首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 578 毫秒
1.
吴化前  李安邦 《湖泊科学》1998,10(S1):111-116
Taihu Lake is a mutiple-function fresh water lake situated in the delta of Yangtze River. Nowadays, the serious pollution mainly created by industry and residents'' life has made the water quality of the lake decline continuously. Eutrophication is the main characteristic of the water pollution. The water pollution not only affect the several functions of the lake, but also cause the changes of the aquatic biological community.The pollution control strategies to be adopted include the treatment of the industrial waste water and residents'' life sewage, as well as the agricultural non-point polluting source. Ecological engineering is the useful measure for diminishing the nutrition salts in water. On the basis of pollution control, the ecological restoration methods include the transplanting of the emerged and/loading anchored aquatic plants at first and the restoration of the submerged plants in the next.  相似文献   

2.
陈荷生  范成新 《湖泊科学》1998,10(S1):117-122
The eutrophication of Lake Taihu is becoming more serious day by day and more urgent to be comprehensively harnessed. The lake sludge is considered as a important polluting factor. To control the internal pollution source of Lake Taihu and restore its water ecological environment, this paper put forward an idea of the dredging for environmental purposes. It was on the basis of the research on the sludge storage and physical/chemical characteristics. The technical keys are sludge-dredging depth, time, method and sludge treatment. The requirements and scheme for the environmental dredging work in Lake Taihu were also analyzed in detail.  相似文献   

3.
黄漪平  诸敏 《湖泊科学》1998,10(S1):85-94
Lake Taihu, the third largest fresh water lake in China, with a surface area of 2 338 km2, is located in the Changjiang River Delta, the most advanced economic zone in China. During the last two decades, the rapid economic development of local agriculture and industry both in the urban and rural areas of the region has made great advances. Great quantieis of pollutants have been discharged into the lake, its nutrient content has increased continuously, and phytoplankton blooms have occurred in some areas. Water quality protection in Lake Taihu is very important because of its close relation with economical development and people''s daily life. It is urgent to have comprehensive pollution control in Lake Taihu. Based on water quality monitoring data in Lake Taihu from 1987 to 1994, the dynamic variations of water quality and eutrophication trends have been analyzed, showing obvious spatial and temporal variations. The main water quality factors were compared with the standard for drinking water and indicate considerable change with the seasons. Some basic strategies to protect water quality and prevent eutrophication are discussed.  相似文献   

4.
Taihu Lake is one of the famous five great freshwater lakes in China. Taihu Lxike Basin (TLB) is a densely populated and economic developed area in China. The surface water quality in TLB was deteriorated from I-Ⅱ grade in the history to IV-V grade at present. To develop a series of technology of most cost-effective and achievable for improving environment in a local water area of most sensitive for society and improving water quality for more and more areas step by step is the key point of the new strategy. Except the measures for reducing the industrial and domestic pollution load to the lake, some research topics are suggested to be emphasized.  相似文献   

5.
太湖富营养化问题及其综合控制对策   总被引:1,自引:1,他引:0  
范成新  陈荷生 《湖泊科学》1998,10(S1):95-100
On the basis of nine-time current situation investigation for eutrophication of Taihu Lake during 1991-1995, this paper evaluated the trophic levels in the different periods and analyzed the development of the main nutrient content in the nearest 35 years. The results show that the trophic level of Taihu Lake is in the transition state from meso-eutrophic to eutrophic. The eutrophhic and hypereutrophic waters account for 10% or so. The limiting nutrient, P, rises most rapidly, which causes the ratio of N:P to decrease. The increase of P content is still one of the main factors giving rise to the eutrophication of Taihu. LakeSome proposals of comprehensive countermeasure for the eutrophication are put forward. They include the pollution source control of the basin, the littoral multiple management, optimal dispatch of water conservancy facilities, the engineering of helping Taihu Lake with diversion of the Changjiang River, and as well as the setting of the water quality protection and legal system.  相似文献   

6.
Forms of phosphorus in sediments from 25 lakes in the middle and lower reaches of Yangtze River were analyzed by the sequential extraction procedure. Contents and spatial distrubution of algal available phosphorus (AAP) in sediments of Lake Taihu, the third largest freshwater lake of China, were also studied. Relationships between phosphorus forms in sediment and macrophytes coverage in sample sites, as well as phosphorus forms in sediments and chlorophyal contents in lake water were discussed. Exchangeable form of phosphorus (Ex-P) in surface sediments was significantly positive correlative to total phosphorus (IP), dissolved total phosphorus (DTP) and soluble reactive phosphorus (SRP) contents in the lake water. Bioavailable phosphorus (Bio-P) contents in sediments from macrophytes dominant sites were significantly lower than that in no macrophyte sites. In Lake Taihu, Ex-P content in top 3 cm sediment was highest. However, content of ferric fraction phosphorus (Fe-P) was highest in 4 - 10 cm. Bioavalilble phosphorus (Bio-P) contents in surface sediments positively correlated to Chlorophyll a contents in water of Lake Taihu with significant difference. Therefore, contents of Bio-P and AAP could be acted as the indicators of risks of internal release of phosphorus in the shallow lakes. It was estimated that there were 268.6 ton AAP in top 1 cm sediments in Lake Taihu. Sediment suspension caused by strong wind-induced wave disturbance could carry plenty of AAP into water in large shallow lakes like Lake Taihu.  相似文献   

7.
In accordance with the natural, geographic, and ecological characteristics of the Taihu Lake Basin, and the relation between the water body of Taihu Lake and its surrounding environment, an area, which has tight relevance with the water environment of Taihu Lake, was token as the main investigation region. The area was named as the Taihu Lake Region. Some factors, such as TN, TP, CODCr that characterized the main environmental problem, the eutrophication were selected when conducted the pollution sources investigation on in Taihu Lake Region. The categories, distribution, pollution contribution to the Lake of dijferent pollution sources, as well as the routes of pollutants entering the Lake were basically made clear. Pollution sources that must be preferentially controlled and the direction of controlling those main pollutants, such as TN, TP, CODCr, were proposed. Base on the investigation, a series of eco-systematic approaches for controlling Taihu Lake eutrophication were put forward. They are ecosystem regulation, nutrient substances transferring along food chain, trophic masse degrading step by step along the route from a pollution source to the Lake, building ecological preventive zone of the Lake, as well as the ecological measures for point sources treatment and so on.  相似文献   

8.
Growing developments in lake basins in China, have adversely affected, the water quality of lake, in particular, the water bodies of many famous shallow lake are seriously polluted in recent years. Some projects have been built up to improve the water quality, for example, the sewage interception project (i.e. Xiyuan tunnel project) and four sewage treatment plants etc. have been built up in Dianchi Lake. In order to predict and evaluate the effects of projects on the water quality, it is necessary to develop a coupled model system, which should mainly include wind, circulation and water quality parameters. This paper describes the development and application of a coupled modeling system in a shallow lake, which include a 3D micro-meteorology model (3DMM), a 2D hydrodynamic model (2DHM) and a 2D water quality model(2DWM).The coupled modeling system has been applied to predict the ejfects of environmental protection projects on water quality in Dianchi Lake.  相似文献   

9.
Flood control of the Yangtze River is an important part of China’s national water security.In July 2020,due to continuous heavy rainfall,the water levels along the middle-lower reaches of the Yangtze River and major lakes constantly exceeded the warning levels,in which Taihu Lake exceeded its highest safety water level and some stations of Poyang Lake reached their highest water levels in its history.In August 2020,another huge flood occurred in the Minjiang River and the Jialing River in the upper Yangtze River,and some areas of Chongqing Municipality and other cities along the rivers were inundated,resulting in great pressure on flood control and high disaster losses.The 2020 Yangtze River flood has received extensive media coverage and raised concerns on the roles of the Three Gorges Dam and other large reservoirs in flood control.Here we analyze the changes in the pattern of the Yangtze River flood control by comparing the strategies to tackle the three heavy floods occurring in 1954,1998,and 2020.We propose that the overall strategy of the Yangtze River flood control in the new era should adhere to the principle of"Integration of storage and drainage over the entire Yangtze River Basin,with draining floods downstream as the first priority"by using both engineering and non-engineering measures.On the basis of embankments,the engineering measures should use the Three Gorges Dam and other large reservoirs as the major regulatory means,promote the construction of key flood detention areas,keep the floodways clear,and maintain the ecosystem services of wetlands and shoals.In terms of non-engineering measures,we should strengthen adaptive flood risk management under climate change,standardize the use of lands in flood detention areas,give space to floods,and promote the implementation of flood risk maps and flood insurance policies.The ultimate goal of this new flood control system is to enhance the adaptability to frequent floods and increase the resilience to extreme flood disasters.  相似文献   

10.
The lake sediments, especially in recent years, genuinely record human being''s activities upon the lake environment. The top 30cm sections are of significance in the process of advanced cultural eutrophication and water quality deterioration. Based on the data of 4 core sam-ples obtained in June 19-22, 1997, with VCS in northern, western and southern Taihu Lake, some preliminary results are reported. Further analyses on the physico-chemical items as well as element content may reveal more information of the accelerating cultural eutrophication.  相似文献   

11.
“引江济太”对2016年后太湖总磷反弹的直接影响分析   总被引:2,自引:1,他引:1  
针对“引江济太”工程将总磷浓度偏高的长江水引入太湖后对2016年后太湖总磷反弹的影响,本文实测并收集整理了2016年前后“引江济太”调水入湖水量、磷通量及全太湖入湖水量、磷通量与太湖磷存量等数据,对2016年前后“引江济太”调水入湖水量、磷通量、磷形态与其他入湖河道水量、磷通量、磷形态以及全太湖的水质、受水区贡湖的水质进行了分析.结果表明:2016年前后,“引江济太”年均入湖磷通量为97.56 t,年均入湖水量为8.16亿m3,从调水量、入湖磷通量、调水后短期磷响应及各湖区磷增量来看,“引江济太”与2016年后太湖总磷反弹相关性不强.“引江济太”调水累计入湖磷通量为877.97 t,占太湖总入湖磷通量的4.58%,累计入湖水量占太湖累计入湖水量的7.36%,单位水量携带的磷通量仅为其他来水的一半左右,占比相对有限.与太湖主要入湖河流相比,“引江济太”调水属于优质来水,湖泊的入湖河流总磷浓度一般都高于湖泊本身的总磷浓度,“引江济太”调水总磷浓度偏高属于正常范围.目前“引江济太”工程在保证供水安全、缓解水华危机的同时对处于严重富营养化状态的太湖具有一定的改善效果,但未来引水量增加的情况下,必须继续关注引水带来的磷通量与太湖磷循环系统的关系,确保“引江济太”对太湖继续产生良性的影响.  相似文献   

12.
望虞河引长江水入太湖水体的总磷、总氮分析   总被引:6,自引:2,他引:4  
马倩  田威  吴朝明 《湖泊科学》2014,26(2):207-212
太湖流域实施的调水引流,提高了流域水资源和水环境承载能力,发挥了水利工程在改善水环境方面的综合效益,支撑了流域经济社会的可持续发展.本文在分析近年来望虞河引江水量与入湖水量及入湖水体流经太湖湖湾水体水质变化情势的基础上,分析比较了2007年以来的调水引流期间,望虞河入太湖水体总磷、总氮浓度值与太湖贡湖湾、梅梁湾、湖西及江苏省其它主要入太湖河道的总磷、总氮浓度值,并通过监测结果分析了入太湖水体总磷、可溶性总磷的衰减趋势,从而得出,长江是优质水源,调引长江水为增加太湖水环境容量、改善太湖及区域水环境状况起到了积极作用.  相似文献   

13.
“十三五”时期,长江流域水环境质量改善明显,但湖泊水质和富营养化状况改善滞后. 长江中游作为我国淡水湖泊集中分布区域之一,部分湖泊存在水环境质量恶化和富营养化加重问题. 本文以长江中游区域国家开展监测的洪湖、斧头湖、梁子湖、大通湖、洞庭湖和鄱阳湖这6个典型湖泊为研究对象,科学评价其2016—2020年水质和富营养化时空变化特征及关键驱动因素,探讨其成因及治理对策. 结果表明,“十三五”时期长江中游湖泊水质和富营养化程度存在较大差异,与2016年相比,2020年大通湖水质改善最为明显,梁子湖水质变差,总磷是影响长江中游湖泊水质类别的主要因子; 洪湖富营养程度恶化最为严重,斧头湖次之,TLI(SD)对长江中游湖泊富营养化评价贡献最大. 目前长江中游湖泊呈有机污染加重和叶绿素a浓度升高现象,洪湖、斧头湖和梁子湖主要与氮、磷营养盐浓度升高有关,而大通湖、洞庭湖和鄱阳湖受水文过程、流域纳污量和湖泊管理等非营养盐因素影响较大. 总氮和总磷仍然是影响“十三五”时期长江中游湖泊水质和富营养化的最主要驱动力,且各湖泊总氮和总磷浓度变化均具有较强正相关性,建议开展河湖氮、磷标准衔接工作,提出河湖氮、磷标准限值或考核目标,以完善河湖水环境质量标准和生态健康影响评价技术规范. 同时,建议长江中游湖泊在开展截污控源、内源控制和生态修复的同时,进一步深化流域管理,特别是对洞庭湖、鄱阳湖、梁子湖和斧头湖等跨行政区湖泊,以提高湖泊治理与修复的系统性和整体性.  相似文献   

14.
河网水质管理决策支持系统在引江济太中的应用   总被引:1,自引:0,他引:1  
翟淑华 《湖泊科学》2002,14(4):318-322
利用太湖流域河网水质管理决策支持系统(TAIHU DSS),对2000年夏季望虞河应急调水进行了技术方案比较,论证,重点对望虞河引江应急调水过程中,常熟枢纽泵站运用,望虞河东岸分流与否及望虞河立交开闸前对底水的处理等不同条件下的望虞河入湖水量,水质等进行多方案比较,为望虞河启用泵站调水、东岸适当分流,先打开蠡河船闸处理望虞河底水的方案提供了决策的技术依据,并引发了对太湖流域引江济太工作的进一步深入研究和实践,是决策支持系统在实际工作中的成功应用之一。  相似文献   

15.
太湖与长三角区域一体化发展:地位、挑战与对策   总被引:1,自引:0,他引:1       下载免费PDF全文
陈雯  刘伟  孙伟 《湖泊科学》2021,33(2):327-335
太湖及太湖流域在长三角自然和经济地理空间具有举足轻重的地位,更是长三角区域一体化发展国家战略实施的关键地区.在当前区域一体化高质量发展背景下,太湖治理面临新的形势和任务,也面临一系列新的挑战,着重体现在水环境治理形势更加复杂严峻和水资源供给压力不断提升两方面.传统水陆分割治理难以解决湖泊问题,行政区治理难以适应区域一体化发展要求,水资源共享和付费机制尚未建立等问题,对长三角区域一体化进程也构成了较大阻滞.太湖水问题绝不局限于太湖本身,需要从湖泊—流域系统视角构建资源、环境、生态、社会与经济多要素协调统筹治理的新体系,考虑水陆空间协同治理与开发和不同次区域经济、社会、自然效益的均衡,以推动长三角区域一体化高质量发展.基于此,研究提出新背景下的太湖及流域治理思路:推动太湖水资源生态环境之间以及与流域经济社会的联动,撬动长三角生态环境一体化的思维创新;探索关键卡脖子技术研发和流域管理综合集成的科学体系,推动长三角资源环境领域的创新一体化发展;探索太湖流域跨行政区域的水生态环境共治、水资源共享和绿色发展机制,牵动一体化协调制度的改革创新.  相似文献   

16.
顾莉  李秋兰  华祖林  洪波 《湖泊科学》2013,25(3):347-351
太湖流域湖泊污染严重,非常有必要建立相应的水质基准以便于湖泊水体的保护与修复.根据太湖流域12个受人类影响较小的湖库及太湖早期的总磷、总碱度、平均水深等数据建立了MEI(morphoedaphic index)模型,通过对模型中总磷与总碱度、平均水深因子的相关关系进行分析,并结合太湖流域湖库水深较浅的特征,提出了确定太湖流域湖库水体中总磷参照浓度的改进MEI模型.将该模型应用于太湖,得到太湖总磷参照浓度为0.025 mg/L.研究结果旨在丰富我国水体营养物基准的确定方法,并为太湖流域水体富营养化的控制提供理论依据,同时为长江中下游类似湖库水质基准的建立提供技术支撑.  相似文献   

17.
Forms of phosphorus in sediments from 25 lakes in the middle and lower reaches of Yangtze River were analyzed by the sequential extraction procedure. Contents and spatial distrubution of algal available phosphorus (AAP) in sediments of Lake Taihu, the third largest freshwater lake of China, were also studied. Relationships between phosphorus forms in sediment and macrophytes coverage in sample sites, as well as phosphorus forms in sediments and chlorophyal contents in lake water were discussed. Exchangeable form of phosphorus (Ex-P) in surface sediments was significantly positive correlative to total phosphorus (TP), dissolved total phosphorus (DTP) and soluble reactive phosphorus (SRP) contents in the lake water. Bioavailable phosphorus (Bio-P) contents in sediments from macrophytes dominant sites were significantly lower than that in no macrophyte sites. In Lake Taihu, Ex-P content in top 3 cm sediment was highest. However, content of ferric fraction phosphorus (Fe-P) was highest in 4–10 cm. Bioavalilble phosphorus (Bio-P) contents in surface sediments positively correlated to Chlorophyll a contents in water of Lake Taihu with significant difference. Therefore, contents of Bio-P and AAP could be acted as the indicators of risks of internal release of phosphorus in the shallow lakes. It was estimated that there were 268.6 ton AAP in top 1 cm sediments in Lake Taihu. Sediment suspension caused by strong wind-induced wave disturbance could carry plenty of AAP into water in large shallow lakes like Lake Taihu.  相似文献   

18.
李云良  姚静  张奇 《湖泊科学》2017,29(5):1227-1237
倒灌是发生在湖泊与周围水体交汇处的一个重要物理过程,对湖泊水文水动力与水环境带来严重影响或干扰,进而对湖泊水质产生重要的影响或控制作用.本文采用统计方法和二维水动力-粒子示踪耦合模型来分析倒灌物理成因、倒灌发生判别与指示以及倒灌对鄱阳湖水文水动力的影响.统计表明,流域"五河"入湖径流、长江干流径流情势以及两者叠加作用均是倒灌的影响因素,但长江干流径流情势是影响或者控制倒灌频次与倒灌强度的主要因素."五河"来水与长江干流的流量比可用来判别与指示倒灌发生与否.当流量比低于约5%时,倒灌可能发生且最大发生概率可达25%;当流量比高于10%时,倒灌发生概率则低于2%.水动力模拟结果表明,倒灌对湖区水位与流速的影响向湖区中上游逐渐减弱,湖泊水位和流速受影响最为显著的区域主要分布在贯穿整个湖区的主河道,而浅水洪泛区的水位和流速则受倒灌影响相对较小.倒灌使得湖泊空间水位提高约0.2~1.5 m,湖泊主河道的流速增加幅度可达0.3 m/s.粒子示踪结果表明,倒灌导致湖区水流流向转变约90°~180°,倒灌导致的水流流向变化能够使湖区大部分粒子或物质向上游迁移约几千米至20 km,且粒子在下游主河道的迁移距离要明显大于中上游洪泛区.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号