首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
基于多源粘弹性人工边界,利用有限元软件ABAQUS建立了动力荷载作用下的路基-桥梁-车辆整体数值分析模型,分别计算动力荷载作用下车速、土-结构动力相互作用(SSI)因素对车-桥系统的影响规律。结果表明:对车桥系统来说,考虑土-结构相互作用时桥梁结构和车辆的竖向动力响应都较忽略时有显著的增大;桥梁的各参考点的竖向动力响应随着列车速度的增大而增大,但车速对桥梁的动力响应影响要大于土-结构动力相互作用的影响;地震使得车桥系统的动力响应明显的增大,同时地震作用下桥梁的参考点上竖向位移、速度的最大值出现时刻和只有列车荷载作用下出现时刻也不同。  相似文献   

2.
将土体视为固-液两相介质,基于饱和土体有效应力原理,建立饱和土体-地下综合管廊结构体系相互作用动力模型:在地应力平衡的静力状态下采用Duncan-Chang非线性弹性本构模型,在地震波作用的动力状态下采用Davidenkov非线性黏弹性本构模型;考虑饱和土体黏弹性动力人工边界条件,将地震动作用转化为作用在人工边界节点上的动力荷载。模型考察不同地震波时程、地震波加速度峰值、入射角度、孔隙率以及地应力场的影响,得出如下结论:(1)地震波的卓越周期与场地卓越周期相近时引起结构上的变形最大;随着地震波加速度峰值的增大结构变形增大;随着地震波入射角度的增加结构变形增大,地震波斜入射情况下产生的行波效应使得结构变形最大。(2)土体材料的孔隙水压力是影响地震中结构变形的主要因素之一。(3)将土体材料考虑为单相介质时结构上的变形要比考虑为固-液两相介质时大得多,直接将饱和土体场地中得到的地震波等效荷载施加到单相土介质-结构动力相互作用模型上,能够得到与完全基于有效应力法一致的结果。  相似文献   

3.
基于轨道结构-路基-地基动力相互作用理论,建立考虑地震-列车移动荷载耦合输入的轨道结构-路基-地基动力学模型,研究高速铁路路基及轨道在耦合荷载作用下的振动响应问题。通过编制DLOAD子程序并与ABAQUS有限元计算程序联立,实现地震荷载与列车移动荷载耦合作用的施加,以高速铁路桩承式路基及自由式路基为研究对象,对地震-列车移动荷载耦合作用下两种路基系统的动力响应进行数值计算并比较两者的振动响应差异。结果表明,耦合荷载对桩承式路基动力响应影响显著,该荷载作用下桩承式路基会发生共振现象,使得桩承式路基中轨道和路基振动位移幅值均大于自由式路基的振动位移幅值;桩承式路基不会影响路基系统的振动频率,但会改变路基系统的振动大小,桩承式路基中轨道X方向加速度、路肩边及路基坡脚处的竖向加速度分别减小6.2%、50%、28.6%。  相似文献   

4.
采用理想化的压力—时间曲线模拟爆炸冲击荷载,压力—时间曲线为简化的三角形荷载形式。考虑应变率效应对钢材的影响,应用LS-DYNA有限元分析软件,对导管架海洋平台在爆炸冲击荷载作用下的动力响应进行数值模拟和分析,得到了不同峰值爆炸荷载作用下,海洋平台结构上层甲板、中层甲板和立面结构重要节点的动力响应时程曲线。结果表明:上层甲板和中层甲板节点竖向位移的绝对值随着爆炸荷载峰值压力的增大而增大,当爆炸荷载峰值压力为20~70kPa时,节点区域内均处于弹性状态,当爆炸荷载峰值压力为80kPa时,节点区域内进入了塑性状态。立面平台节点的水平位移随着爆炸荷载峰值压力的增大而增大,当爆炸荷载峰值压力为20~80kPa时,节点区域内进入塑性状态。  相似文献   

5.
爆炸荷载作用下钢柱的动力响应与影响因素分析   总被引:4,自引:0,他引:4  
采用有限元软件ANSYS/LS-DYNA,建立钢柱有限元模型,模拟爆炸荷载作用下钢柱的动力响应,并对影响钢柱动力响应的主要因素进行数值分析。考虑了不同爆炸荷载、材料失效应变、单元网格密度、柱高、柱截面尺寸和柱承担的轴向压力等参数的影响。通过对钢柱动力响应时程曲线进行分析,研究爆炸荷载作用下钢柱响应特性及其破坏机理;通过分析,得到各参数对其动力响应的影响规律。分析结果表明:增大柱的截面尺寸,能够降低柱跨中水平位移;增大柱截面高度,能有效地提高钢框架柱的抗爆承载力;在钢柱抗爆设计中,应控制其所承受的轴向压力大小,轴压比值不宜超过0.3。  相似文献   

6.
地下综合管廊由于埋深较浅,Rayleigh波能量对综合管廊的地震反应具有重要影响。建立非线性有限元三维动力数值模型,通过边界脉冲荷载生成Rayleigh波,研究Rayleigh波平行入射条件下综合管廊结构的加速度、位移和内力等响应特性,然后分别研究管廊断面尺寸、覆土厚度、Rayleigh波入射角和土体本构等因素对管廊结构动力响应特征的影响。研究结果表明:Rayleigh波平行入射作用下,综合管廊结构顶板受力表现为时而受拉以及时而受压,Rayleigh波传递过程对管廊结构受力产生不利影响;当Rayleigh波入射方向与管廊结构轴向夹角越接近90°,引起的动力响应相对越大;土体采用摩尔-库伦模型(MC模型)时,由于不能考虑材料滞回环属性对能量的耗散,相对于小应变硬化模型(HSS模型)模拟出的管廊结构内力和位移响应要大;管廊埋深越浅,结构位移响应幅值和内力响应幅度变化越大;不同截面管廊结构的纵向位移差别不大,竖向位移则随截面增大而减小,表明随着截面刚度的提高,抗变形能力增强;管廊结构内力峰值变化量随截面增大而减小,单仓结构在Rayleigh波作用下的内力响应最为显著。  相似文献   

7.
阐述了人工黏弹性边界的机理及实现地震动输入的方法,采用MATLAB软件编制了等效节点荷载计算程序。通过算例分析将理论解与数值解进行对比,验证了程序的正确性。利用ABAQUS软件建立了位于典型软土场地的正放四角锥网架土-结构相互作用体系数值仿真模型,分析了考虑土-结构相互作用后对结构动力特性的影响,并且对土-结构相互作用体系进行了动力时程分析,得到了网架结构的加速度响应、相对位移和杆件内力的分布规律,并与刚性地基假定下结构的响应进行了对比和分析。结果表明,考虑土-结构相互作用后分析所得结构峰值加速度、相对位移和杆件内力等性能指标均有显著增大。不考虑土-结构相互作用可能会低估软土场地上的空间网格结构的地震响应。进行软土场地上空间网格结构工程抗震分析时应考虑土-结构相互作用对结构地震响应的影响。  相似文献   

8.
基于我国现行的风荷载规范,建立了在风荷载作用下结构-主动调谐质量阻尼器(ATMD)系统的动力方程。定义ATMD最优参数准则为:结构-ATMD系统的位移或加速度响应方差的最小化。ATMD有效性的评价准则为:设置ATMD结构的最小化位移或加速度响应方差与未设置ATMD结构的位移或加速度响应方差之比(分别称为位移和加速度减振系数)。根据上述准则,在频域内数值研究了结构自振频率、标准化加速度反馈增益系数、质量比对ATMD系统的最优参数(包括最优频率比和阻尼比)、有效性和冲程的影响。此外,为了比较的目的,论文同时考虑了结构TMD风致振动控制的情况。  相似文献   

9.
为探究复杂环境荷载和地震共同作用下饱和场地中单桩基础的动力响应,文中采用有限差分整体时程数值分析方法,对饱和砂土场地中海上风电单桩基础在水平环境荷载与地震荷载联合作用下的动力响应进行了非线性分析。通过与离心机试验结果对比,验证了所建立的数值分析模型的合理性与有效性。基于数值计算结果,对地震单独作用和水平环境荷载-地震联合作用2种工况下海上风电单桩基础的动力响应规律差异进行探讨,并进一步分析了上部结构质量、埋深等对联合荷载作用下单桩基础动力响应的影响。研究结果表明,在海上风电单桩基础结构设计中应考虑水平环境荷载与地震联合作用的影响,且应将桩的埋深作为重要设计参数加以考虑,而结构质量对联合荷载作用下海上风电单桩基础结构体系响应的影响较小。  相似文献   

10.
将土体视为固-液两相介质,基于饱和土体有效应力原理,建立饱和土体-地下综合管廊结构体系相互作用动力模型:在地应力平衡的静力状态下,采用Duncan-Chang非线性弹性本构模型,在地震波作用的动力状态下,采用Davidenkov非线性黏弹性本构模型;考虑饱和土体黏弹性动力人工边界条件,并将地震动作用转化为作用在人工边界节点上的动力荷载。模型考察不同土体材料、结构特性以及土-结构接触摩擦对结构地震响应的影响,得出如下结论:(1)地震波的卓越周期与场地卓越周期相近时,引起结构上的变形最大;(2)综合管廊结构管廊壁厚越薄,埋深越深,结构尺寸越大,结构刚度越小,结构变形越大;(3)不考虑土-结构接触面的状态非线性将会增大结构变形。  相似文献   

11.
目前的既有钢混结构地震损伤研究没有同时考虑不同抗震设计规范差异和耐久性两个因素对结构抗震性能的影响,且损伤指标较简单,在动力损伤分析中也存在局限。基于云模型的特点,提出了包括弹塑性耗能差率、刚度损伤指数、层间位移角和顶点位移角的多元结构损伤状态综合评估方法,能够同时考虑结构各损伤指数的随机性和模糊性。考虑不同版本抗震设计规范造成的结构性能差异和耐久性下降对结构性能的影响,设计3个典型五层钢混框架结构,进行增量动力分析,验证损伤评估方法的准确性。结果表明:随着抗震规范版本的更新,结构的损伤程度有适当减轻;同一结构的损伤程度因混凝土碳化作用先减轻后加重;采用弹塑性耗能差率表征既有结构的地震损伤效果优于刚度损伤指数;基于多指标云模型损伤评估方法获得的云模型综合隶属度和综合损伤值能够更加细化和精确地描述结构损伤状态。  相似文献   

12.
钢框架壁板由于在宏观上参与了整体建筑结构的受力,为钢框架构件承担部分外荷载,使得壁板结构在受力性能方面需要进一步改善。加劲肋壁板可以保证其与外框架的连接状况较好,改善整体构件的受力性能。为此,提出钢框架加劲肋壁板结构的受力失稳性能研究。采用动力学分析方法计算壁板结构位移值,依照位移值大小判断壁板结构是否处于稳定状态,获取壁板结构稳定性。利用实例测试分析钢框架加劲肋壁板结构的受力失稳性能,发现滞回曲线形状拥有梭形滞回曲线的特点,整个结构受力后具有塑性变形性能与抗震性能;骨架曲线反映出实验试件承载力支持第一阶段壁板结构弹性设计所需且提供第二阶段弹塑性抗震设计所需以及延性要求,本文检测模型能够判断钢结构建筑壁板结构失稳性。  相似文献   

13.
大跨度悬索拱桥极限承载能力研究   总被引:4,自引:0,他引:4  
首先介绍了悬索拱桥的特点和极限承载能力计算方法,然后基于有限元理论,考虑施工阶段的位移和应力的叠加效应、几何非线性、材料非线性以及拱肋等构件的初始缺陷的影响,对某铁路悬索拱桥的极限承载力进行了分析,计算得出结构在施工阶段弹性稳定安全系数为5.2~5.8,非弹性稳定安全系数为2.0~2.6;在运营阶段其弹性稳定安全系数为4.9~5.1,非弹性稳定安全系数为1.7~1.9,表明该桥弹性稳定性和非弹性稳定性都是足够的。其计算方法和结果对于悬索拱桥的计算及设计理论有一定的借鉴价值。  相似文献   

14.
文章提出了考虑剪切变形弹塑性刚度影响的多弹簧模型的空间梁柱单元,用于反复加载下钢构件的数值模拟。应用多轴应力状态下的塑性应力-应变关系理论,在单元模型中考虑了弹塑性区域剪切变形对单元的弹塑性刚度的影响,针对单元模型的塑性区长度和弹簧布置两个参数,文中给出了合理建议取值。数值模拟分析表明,所提出的单元模型能够很好地模拟钢构件的弹塑性性能。在此基础上,以多高层钢结构商业设计软件MTS为平台,进行三维钢框架结构弹塑性动力时程分析模块的开发。最后,文章对一纯钢框架结构足尺振动台试验进行数值模拟,模拟分析结果表明,本文所提出的多弹簧单元模型及开发的动力分析模块能够较好地模拟钢结构在地震作用下的弹塑性性能。  相似文献   

15.
新版抗震设防烈度区划图实施以来,大量单跨框架结构校舍因抗侧力体系不合理以及抗震承载力不足急需加固改造。针对单跨框架结构不满足刚度及承载力要求的现状,提出并阐述了BRB减震与橡胶隔震联合加固技术原理,并对昆明某实际单跨框架结构进行了动力弹性和弹塑性有限元分析,结果表明:在多遇地震下,防屈曲支撑(BRB)未屈服,结构整体处于弹性;在设防地震作用下,部分BRB屈服耗能,结构层间位移角最大值为1/582,结构主体处于弹性阶段;在罕遇地震作用下,所有BRB屈服耗能,且其滞回曲线饱满,结构弹塑性层间位移角最大值为1/148,大部分梁端部产生塑性铰,少数柱产生塑性铰,且梁较柱先出铰,表现出良好的抗震性能。研究为单跨框架结构的加固提供一条有效的新途径。  相似文献   

16.
Effects of structural walls on the elastic–plastic earthquake response of short- to medium-height reinforced concrete buildings were investigated. The analytical model consists of independent lumped mass systems representing walls and frames connected at each floor. The wall structure undergoes flexural as well as shear deformation and fails in shear at relatively small story drifts, the frames deforming only in shear. As a measure of structural damage, the ductility factor responses of frame structures were calculated for different combinations of base shear coefficients for the frames and walls. In buildings with relatively weak frames, the installation of structural walls did not improve the large plastic response of the frames up to the point where the walls were unfailed in shear and the ductility factors of the frame structure were suddenly reduced to a very small number. For relatively strong frames, however, the response displacements decreased gradually as the number of walls increased, whether or not the walls failed. Empirical formulas for the required base shear coefficients of the walls and frames which gave a target ductility factor response also were derived for two particular groups of accelerograms. These equations should be of practical use in designing frame-wall type buildings and in retrofitting damaged buildings. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
在桩-土-结构弹塑性动力相互作用模型研究的基础上,设计了考虑场地类别、输入地震动等因素的基于相互作用模型的多层和高层钢筋混凝土框架结构算例,分析了桩-土-结构相互作用对结构弹塑性变形特性的影响,并与不考虑相互作用的结构底部固端模型的计算结果进行了对比。分析表明:相互作用对结构的弹塑性变形的影响不容忽视,考虑相互作用后梁柱塑性铰出现的程度降低;结构底部位移增加而顶部位移减小;薄弱层的层间位移可能增加而其余层的层间位移则减小。现行的结构弹塑性变形验算方法未考虑土-结构相互作用的做法的合理性值得进一步评判。  相似文献   

18.
地下结构由于受周围土体的约束作用,其受力与变形特点与地上结构存在差异。采用Pushover分析方法分别对考虑土-结构相互作用的地下结构和不考虑土体的地上结构的抗震性能进行对比研究,探讨单层单跨和单层双跨钢筋混凝土矩形结构在有、无土体存在时抗震性能的差异。研究表明:考虑土-结构相互作用的地下结构变形能力与无土体时存在差异。在相同结构尺寸与初始轴压比的情况下,考虑土-结构相互作用的地下结构弹性层间位移角限值变小,地下结构更早出现塑性铰;单跨地下结构变形能力比地上结构的差,周围土体的剪切变形约束作用使得地下结构的延性变差;双跨地下结构与地上结构中柱变形能力相差不多,但侧墙的变形能力比地上结构的略差。因此,即使相同尺寸和初始轴压比的钢筋混凝土矩形结构,地上与地下结构的抗震性能仍存在较大差异,地上结构的相关研究成果不宜直接用于地下结构。  相似文献   

19.
总结采用梁有效翼缘来考虑楼板及配筋对“强柱弱梁”机制形成的影响的实验和数值仿真研究。基于SAP2000采用三种侧向加载模式对RC框架结构不带楼板、不带楼板考虑梁刚度放大、带楼板的三个模型进行pushover分析,对力与位移的关系曲线、塑性铰的出铰顺序以及顶点位移与层间位移等方面进行探讨。结果表明:三个模型的“强柱弱梁”现象不带楼板的纯框架结构最明显,考虑梁刚度放大的模型次之,带楼板结构最不明显,证明负弯矩承载力和刚度等反映“强柱弱梁”的参数及塑性铰的出现顺序与楼板、板内配筋存在明显的对应关系;楼板及配筋影响框架结构的整体变形性能和塑性耗能能力,是抗震延性机制实现的重要影响因素。在后续的结构设计中,建议考虑实际楼板和钢筋建模进行计算分析。  相似文献   

20.
Results from experimental and numerical studies of earthquake‐excited small‐scale primary–secondary structures are presented. The primary structure considered is a plane three‐storey shear frame with a fundamental frequency of 5.5 Hz. The columns of the first floor are built with soft aluminium and they are stressed beyond its linear range of behaviour. After each test the elastic–plastic columns are replaced by a new set of undeformed virgin aluminium bars. The elastic–plastic shear frame is tested with and without an attached secondary structure. The secondary structure is modelled as an elastic SDOF oscillator, and its natural frequency is tuned to the fundamental frequency of the shear frame. Alternatively, the oscillator is mounted on the horizontal beam of the second and third floor. The base excitation of the structural model is characterized by a broad band random process with constant spectral density in a frequency range between 3 and 30 Hz. In the numerical study, the digital recorded acceleration of the base excites the mechanical model of the investigated structures. Numerical outcomes assuming fictitious unlimited elastic material behaviour of the shear frame are set in contrast to results from experiments and computational simulations where the measured non‐linear force displacement relation of the elastic–plastic floor is approximated by a piecewise linear curve. The effect of elastic–plastic materials on the dynamic interaction between primary and secondary structure is shown and the difference to unlimited elastic material behaviour is worked out in detail. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号