历经近30年才初见成效.按照湖泊污染程度,湖泊治理与保护可分为“污染治理型”“防治结合型”“生态保育型”3大类.“老三湖”的治理是典型的“先污染、后治理”的模式,水质较好湖泊主要属于生态保育型湖泊,因此,“老三湖”治理模式不适用于水质较好湖泊的保护.本文系统总结了我国水质较好湖泊优先保护理念的形成和水质较好湖泊专项实施的历程.根据水质较好湖泊的特点,及其生态系统退化与修复的一般过程,提出了水质较好湖泊保护的基本思路.从热力学角度,阐明了氮磷营养盐输入湖泊生态系统中是熵增过程,也是湖泊生态系统退化的根本原因,湖泊氮磷污染负荷源头控制是关键.湖泊流域生态安全格局是确保湖泊生态系统健康的基础,从景观生态学角度,阐明了优化湖泊流域水土资源利用、优化发展模式是减轻湖泊环境压力的重要途径.在浅水湖泊生态系统,以沉水植物占优势的“清水态”和以浮游植物占优势的“浊水态”转换过程不是沿着同一条途径,存在上临界阈值和下临界阈值,水生态修复过程表现出一种迟滞的现象.从湖泊水生态系统稳态转换理论角度,阐明了湖泊生态修复工程应在湖泊生态系统发生退化转变之前实施,才能获得较高的环境效益.通过国家财政专项对81个水质较好湖泊的支持,既能促进湖泊流域经济社会发展,又能确保湖泊水环境质量变好,湖泊水生态系统逐步改善.建议加强不同类型湖泊保护模式的总结,深入对水质较好湖泊生态系统演替理论和保护技术研究,支撑国家系统开展水质较好湖泊保护.  相似文献   

14.
滇池东北岸生态修复区的环境效应——Ⅱ.污染净化效应   总被引:2,自引:0,他引:2  
研究了滇池东北沿岸带生态修复区去除水体中污染物和营养盐的能力.对修复区在重富营养水体迎风岸、无陆源污染情况下通过收获水生植物和促进悬浮物沉降方式去除的湖泊内源污染物质进行了定量的监测分析.结果显示,修复区对外来的悬浮物质具有强大的凝集、固定作用,植被区内每平方米湖面平均年沉积量达118.9 kg(干重),其中的氮、磷、有机碳含量分别达120 g/(m2·a)、70 g/(m2·a)、1080 g/(m2·a):修复区内的底质环境得到明显改善,表层沉积物中氮和有机碳含量比原初提高了4倍以上;修复区内水生植被具有极高的生产能力,仅2002年修复区就收割打捞水生植物113t(干重),由此去除氮、磷分别为30.0 g/(m2·a)和4.8 g/(m2·a).因此,沿岸带生态修复完全可以作为湖泊内源污染净化的一项工程措施在滇池东北沿岸或类似重污染水体推广应用.  相似文献   

15.
人类活动对江汉湖群沼泽化的影响   总被引:3,自引:0,他引:3  
邹尚辉 《湖泊科学》1992,4(4):71-76
从破坏植被加速湖泊淤积速度、围湖造田使湖泊日渐萎缩、江湖隔绝促进水生高等植物生长、垸湖沼同体而互相转化等方面论述了人类活动加速了江汉湖群湖泊沼泽化的进程,并提出缓解湖泊沼泽化的措施;人类活动既具有加速湖泊沼泽化进程的作用亦具有延缓甚至逆转沼泽化进程的双向作用。  相似文献   

16.
水文学与水力学相结合的南四湖洪水预报模型   总被引:7,自引:0,他引:7       下载免费PDF全文
作为“滇池沿岸带生态修复技术研究及工程示范”系列研究论文之一,主要分析研究了滇池东北部沿岸带原有生 态状况、现有环境基础、实施局部岸段生态修复的有限目标、实现这一目标的主要限制性环境因子及其可控性.结果显 示,滇池东北部沿岸带入湖河流密集,发育良好的湖滩湿地原本是拦截净化入湖河水的生态屏障;湖滩湿地被围垦之后, 人工岸堤前风浪侵蚀强烈,水生植物和水生动物消失,但沙质沉积物淤积形成了次生浅滩;在次生沙滩上创建挺水植被, 仍然可以发挥沉积掩埋污染物、捕获分解漂浮性蓝藻的污染控制功效;实施生态修复所面临的限制性环境因子主要为风 浪的强烈冲刷和水质严重污染,这些因素都可以通过相应的环境改造与控制措施加以解决,因而实现生态修复目标是可 能的.  相似文献   

17.
洪泽湖养殖网围拆除生态效应   总被引:2,自引:0,他引:2  
为研究湖泊网围养殖对湖泊生态系统的影响,2018年全年3次于洪泽湖养殖网围及主要出入湖河道开展调查,通过对比洪泽湖不同区域(河口、湖心、网围区、外围区和拆除区)水质及水生生物的空间分布特征,分析养殖网围拆除后湖泊生态系统的响应机制.结果表明,洪泽湖不同区域的水质及水生生物群落结构存在明显差异,其中养殖区水体总氮、总磷及悬浮颗粒物浓度明显低于河口和湖心,但浮游动植物密度及生物量则整体高于河口和湖心,且养殖区蓝藻、轮虫所占比重较高,这种分布差异很大程度上受外源输入及水动力条件影响.与之相对,养殖区内网围区、拆除区和外围区的水质及水生生物群落结构差异并不明显,表明养殖网围拆除后的短期时间内水质并未明显改善,且高藻类密度、低透明度的水体环境也不利于沉水植物的萌发生长与群丛恢复,有必要进一步采取合理有效的生态修复措施促进养殖迹地生态系统的恢复.  相似文献   

18.
于1993-19954上对武汉东湖的布和网围受控生态系统中的植被恢复,结构优化及水质进行了初步研究。结果表明;在受控生态系统中,水生维管束植物生物量明显增加,控制养殖规模是恢复水生植被的前提,自然恢复的水生植被,结构较简单,通过选种优良植物,可优化植被结构,加速植被恢复进程;恢复水生植被时,应以沉水植物为主体。生长良好的水生维管束能使水中N,P浓度明显降低,浮游植物生物量减小;莲,芦苇,苦草,狐尾  相似文献   

19.
太湖流域水环境综合治理力度空前,太湖总磷浓度却于2015、2016年重回升势,蓝藻大面积暴发情况也未得到有效遏制.本文从2015和2016年环太湖河道的进出太湖水量、总磷负荷量计算入手,结合雨情、水情、太湖调蓄以及人为影响等各方面因素,分别开展水量和总磷负荷质量的平衡分析.在此基础上,结合20102017年环太湖河流多年平均进出太湖总磷负荷量对比,分析太湖总磷的外源、内源变化趋势及来源,探讨2015和2016年太湖总磷升高的原因及控制重点方向.结果表明,2015和2016年为太湖流域丰水年,尤其是2016年发生特大洪水,太湖年内最高水位达4.87 m,仅次于1999年的4.97 m的历史最高水位.2015和2016年大量外源总磷负荷进入太湖,其中环太湖河道带入的总磷负荷量占年度太湖总磷负荷总量的66.8%和74.2%,成为进入太湖的总磷负荷的主要外源;加之,2015年太湖水生植物收割造成当年沉水植物面积较上年同期下降88.7%,水生植物骤减导致对磷的吸收转化能力下降,滞留在湖体中的总磷负荷量占年度太湖总磷负荷总量的21.5%和27.5%,成为影响太湖水体总磷浓度的重要内源.太湖总磷浓度升高又为太湖蓝藻暴发进一步提供了营养盐基础,亟需强化太湖总磷源头的控制、减少总磷入湖总量.  相似文献   

20.
由于湖泊生态问题日益突出,湖泊生态系统安全状态已经成为人们关注的热点问题,了解湖泊水生态系统的状况并根据湖泊生态系统健康状况开展精准治理和生态修复与保护尤为重要。本文基于对鄱阳湖及其流域生态环境的长期监测数据和资料收集,采用综合指标体系法,从物理形态、水文、水环境、水域生态、湿地生态和社会服务6个方面构建了鄱阳湖生态系统健康评估的指标体系,主要涵盖了湖泊口门状况、“五河”入湖径流变异程度、入湖河流水质达标率等26个指标。依据设置的阈值等级得到鄱阳湖生态系统健康评价各层次健康状况等级,通过对各湖泊生态系统各指标得分进行加权计算,得出生态系统健康评估准则层和目标层的得分,最终对鄱阳湖生态系统健康进行了客观的评价。结果表明,构建的湖泊生态系统健康评价体系针对性强、科学全面、具有可操作性,可为鄱阳湖及类似通江湖泊的生态系统健康评价提供案例和方法借鉴。评价结果表明鄱阳湖健康体征状况目标层得分为73.45分,评价结果为亚健康,鄱阳湖水生态系统健康主要受泄流能力、水文节律变化、富营养化程度和物种多样性的影响。最后根据鄱阳湖的水生态系统健康评分等级探讨了鄱阳湖水生态系统中亟需解决的问题,针对性地提出了...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号