首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A simplified numerical model was used to investigate the out‐of‐plane seismic response of vertically spanning unreinforced masonry (URM) wall strips. The URM wall strips were assumed to span between two flexible diaphragms and to develop a horizontal crack above the wall mid‐height. Three degrees of freedom were used to accommodate the wall displacement at the crack height and at the diaphragm connections, and the wall dynamic stability was studied. The equations of dynamic motion were obtained using principles of rocking mechanics of rigid bodies, and the formulae were modified to include semi‐rigid wall behaviour. Parametric studies were conducted that included calculation of the wall response for different values of diaphragm stiffness, wall properties, applied overburden, wall geometry and earthquake ground motions. The results of the study suggest that stiffening the horizontal diaphragms of typical low‐rise URM buildings will amplify the out‐of‐plane acceleration demand imposed on the wall and especially on the wall–diaphragm connections. It was found that upper‐storey walls connected to two flexible diaphragms had reduced stability for applied earthquake accelerograms having dominant frequency content that was comparable with the frequency of the diaphragms. It was also found that the applied overburden reduced wall stability by reducing the allowable wall rotations. The results of this study suggest that the existing American Society of Civil Engineers recommendations for assessment of vertically spanning walls overestimate the stability of top‐storey walls in multi‐storey buildings in high‐seismic regions or for walls connected to larger period (less stiff) diaphragms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
建筑物震害预测对于制定城市防震减灾规划意义重大,对于我国高烈度区建造的砖墙-钢筋混凝土剪力墙组合结构,目前没有成熟的震害预测方法.为了预测西昌市砖墙-钢筋混凝土剪力墙组合结构建筑物在不同地震烈度下可能发生的震害程度,通过分析该种结构在不同地震作用下的受力特点,提出以结构薄弱层的楼层屈服强度系数为指标进行震害预测,并结合...  相似文献   

3.
2017年5月11日新疆塔什库尔干5.5级地震给震区建筑结构造成了不同程度破坏。选择震区钢筋混凝土(RC)框架结构、砖混结构以及土石木结构等3类典型建筑结构,介绍了各类建筑结构地震破坏特点,分析了震害特征与破坏机理。结果表明:RC框架结构在地震中表现出了优异的抗震性能,即使在震中区,破坏也仅仅表现为非结构性破坏,如填充墙开裂和吊顶脱落等;砖混结构绝大多数抗震性能优良,仅震中区的少数建筑物发生了承重墙墙体开裂情况;土石木结构房屋抗震性能最差,地震破坏最为严重,是导致该次地震人员伤亡主要原因。建议地震高烈度设防区房屋建筑应采用抗震性能较好的RC框架结构和砖混结构,而抗震性能差的土石木建筑房屋应尽量避免继续建设和使用。结果可供类似地区房屋建设和建筑结构抗震设计等工作参考。  相似文献   

4.
On 26 th October 2015, an Mw 7.5 earthquake struck northern Pakistan, with its epicenter located 45 km southwest of Jarm in the Hindu Kush region of Afghanistan. The earthquake resulted from reverse faulting at a depth of 210 km, resulting in 280 fatalities and substantial damage to some 109,123 buildings. Regional seismicity, characteristics of recorded strong motions, damage statistics, and building performance observations are presented. Earthquake damage was mostly constrained to seismic-deficient unreinforced masonry(URM) buildings. Typical failure modes included toppled minarets, partial or complete out of plane collapse of URM walls, diagonal shear cracking in piers, flexural cracking in spandrels, corner damage, pounding damage, and damage due to ground settlement. The majority of human loss resulted due to failure of URM walls and subsequent roof collapse. URM buildings located in rural hilly areas closer to the epicenter suffered more intense and frequent damage than urban URM buildings located farther away in larger cities.  相似文献   

5.
Diaphragm action in floor structures is an important aspect that affects both local behaviors of individual members and consequently, the global response of a structure. The diaphragm action of a built structure, therefore needs to be compatible with the assumed diaphragm condition in the design phase to prevent unpredicted overloading of load bearing members in a seismic action. Autoclaved aerated concrete (AAC) is a cost-effective, lightweight and energy efficient material, and its usage as a construction material has rapidly increased in recent decades. However, there is a limited experience regarding the in-plane behavior of the floor structures made of AAC panels in terms of diaphragm action. In this paper, the in-plane response of AAC floors is experimentally investigated and the floor performance of a typical building is analytically investigated according to ASCE 7-16 (ASCE/SEI in Minimum design loads for buildings and other structures, The American Society of Civil Engineers, Reston, 2016). Full-scale experiments carried out through loading AAC floors in lateral directions to the panels, either parallel or perpendicular, provided important information about the damage progress and overall performance of such floors. A number of finite element modeling techniques that are generally used for modeling of AAC floors were examined and then validated through comparisons with test results. Finally, the diaphragm condition of a three-story building made of AAC walls and floor panels was assessed. The results indicated that the AAC floors in the examined building can be idealized as rigid diaphragms according to ASCE 7-16.  相似文献   

6.
The Himalayan region is one of the major seismic areas in the world. However, similar to many other seismically active locations, there are substantial numbers of unreinforced masonry(URM) buildings; the majority of which have not been designed for seismic loads. Past seismic events have shown that such buildings are highly vulnerable to earthquakes. Retrofitting of these URM buildings is an important concern in earthquake mitigation programs. Most government school buildings in rural areas of northern India are constructed of unreinforced masonry. These school buildings are socially important structures and serve as a crucial resource for rehabilitation during any disaster. The effectiveness of ferrocement(FC) to create a URM-FC composite is described in this study by estimating the performance and fragility of a URM school building before and after a retrofit. Analytical models, based on the equivalent frame method, are developed and used for nonlinear static analysis to estimate the enhancement in capacity. The capacity enhancement due to retrofitting is presented in terms of the maximum PGA sustained and damage probabilities at the expected level of earthquake hazard.  相似文献   

7.
The paper presents the seismic response analysis of a typical multistoreyed brick building. A number of variables representing the physical properties of the structural system, namely, number of storeys from one to four, wall thickness in various storeys from one to one and a half brick thick and damping from 5 per cent to 15 per cent of critical value are considered. A shear beam type multi-degree-of-freedom oscillator is taken to represent these buildings mathematically in which the masses of the floors and walls are assumed as lumped at the floor levels and the floors are assumed as rigid diaphragms. Koyna and El Centro earthquake accelerograms, representing two seismicity levels, are used for computing dynamic response of the buildings. Overturning and torsional effects have been included in the determination of timewise net stresses in the building elements and their seismic capabilities have been examined. From this study the critical sections for providing reinforcing have been identified and the minimum amount of necessary steel has been estimated.  相似文献   

8.
城市建筑群中砖混结构建筑数量众多,抗震性能较弱,在地震中的破损率较高,逐一进行抗震性能测定难度巨大。本文提出基于常时微动观测的城市砖混结构建筑群抗震性能快速评价方法,提供初步的决策参考建议,适用于在大范围城市建筑群中快捷地筛选易损建筑。选取呼和浩特市区331栋砖混结构建筑物进行振动特性分析,分别建立适用于研究区域建筑物长轴和短轴平均共振周期与建筑物楼层数的回归关系,作为衡量研究区砖混结构建筑群抗震能力的快速判断标准。筛选出82栋抗震能力较弱的易损建筑,其中24栋为重点关注对象,主要分布于人口较为密集的老旧城区,多为4层(含)以上住宅类型,建筑年代较为久远,具有面临潜在地震危害的风险,为下一步有针对性地进行抗震加固和防震减灾工作提供参考依据。  相似文献   

9.
青海玛多7.4级地震发生后,本文作者随科考队开展了典型工程的震害调查。本文报道了黄河乡江旁村和昌马河工区这2个典型调查点的建筑震害情况。调查表明:邻近微观震中的黄河乡建筑震害程度相对较轻,主要表现为部分房屋落瓦,砖混结构少数承重墙及框架结构部分隔墙开裂,土木结构房屋部分严重破坏,部分围墙倒塌;而距微观震中以东85 km的昌马河工区建筑震害则相对较重:无抗震措施的砖木结构房屋全部严重破坏或倒塌,具备合理抗震措施的砖混结构基本完好或轻微破坏,在建轻钢厂房均钢柱倾斜、维护墙明显开裂并且围墙多数倒塌。调查分析表明:造成两地震害差异的主要原因为抗震措施差异以及地表破裂和砂土液化影响:黄河乡多数房屋具备合理抗震措施,昌马河工区多数民居缺少抗震措施;昌马河工区附近发现疑似地表破裂痕迹,而紧邻黄河乡的河岸发现砂土液化迹象。这表明昌马河工区的地震作用中类似近场的高频能量可能较多,而黄河乡地区则因砂土液化使得高频地震动作用有所降低,由此造成两地震害程度与震中距呈现反差关系。  相似文献   

10.
Experimental tests have shown that unreinforced masonry (URM) infill walls are affected by simultaneous loading in their in-plane and out-of-plane directions, but there have been few attempts to represent this interaction in nonlinear time history analysis of reinforced concrete (RC) buildings with URM infill walls. In this paper, a recently proposed macro-model that accounts for this interaction is applied to the seismic analysis of RC framed structures with URM infill walls representative of Mediterranean building stock and practices. Two RC framed structures that are representative of low and mid-rise residential buildings are analysed with a suite of a bidirectional ground motions, scaled to three different intensities. During the analyses, the in-plane/out-of-plane interaction is monitored, showing that cracking of the infills occurs predominantly by in-plane actions, while failure occurs due to a combination of in-plane and out-of-plane displacements, with the out-of-plane component usually playing the dominant role. Along the frame height, the bottom storeys are generally the most damaged, especially where thin infill walls are used. These results are consistent with observations of damage to URM infill walls in similar buildings during recent earthquakes.  相似文献   

11.
江苏高邮、宝应MS4.9级地震现场震害调查与破坏原因研究   总被引:1,自引:1,他引:0  
江苏高邮、宝应Ms4.9级地震在极震区造成了数10间农村民居不同程度和不同方式的破坏,出现人员伤亡。震后对地震灾害现场进行震害调查与破坏原因研究,典型的震害特征包括砖砌体、砖木和砖混结构房屋局部倾倒、墙体贯通开裂、房顶瓦片掀翻和烟囱倒塌等。农村民居遭到破坏的主要因素包括:选址不当、施工质量较差、砂浆强度不够、缺少圈梁和构造柱等。同时,分析了竖向地震作用和鞭梢效应等地震效应,讨论了砖砌体和砖混结构抗震设计的加固方法和改善抗震性能的构造措施等,为农村民居的抗震设防和减轻震害损失等提供参考。  相似文献   

12.
Many older unreinforced masonry (URM) buildings feature timber floors and solid brick masonry. Simple equivalent frame models can help predicting the expected failure mechanism and estimating the strength of a URM wall. When modelling a URM wall with an equivalent frame model rather than, for example, a more detailed simplified micro-model, the strengths of the piers and spandrels need to be estimated from mechanical or empirical models. Such models are readily available for URM piers, which have been tested in many different configurations. On the contrary, only few models for spandrel strength have been developed. This paper reviews these models, discusses their merits, faults and compares the predicted strength values to the results of recent experimental tests on masonry spandrels. Based on this assessment, the paper outlines recommendations for a new set of strength equations for masonry spandrels.  相似文献   

13.
Several factors influence the behaviour of infilled frames, which have been a subject of research in the past with moderate success. The new generation of European design standards imposes the need to prevent brittle collapse of the infills and makes the structural engineer accountable for this requirement, yet it fails to provide sufficient information for masonry infills design. Therefore, the present work aims at understanding the seismic behaviour of masonry infill walls within reinforced concrete frames, using both unreinforced and reinforced solutions (bed joint reinforcement and reinforced plaster). For this purpose, three reinforced concrete buildings with different infill solutions were constructed at a scale of 1:1.5, all with the same geometry, and were tested on the shaking table of the National Laboratory for Civil Engineering, Portugal. All solutions performed adequately for the design earthquake, with no visible damage. Still, the experimental tests show that the double‐leaf‐unreinforced infill walls underperformed during a large earthquake, collapsing out of plane by rotating as rigid bodies with multiple configurations. Also the reinforced concrete buildings collapsed, because of the adverse interaction with the infill walls. The infill walls with bed joint reinforcement and reinforced plaster did not collapse out of plane, because of their connection to the concrete frame, which is an essential requirement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
On March 1993 an earthquake of magnitude Ms = 5·5 shook Pyrgos, a town in Western Peloponnissos, one of the most seismic prone areas in Greece. The damage induced to modern reinforced concrete buildings was rather light in contrast to the damage induced to historic and traditional buildings of adobe, stone or brick masonry which was severe. In order to study the causes of structural damage, detailed data are collected from a rather large statistical sample of 1023 masonry buildings and 22 reinforced concrete framed buildings with visible damage. For each building the number of storeys, the material of construction, as well as the type and the degree of damage are recorded. In addition, consideration is given to the site of the building within the town and the corresponding soil conditions. For reinforced concrete buildings, damage occured mostly in areas with relatively high estimated spectral accelerations and fundamental soil periods of vibration close to those of the buildings. Nevertheless, further analysis is required to explain the selective damage of a very small number of buildings. For masonry houses, the effect of soil conditions is more systematic. Moreover, the effects of the number of storeys as well as the age and material of construction appear to be dominant.  相似文献   

15.
李文俊    曲哲    孙海林  熊政辉   《世界地震工程》2021,(4):109-121
房屋建筑的地震易损性是地震损失评估和地震巨灾风险模型的基础。作为房屋建筑的重要组成部分,各类非结构构件的损失在现有的易损性模型中并未得到足够重视。本文以一栋典型钢筋混凝土框架结构教学楼为对象,通过将房屋建筑中的各类构件划分为具有不同地震损伤特性和损失后果的易损性组,考察建筑内的损失分布和非结构损失对房屋建筑地震易损性的影响。分析结果表明:由于许多非结构构件在中小地震作用下即可能发生较严重的破坏,房屋建筑在中小地震下的易损性主要受非结构损失控制;随着地震动强度等级的不断提高,结构损伤渐趋严重,结构损失对整体建筑易损性的影响不断增大;在结构进入震后不可修状态之前,建筑不同楼层的损失分布是评估建筑地震损失时不可忽略的因素。  相似文献   

16.
This paper presents three-dimensional fi nite element (FE) analyses of an all-frame model of a three-story reinforced concrete (RC) building damaged in the 1999 Taiwan Chi-Chi Earthquake. Non-structural brick walls of the building acted as a seismic resistant element although their contributions were neglected in the design. Hence, the entire structure of a typical frame was modeled and static and dynamic nonlinear analyses were conducted to evaluate the contributions of the brick walls. However, the results of the analyses were considerably overestimated due to coarse mesh discretizations, which were unavoidable due to limited computer resources. This study corrects the overestimations by modifying (1) the tensile strengths and (2) shear stiffness reduction factors of concrete and brick. The results indicate that brick walls improve frame strength although shear failures are caused in columns shortened by spandrel walls. Then, the effectiveness of three types of seismic retrofi ts is evaluated. The maximum drift of the firstoor is reduced by 89.3%, 94.8%, and 27.5% by Steel-confi ned, Full-RC, and Full-brick models, respectively. Finally, feasibility analyses of models with soils were conducted. The analyses indicated that the soils elongate the natural period of building models although no signifi cant differences were observed.  相似文献   

17.
Masonry buildings are often characterized by geometric irregularities. In many cases, such buildings meet global regularity requirements provided by seismic codes, but they are composed by irregular walls with openings. The latter are masonry walls characterized by (i) openings of different sizes, (ii) openings misaligned in the horizontal and/or vertical direction, or (iii) a variable number of openings per story. An irregular layout of openings can induce not only a nonuniform distribution of gravity loads among masonry piers but also unfavorable damage localizations resulting in a premature collapse of the wall and hence a higher seismic vulnerability. This paper is aimed at providing a simplified methodology to assess the effects of irregularities on the in‐plane seismic capacity of unreinforced masonry (URM) walls with openings. To this end, a macroelement method was developed and validated through experimental results available in the literature. The proposed methodology was based on the quantification of wall irregularities by means of geometric indices and their effects on seismic capacity of URM walls with openings through both sensitivity and regression analyses. Sensitivity analysis was based on a high number of static pushover analyses and allowed to assess variations in key seismic capacity parameters. Regression analysis let to describe each capacity parameter under varying irregularity index, providing empirical models for seismic assessment of irregular URM walls with openings. The in‐plane seismic capacity was found to be significantly affected by wall irregularities, especially in the case of openings with different heights. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
On March 11th 2011 a M w 9.0 mega-thrust interface subduction earthquake, the Great East Japan Earthquake, occurred 130 km off the northeast coast of Japan in the Pacific Ocean at the Japan Trench, triggering tsunami which caused damage along 600 km of coastline. Observations of damage to buildings (including vertical evacuation facilities) and coastal defences in Tōhoku are presented following investigation by the Earthquake Engineering Field Investigation Team (EEFIT) at 10 locations in Iwate and Miyagi Prefectures. Observations are presented in the context of the coastal setting and tsunami characteristics experienced at each location. Damage surveys were carried out in Kamaishi City and Kesennuma City using a damage scale for reinforced concrete (RC), timber and steel frame buildings adapted from an earlier EEFIT tsunami damage scale. Observations show that many sea walls and breakwaters were overtopped, overturned, or broken up, but provided some degree of protection. We show the extreme variability of damage in a local area due to inundation depth, flow direction, velocity variations and sheltering. Survival of many RC shear wall structures shows their high potential to withstand local earthquake and significant tsunami inundation but further research is required into mitigation of scour, liquefaction, debris impact, and the prevention of overturning failure. Damage to steel and timber buildings are also discussed. These observations are intended to contribute to mitigation of future earthquake and tsunami damage by highlighting the key features which influence damage level and local variability of damage sustained by urban coastal infrastructure when subjected to extreme tsunami inundation depths.  相似文献   

19.
Morandi  P.  Butenweg  C.  Breis  K.  Beyer  K.  Magenes  G. 《Bulletin of Earthquake Engineering》2022,20(11):5797-5848
Bulletin of Earthquake Engineering - Recent earthquakes as the 2012 Emilia earthquake sequence showed that recently built unreinforced masonry (URM) buildings behaved much better than expected and...  相似文献   

20.
Severe damage to suspended ceilings of metal grids and lay-in panels was observed in public buildings during the 2013 M s7.0 Lushan earthquake in China. Over the past several years, suspended ceilings have been widely used practice in public buildings throughout China, including government offices, schools and hospitals. To investigate the damage mechanism of suspended ceilings, a series of three-dimensional shake table tests was conducted to reproduce the observed damage. A full-scale reinforced concrete frame was constructed as the testing frame for the ceiling, which was single-story and infilled with brick masonry walls to represent the local construction of low-rise buildings. In general, the ceiling in the tests exhibited similar damage phenomena as the field observations, such as higher vulnerability of perimeter elements and extensive damage to the cross runners. However, it exhibited lower fragility in terms of peak ground/roof accelerations at the initiation of damage. Further investigations are needed to clarify the reasons for this behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号