首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Il-Soo  Kim  Myong-Ho  Park  Byong-Jae  Ryu Kang-Min  Yu 《Island Arc》2006,15(1):178-186
Abstract   Data on the late Quaternary tephra layers, tephrostratigraphy, geochemistry and environment were determined in two sediment cores from the southwestern part of Ulleung Basin (East Sea/Sea of Japan), representing marine-oxygen isotope stages 1–3. The cores consist mainly of muddy sediments that are partly interbedded with silty sands, lapilli tephra and ash layers. The lapilli tephra layers (Ulleung-Oki tephra, 9.3 ka) originating from Ulleung Island consist mainly of massive-type glass shards, whereas the ash layers (Aira-Tanzawa ash, 22.0–24.7 ka) derived from southern Kyushu Island are mainly composed of typical plane-type and bubble-wall glasses that are higher in SiO2 and lower in Na2O + K2O than the lapilli tephra layers. Except for the tephra layers, fine-grained sediments throughout the core sections are mostly of marine origin based on geochemical data (C/N ratios, hydrogen index, S2 peak) and Tmax. In particular, organic carbon contents increased during Termination I, probably as a result of an influx of the deglacial Tsushima Current through the Korea Strait.  相似文献   

2.
Yu  Higuchi  Yutaka  Yanagimoto  Kazuyoshi  Hoshi  Sadao  Unou  Fumio  Akiba  Kunishige  Tonoike  Keita  Koda 《Island Arc》2007,16(3):374-393
Abstract To clarify the regional distribution and characteristics of the sedimentary deposits in the northern part of the Philippine Sea, multichannel seismic reflection surveys of 26 864 km in total length were performed. The seismic reflection data were interpreted and correlated with available Deep Sea Drilling Project/Ocean Drilling Program (DSDP/ODP) data and a general stratigraphic framework of the area was established. The sedimentary deposits in this area were divided into five layers; Units I, II, III, IV and V in ascending order. Their approximate geological ages are the Early Eocene, Middle to Late Eocene, Oligocene, Miocene and Pliocene‐Pleistocene, respectively. Seismic records were classified into three seismic facies, Facies A, B and C, on the basis of their characteristics. They were judged to represent pelagic and hemipelagic sediments of non‐volcanic origin, fine pyroclastic sediments and coarse pyroclastic or volcanic sediments, respectively, by comparing them with lithological data in the DSDP/ODP holes. From the thickness and facies distributions of these sediments, a sedimentary history in the area was reconstructed as follows. The oldest sediments in the study area, Unit I, interfinger with some parts of the Daito Ridge (acoustic basement) in the Minami Daito Basin. The geological age of the unit is estimated by microfossils in the sediment and supports the idea that this part of the Daito Ridge is composed of the Early Eocene oceanic basalt. Later, a fair amount of sediments were deposited in the Minami Daito Basin in the Middle to Late Eocene age. A large volume of volcanic materials was supplied from the Paleo‐Kyushu‐Palau Ridge in the Kita Daito Basin in the Eocene and Oligocene ages. The eastern part of the Shikoku and Parece Vela basins is characterized by volcanic sediments supplied from the Nishi Shichito and West Mariana Ridges in the Miocene age. However, pelagic and hemipelagic sediments prevail in the northern part of the Shikoku Basin in the Miocene or later. In short, the area of principal sedimentation has generally shifted from west to east through geological time, reflecting the evolution of the island arc systems with the same trend in the northern Philippine Sea.  相似文献   

3.
Abstract Multichannel seismic reflection profiling in the Ulleung back-arc Basin reveals that the acoustic basement largely comprises volcanic materials. The volcanics are interlayered with sediment sequences, forming an anomalously thick layer. The volcanic activities resulted in a zonation of the acoustic basement, trending northeast-southwest. In the southeastern part, the acoustic basement is deep and obscure, whereas in the northwestern part it is shallow and forms mounds and seamounts. The volcanic activities were probably initiated in the Early Miocene ( ca 20Ma). The volcanism was time-transgressive northward, associated with the possible southward drift of the Japanese islands.  相似文献   

4.
Takemi  Ishihara  Keita  Koda 《Island Arc》2007,16(3):322-337
Abstract   Crustal thickness of the northern to central Philippine Sea was gravimetrically determined on the simple assumption of four layers: seawater, sediments, crust and lithospheric mantle, with densities of 1030, 2300, 2800 and 3300 kg/m3, respectively. As for the correction of the regional gravity variation, a 15 km difference of the lithospheric thickness with a density difference of 50 kg/m3 against the asthenosphere below between both sides of the Kyushu-Palau Ridge was taken into consideration. Mantle Bouguer anomalies were calculated on the assumption of constant crustal thickness of 6 km, and then the crustal thickness was obtained by three-dimensional gravity inversion method. The results show occurrence of thin crust areas with a thickness of approximately 5 km in the southern part and at the western margin of the Shikoku Basin and also of thick crust areas in the northwestern and northeastern parts of the Parece Vela Basin. We suggest that these are because of the variation of magma supply at the time of sea floor spreading in the Shikoku and Parece Vela Basins, which is possibly related to the variation of spreading rate and enhanced magmatism near the past arc volcanic fronts. The results further show the occurrence of crust thinner than 5 km in the northeastern part of the West Philippine Basin, of crust thicker than 15 km in the Amami Plateau, the Daito and Oki-Daito Ridges, and also in the northern part of Kyushu-Palau Ridge, whereas the southern part of the Kyushu-Palau Ridge the crust is thicker than 10 km. It was also inferred that small basins in the Daito Ridge province have the thinnest oceanic crust of less than 5 km in the Kita-Daito Basin.  相似文献   

5.
南海及邻近地区面波层析成像和S波速度结构   总被引:7,自引:4,他引:3       下载免费PDF全文
黄忠贤  胥颐 《地球物理学报》2011,54(12):3089-3097
本文介绍由面波层析成像得到的南海和邻近地区地壳上地幔三维S波速度结构.研究区域介于100°E~130°E和0°~30°N之间,南海位于区域中心,其北、西、南三面通过大陆架和陆坡分别与华南、印支和巽它地块相连,东面邻接台湾—菲律宾岛弧和西菲律宾海盆.由面波层析成像得到的速度结构横向变化与研究区内构造单元的划分基本相符,给...  相似文献   

6.
Based on the drilling data,the geological characteristics of the coast in South China,and the interpretation of the long seismic profiles covering the Pearl River Mouth Basin and southeastern Hainan Basin,the basin basement in the northern South China Sea is divided into four structural layers,namely,Pre-Sinian crystalline basement,Sinian-lower Paleozoic,upper Paleozoic,and Mesozoic structural layers.This paper discusses the distribution range and law and reveals the tectonic attribute of each structural layer.The Pre-Sinian crystalline basement is distributed in the northern South China Sea,which is linked to the Pre-Sinian crystalline basement of the Cathaysian Block and together they constitute a larger-scale continental block—the Cathaysian-northern South China Sea continental block.The Sinian-lower Paleozoic structural layer is distributed in the northern South China Sea,which is the natural extension of the Caledonian fold belt in South China to the sea area.The sediments are derived from southern East China Sea-Taiwan,Zhongsha-Xisha islands and Yunkai ancient uplifts,and some small basement uplifts.The Caledonian fold belt in the northern South China Sea is linked with that in South China and they constitute the wider fold belt.The upper Paleozoic structural layer is unevenly distributed in the northern South China.In the basement of Beibu Gulf Basin and southwestern Taiwan Basin,the structural layer is composed of the stable epicontinental sea deposit.The distribution areas in the Pearl River Mouth Basin and the southeastern Hainan Basin belong to ancient uplifts in the late Paleozoic,lacking the upper Paleozoic structural layers.The stratigraphic distribution and sedimentary environment in Middle-Late Jurassic to Cretaceous are characteristic of differentiation in the east and the west.The marine,paralic deposit is well developed in the basin basement of southwestern Taiwan but the volcanic activity is not obvious.The marine and paralic facies deposit is distributed in the eastern Pearl River Mouth Basin basement and the volcanic activity is stronger.The continental facies volcano-sediment in the Early Cretaceous is distributed in the basement of the western Pearl River Mouth Basin and Southeastern Hainan Basin.The Upper Cretaceous red continental facies clastic rocks are distributed in the Beibu Gulf Basin and Yinggehai Basin.The NE direction granitic volcanic-intrusive complex,volcano-sedimentary basin,fold and fault in Mesozoic basement have the similar temporal and spatial distribution,geological feature,and tectonic attribute with the coastal land in South China,and they belong to the same magma-deposition-tectonic system,which demonstrates that the late Mesozoic structural layer was formed in the background of active continental margin.Based on the analysis of basement structure and the study on tectonic attribute,the paleogeographic map of the basin basement in different periods in the northern South China Sea is compiled.  相似文献   

7.
Crustal structures around the Yamato Basin in the southeastern Sea of Japan, inferred from recent ocean bottom seismography (OBS) and active-source seismological studies, are reviewed to elucidate various stages of crustal modification involved from rifting in the crust of the surrounding continental arc to the production of oceanic crust in the Yamato Basin of the back-arc basin. The northern, central, and southern areas of the Yamato Basin have crustal thicknesses of approximately 12–16 km, and lowermost crusts with P-wave velocities greater than 7.2 km/s. Very few units have P-wave velocities in the range 5.4–6.0 km/s, which corresponds to the continental upper crust. These findings, combined with previous geochemical analysis of basalt samples, are interpreted to indicate that a thick oceanic crust has been formed in these areas of the basin, and that this oceanic crust has been underplated by mantle-derived magma. In the central Yamato Basin, the original continental crust has been fully breached and oceanic crust has been formed. Conversely, the presence of a unit corresponding to the continental upper crust and the absence of a high-velocity part in the lower crust implies that the southwestern edge of the Yamato Basin has a rifted crust without significant intrusion. The Oki Trough has a crust that is 17–19 km thick with a high-velocity lower crust and a unit corresponding to the continental upper crust. The formation of the Oki Trough resulted from rifting with magmatic intrusion and/or underplating. We interpret these variations in the crustal characteristics of the Yamato Basin area as reflecting various instances of crustal modification by thinning and magmatic intrusion due to back-arc extension, resulting in the production of a thick oceanic crust in the basin.  相似文献   

8.
Ji-Hoon  Kim  Myong-Ho  Park  Urumu  Tsunogai  Tae-Jin  Cheong  Byong-Jae  Ryu  Young-Joo  Lee  Hyun-Chul  Han  Jae-Ho  Oh  Ho-Wan  Chang 《Island Arc》2007,16(1):93-104
Abstract Geochemical analyses of sediments, pore water and headspace gas of the piston cores taken from the eastern part of Ulleung Basin of the East Sea (Japan Sea) were carried out to assess the origin of the sedimentary organic matter and interstitial fluid. Several tephra layers within the core are identified as the Ulleung‐Oki (10.1 ka), the Aira‐Tanzawa (23 ka) and the Ulleung‐Yamato (30.9 ka) tephras. With the exception of these volcanic layers, the cores consist predominantly of muddy sediments that contain >0.5% total organic carbon. Atomic C/N ratios and δ13Corg values suggest that the organic matter originated from marine algae rather than from land vascular plants, whereas Rock‐Eval pyrolysis suggests that the organic matter is thermally immature and comes from a land vascular plant (Type III). These conflicting results seem to be caused by the heavy oxidization of the marine organic matter. Sulphate concentration profiles of pore waters show strongly linear depletion (r2 > 0.97) with sediment depth. The estimated sulphate–methane interface (SMI) depth using the sulphate concentration gradient was nearly 3.5 m below seafloor (mbsf) in the southern part of the study area, and deeper than 6 mbsf in the northern part of the area. The difference in SMI depths is likely associated with the amount of the methane flux. The methane concentration below the SMI in the two southern cores increases rapidly, implying the occurrence of methanogenesis and anaerobic methane oxidation (AMO). In contrast, the two northern cores have a low methane concentration below the SMI. values measured from all cores were in the range of −83.5 to −69.5‰, which suggests that the methane derives from a methanogenic microbe. values become decreased toward SMI, but increased below SMI; therefore, has eventually the minimum value near the SMI. The values are also decreased when the methane concentration is increased. These phenomena support the typical occurrence of AMO in the study area.  相似文献   

9.
南海北部盆地基底岩性地震-重磁响应特征与识别   总被引:8,自引:2,他引:6       下载免费PDF全文
针对性选取东南沿海露头剖面18条,采集245件南海盆地基底可能出现的岩性样品,测定其密度和磁化率,建立各种岩性的密度-磁化率交会图版,以此约束过井地震剖面和重磁异常的地质解释,总结出南海北部盆地基底火山岩、侵入岩、变质岩和沉积岩4大类11亚类岩性的地震-重磁响应特征.应用重磁震-岩性解释模型逐一对南海盆地北部主干剖面进行地质-地球物理综合解释,从而实现了盆地基底岩性的平面填图.这种从盆缘剖面到盆地内部、从岩石物性测量到地质-地球物理综合解释的方法,在资料获取难度大、地质条件复杂的南海盆地基底地质研究中,业已证明是行之有效的,相信在其他盆地研究中也会有借鉴意义.  相似文献   

10.
热演化历史的研究对于盆地分析和油气勘探具有重要意义.北黄海盆地是中国近海海域油气勘探程度较低的盆地之一,迄今未见专门的热演化研究报道.笔者利用北黄海盆地中生代砂岩的磷灰石裂变径迹分析结果,结合地质条件约束,模拟获得了中生代以来盆地的热演化史.结果表明,北黄海盆地经历了两次增温和两次冷却的热演化过程,并在100-80 Ma时盆地的热历史出现明显变化,表明在晚白垩世北黄海盆地发生过一次较大的构造-热事件.磷灰石裂变径迹分析所表明的北黄海盆地的热历史与盆地原型演化阶段相对应,而这种热历史和盆地的演化过程与区域构造背景相关.磷灰石裂变径迹所揭示的热演化史对于深化认识北黄海盆地的地质演化过程和油气勘探潜力具有重要意义.  相似文献   

11.
The Barents Sea is underlain by a thick (up to 5 km) sedimentary basin. Seismic refraction has outlined four main velocity discontinuities which have been correlated with geological units on the basis of the geological history of the region. The basin is underlain by a crystalline basement, the nature of which cannot be determined on the basis of seismic velocity alone. Metamorphosed Paleozoic units (velocities around 5–4 km/sec) lie over this basement. Their thickness is not well established but appears to reach 1 or 2 km in some cases. A very distinct and thick (up to 2.5 km) layer (4.1 km/sec) is found almost everywhere and is thought to correspond to a major discontinuity at the end ot the Paleozoic. This discontinuity is followed by a variable velocity layer (2.4–4 km/sec, up to 1.2 km thick) which includes Mesozoic and Cenozoic sediments and is limited to the south of the Barents Sea. The absence of thick Tertiary deposits support the idea that the Barents shelf was emergent at that time. Recent low-velocity sediments are found close to the shelf edge.Gravity anomaly trends reflect a series of depressions of the 5.4-km/sec layer isobath map and suggest that the deeper part of the basin is made of a succession of faulted blocks or intense folds.  相似文献   

12.
南海礼乐盆地自渐新世以来持续发育碳酸盐岩礁体,礁体区地温场可能受到礁体与周围低温海水间水热循环的扰动.为了解礁体与周围海水间的热交换过程及其对礁体区地温场的影响,以便从位于礁体区的钻井测温数据中提取深部热信息,本文以过礁体区S-1井的地震剖面为基础,在流热耦合条件下对礁体内的水热活动进行数值模拟.结果表明,礁体与海水间存在水热交换,该水热活动对礁体区温度场有明显的扰动,使得礁体上部温度和地温梯度明显降低,进入礁体下伏地层后,地温梯度逐渐趋于正常;水热循环对礁体区地温场的影响程度与礁体的厚度和渗透率密切相关,礁体厚度越大、渗透率越高,礁体及其下伏地层温度越低;计算剖面中,2100 m厚礁体之下可能存在约400 m厚、渗透率约为3×10^-12 m^2的高渗碎屑岩层,高渗层上覆礁体平均渗透率估计介于1×10^-13~5×10^-12 m^2之间.分析表明,在受水热活动影响的礁体区,礁体下伏地层中的热流可近似代表礁体区的深部热背景,S-1钻井深部热流介于65~75 mW·m^-2之间.  相似文献   

13.
Mikiya  Yamashita  Tetsuro  Tsuru  Narumi  Takahashi  Kaoru  Takizawa  Yoshiyuki  Kaneda  Kantaro  Fujioka  Keita  Koda 《Island Arc》2007,16(3):338-347
Abstract   The Parece Vela Basin (PVB), which is a currently inactive back-arc basin of the Philippine Sea Plate, was formed by separation between the Izu-Ogasawara Arc (IOA) and the Kyushu-Palau Ridge (KPR). Elucidating the marks of the past back-arc opening and rifting is important for investigation of its crustal structure. To image its fault configurations and crustal deformation, pre-stack depth migration to multichannel seismic reflection was applied and data obtained by the Japan Agency for Marine-Earth Science and Technology and Metal Mining Agency of Japan and Japan National Oil Corporation (Japan Oil, Gas and Metals National Corporation). Salient results for the pre-stack depth-migrated sections are: (i) deep reflectors exist around the eastern margin of KPR and at the western margin of IOA down to 8 km depth; and (ii) normal fault zones distributed at the eastern margin of the KPR (Fault zone A) and the western margin of the IOA (Fault zone B) have a total displacement of greater than 500 m associated with synrift sediments. Additional normal faults (Fault zone C) exist 20 km east of the Fault zone B. They are covered with sediment, which indicates deposition of recent volcanic products in the IOA. According to those results: (i) the fault displacement of more than 500 m with respect to initial rifting was approximately asymmetric at 25 Ma based on PSDM profiles; and (ii) the faults had reactivated after 23 Ma, based on the age of deformed sediments obtained from past ocean drillings. The age of the base sediments corresponds to those of spreading and rotation after rifting in the PVB. Fault zone C is covered with thick and not deformed volcanogenic sediments from the IOA, which suggests that the fault is inactive.  相似文献   

14.
Abstract   The Kurile Basin in the Okhotsk Sea, northwestern Pacific, is a back-arc basin located behind the Kurile Island Arc. It is underlain by oceanic crust and its origin has been attributed to back-arc spreading. Two models for the opening of the Kurile Basin exist, for which the spreading axis is oriented northeast–southwest and northwest–southeast, respectively. New data are presented here on the morphostructure of the slope of the northern Kurile Basin and of the central Kurile Basin which support a strike of the spreading axis in the latter direction. Bathymetric as well as single-channel and multichannel seismic reflection data demonstrate the existence of dominant northwest-striking normal faults on the northern slope of the Kurile Basin. In the central Kurile Basin a basement rise striking north-northwest–south-southeast (here named the Sakura Rise) was mapped. The rise morphology has the distinct imprint of a rift structure with symmetrical volcanic edifices on the rise axis and faulted blocks that tilt in opposite directions on the flanks. These data suggest that the Kurile Basin opened in a northeast–southwest direction. In the generally accepted plate tectonic reconstructions, northwest–southeast spreading associated with dextral strike–slip along the north–south-striking shear zone of Sakhalin and Hokkaido islands has been assumed. In the present model, spreading in the Kurile Basin was presumably connected with dextral displacement along a northeast-striking shear zone on the southern segment of the Okhotsk Sea.  相似文献   

15.
Authigenic carbonates were sampled in methane-enriched piston core sediments collected from gas venting sites on the western continental slope of the Ulleung Basin, East Sea of Korea. Multidisciplinary investigations on these carbonates, including the scanning electronic microscope (SEM) observations and mineralogical-geochemical compositions, were carried out to identify the carbon and oxygen sources and the forming mechanism of these carbonates. The authigenic carbonates from the study area correspond to semi-consolidated, compact concretions or nodules ranging from 2 to 9 cm in size. X-ray diffraction and electron microprobe analyses showed that most of the sampled carbonate concretions were composed of almost purely authigenic high-Mg calcite (10.7–14.3 mol% MgCO3). Characteristically, microbial structures such as filaments and rods, which were probably associated with the authigenic minerals, were abundantly observed within the carbonate matrix. The carbonates were strongly depleted in δ13C (−33.85‰ to −39.53‰ Peedee Belemnite (PDB)) and were enriched in δ18O (5.16–5.60‰ PDB), indicating that the primary source of carbon is mainly derived from the anaerobic oxidation of methane. Such methane probably originated from the destabilization of the underlying gas hydrates as strongly supporting from the enriched 18O levels. Furthermore, the strongly depleted δ13C values (−60.7‰ to −61.6‰ PDB) of the sediment void gases demonstrate that the majority of the gas venting at the Ulleung Basin is microbial methane by CO2 reduction. This study provides another example for the formation mechanism of methane-derived authigenic carbonates associated with gas-hydrate decomposition in gas-seeping pockmark environments.  相似文献   

16.
王衍棠  林珍 《华南地震》2007,27(3):49-56
概述了北黄海盆地的区域地质背景和速度分析的原理,通过对北黄海盆地速度谱的解释和计算,得到了层速度、平均速度、砂岩百分含量等信息,利用这些速度资料识别多次波、辨别坳陷区和隆起区,进行时深转换、构造分析以及岩性分析,为北黄海盆地地震资料解释、沉积相分析以及资源量计算提供可靠的依据。  相似文献   

17.
黄海地质与地球物理特征研究进展   总被引:5,自引:0,他引:5  
本文介绍了近几年对黄海地质特征、地球物理特征研究所取得的成果,北黄海盆地已发现工业性油流,南黄海北部盆地和中间隆起取得巨大进展,是油气有利勘探区;黄海的断裂带及块体结合带制约着黄海油气藏形成,对其研究对黄海油气勘探研究有着重要指导作用,分析认为对黄海的研究还需进一步加强地质与地球物理手段综合研究。  相似文献   

18.
南海北部珠江口与琼东南盆地构造-热模拟研究   总被引:9,自引:3,他引:6       下载免费PDF全文
珠江口盆地和琼东南盆地位于南海北部的大陆边缘,本文在此地区选取了13条典型剖面,进行了构造沉降史和热史的模拟,初步探讨了其新生代以来的构造-热演化历史.其研究结果表明:珠江口盆地存在两次热流升高过程,分别为始新世(56.5~32 Ma)和渐新世(32~23.3 Ma).琼东南盆地存在三期加热和两期冷却过程,始新世盆地热...  相似文献   

19.
Toshihiro  Ike  Gregory F.  Moore  Shin'ichi  Kuramoto  Jin-Oh  Park  Yoshiyuki  Kaneda  Asahiko  Taira 《Island Arc》2008,17(3):342-357
Abstract   We documented regional and local variations in basement relief, sediment thickness, and sediment type in the Shikoku Basin, northern Philippine Sea Plate, which is subducting at the Nankai Trough. Seismic reflection data, tied with ocean drilling program drill cores, reveal that variations in the incoming sediment sequences are correlated with basement topography. We mapped the three-dimensional seismic facies distribution and measured representative seismic sequences and units. Trench-parallel seismic profiles show three regional provinces in the Shikoku Basin that are distinguished by the magnitude of basement relief and sediment thickness: Western (<200–400 m basement relief, >600 m sediment thickness), Central (>1500 m relief, ∼2000 m sediments), and Eastern (<600 m relief, ∼1200 m sediments) provinces. The total thickness of sediment in basement lows is as much as six times greater than that over basement highs. Turbidite sedimentation in the Shikoku Basin reflects basement control on deposition, leading to the local presence or absence of turbidite units deposited during the middle Oligocene to the middle Miocene. During the first phase of sedimentation, most basement lows were filled with turbidites, resulting in smooth seafloor morphology that does not reflect basement relief. A second phase of turbidite deposition in the Eastern Province was accompanied by significant amounts of hemipelagic sediments interbedded with turbidite layers compared to the other provinces because of its close proximity to the Izu–Bonin Island Arc. Both regional and local variations in basement topography and sediment thickness/type have caused lateral heterogeneities on the underthrusting plate that will, in turn, influence lateral fluid flow along the Nankai accretionary prism.  相似文献   

20.
Japan Sea: a pull-apart basin?   总被引:1,自引:0,他引:1  
Recent field work in the Hokkaido Central Belt and marine geology studies along the eastern margin of Japan Sea in addition to previously published data lead us to propose a new model of opening of the Japan Sea. The synthesis of both on-land and offshore structural data gives new constraints about the structural evolution of the system. The rhombohedral shape of the Japan Basin and the particular tectonic behaviour of the margins on both east and west sides can be explained by an early Eo-Oligocene rifting of a pull-apart basin accommodated along two large right-lateral shear zones, east of Korea and west of northeast Japan and Sakhalin. It is followed, during Upper Oligocene/Lower Miocene, by the main opening of the Japan Basin as a mega pull-apart. Then a back-arc spreading probably related to the subduction process, induced the creation of the Yamato and Tsushima Basins at the end of Lower Miocene and in Middle Miocene. Clockwise rotation of southwest Japan larger than 20° or major bending of Honshu mainland deduced from paleomagnetic studies is unlikely at this time. Since 1 or 2 My B.P. to Present, compression prevails along the eastern margin of the Japan Sea. The generation of marginal basins as pull-apart basins along intracontinental strike-slip faults is a mechanism which has been proposed by other authors concerning the South China Sea, the question then is whether the fragmentation of the Asiatic continent is an intracontinental deformation related process as proposed here or a subduction related one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号