首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediment redistribution within near-level agricultural fields in the Gray Wooded soil zone of Saskatchewan was studied using the artificial environmental tracer caesium-137 (137Cs). the objective of this study was to estimate erosion rates caused by wind erosion, and land clearing techniques (i.e. bulldozing). Net rates of erosion and deposition were quantified over the past 30 years on three fields. Wind erosion was estimated to be approximately 1.0 t ha?1 y?1 on a near-level field, with 50 per cent of the sampling sites having erosion rates in excess of soil formation. Bulldozing produced median net sediment flux values of between 40 and 90 t ha?1 y?1. in addition, between 65 and 85 per cent of the sampling sites had erosion rates in excess of the maximum tolerable limit (i.e. 11.0 t ha?1 y?1). These results indicate significant accelerated erosion results from land clearing techniques used in central Saskatchewan. Bulldozing of the fields removed the LFH-horizon and exposed the underlying mineral horizon. Bulk densitites of the 0 to 15 cm layer in the cleared fields were 27 to 55 per cent greater than the comparable depth increment within the undisturbed forest site. Organic carbon concentrations within the 1930s, 1979, and 1987 fields were decreased by 47, 42, and 37 per cent, respectively following cultivation and bulldozing. Decreases in total nitrogen for the cultivated fields ranged from 33 to 38 per cent.  相似文献   

2.
Reliable quantitative data on the extent and rates of soil erosion are needed to understand the global significance of soil‐erosion induced carbon exchange and to underpin the development of science‐based mitigation strategies, but large uncertainties remain. Existing estimates of agricultural soil and soil organic carbon (SOC) erosion are very divergent and span two orders of magnitude. The main objective of this study was to test the assumptions underlying existing assessments and to reduce the uncertainty associated with global estimates of agricultural soil and SOC erosion. We parameterized a simplified erosion model driven by coarse global databases using an empirical database that covers the conterminous USA. The good agreement between our model results and empirical estimates indicate that the approach presented here captures the essence of agricultural erosion at the scales of continents and that it may be used to predict the significance of erosion for the global carbon cycle and its impact on soil functions. We obtained a global soil erosion rate of 10.5 Mg ha‐1 y‐1 for cropland and 1.7 Mg ha‐1 y‐1 for pastures. This corresponds to SOC erosion rates of 193 kg C ha‐1 y‐1 for cropland and 40.4 kg C ha‐1 y‐1 for eroding pastures and results in a global flux of 20.5 (±10.3) Pg y‐1 of soil and 403.5 (±201.8) Tg C y‐1. Although it is difficult to accurately assess the uncertainty associated with our estimates of global agricultural erosion, mainly due to the lack of model testing in (sub‐)tropical regions, our estimates are significantly lower than former assessments based on the extrapolation of plot experiments or global application of erosion models. Our approach has the potential to quantify the rate and spatial signature of the erosion‐induced disturbance at continental and global scales: by linking our model with a global soil profile database, we estimated soil profile modifications induced by agriculture. This showed that erosion‐induced changes in topsoil SOC content are significant at a global scale (an average SOC loss of 22% in 50 years) and agricultural soils should therefore be considered as dynamic systems that can change rapidly. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This paper analyses the factors that control rates and extent of soil erosion processes in the 199 ha May Zegzeg catchment near Hagere Selam in the Tigray Highlands (Northern Ethiopia). This catchment, characterized by high elevations (2100–2650 m a.s.l.) and a subhorizontal structural relief, is typical for the Northern Ethiopian Highlands. Soil loss rates due to various erosion processes, as well as sediment yield rates and rates of sediment deposition within the catchment (essentially induced by recent soil conservation activities), were measured using a range of geomorphological methods. The area‐weighted average rate of soil erosion by water in the catchment, measured over four years (1998–2001), is 14·8 t ha?1 y?1, which accounts for 98% of the change in potential energy of the landscape. Considering these soil loss rates by water, 28% is due to gully erosion. Other geomorphic processes, such as tillage erosion and rock fragment displacement by gravity and livestock trampling, are also important, either within certain land units, or for their impact on agricultural productivity. Estimated mean sediment deposition rate within the catchment equals 9·2 t ha?1 y?1. Calculated sediment yield (5·6 t ha?1 y?1) is similar to sediment yield measured in nearby catchments. Seventy‐four percent of total soil loss by sheet and rill erosion is trapped in exclosures and behind stone bunds. The anthropogenic factor is dominant in controlling present‐day erosion processes in the Northern Ethiopian Highlands. Human activities have led to an overall increase in erosion process intensities, but, through targeted interventions, rural society is now well on the way to control and reverse the degradation processes, as can be demonstrated through the sediment budget. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Reliable assessment of the spatial distribution of soil erosion is important for making land management decisions, but it has not been thoroughly evaluated in karst geo‐environments. The objective of this study was to modify a physically based, spatially distributed erosion model, the revised Morgan, Morgan and Finney (RMMF) model, to estimate the superficial (as opposed to subsurface creep) soil erosion rates and their spatial patterns in a 1022 ha karst catchment in northwest Guangxi, China. Model parameters were calculated using local data in a raster geographic information system (GIS) framework. The cumulative runoff on each grid cell, as an input to the RMMF model for erosion computations, was computed using a combined flow algorithm that allowed for flow into multiple cells with a transfer grid considering infiltration and runoff seepage to the subsurface. The predicted spatial distributions of soil erosion rates were analyzed relative to land uses and slope zones. Results showed that the simulated effective runoff and annual soil erosion rates of hillslopes agreed well with the field observations and previous quantified redistribution rates with caesium‐137 (137Cs). The estimated average effective runoff and annual erosion rate on hillslopes of the study catchment were 18 mm and 0.27 Mg ha?1 yr?1 during 2006–2007. Human disturbances played an important role in accelerating soil erosion rates with the average values ranged from 0.1 to 3.02 Mg ha?1 yr?1 for different land uses. The study indicated that the modified model was effective to predict superficial soil erosion rates in karst regions and the spatial distribution results could provide useful information for developing local soil and water conservation plans. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Soil loss on arable agricultural land is typically an order of magnitude higher than under undisturbed native vegetation. Although there have been several recent attempts to quantify these accelerated fluxes at the regional, continental and even global scale, all of these studies have focused on erosion by water and wind and no large scale assessment of the magnitude of tillage erosion has been made, despite growing recognition of its significance on agricultural land. Previous field scale simulations of tillage erosion severity have relied on use of high resolution topographic data to derive the measures of slope curvature needed to estimate tillage erosion rates. Here we present a method to derive the required measures of slope curvature from low resolution, but large scale, databases and use high resolution topographical datasets for several study areas in the UK to evaluate the reliability of the approach. On the basis of a tillage model and land‐use databases, we estimate the mean gross tillage erosion rates for the part of Europe covered by the CORINE database (6·5% of global cropland) and we obtained an average of 3·3 Mg ha–1 y–1, which corresponds to a sediment flux of 0·35 Pg y–1. Water erosion rates derived for the same area are of a similar magnitude. This redistribution of soil within agricultural fields substantially accelerates soil profile truncation and sediment burial in specific landscape positions and has a strong impact on medium‐term soil profile evolution. It is, therefore, clear that tillage erosion must be accounted for in regional assessments of sediment fluxes and in analyses that employ these in the analysis of land management strategies and biogeochemical cycles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Excessive soil erosion and deposition is recognised as a significant land degradation issue. Quantifying soil erosion and deposition is a non-trivial task. One of these methods has been the mathematical modelling of soil erosion and deposition patterns and the processes that drive them. Here we examine the capability of a landscape evolution model to predict both soil erosion rate and pattern of erosion and deposition. This numerical model (SIBERIA) uses a Digital Elevation Model (DEM) to represent the landscape and calculates erosion and deposition at each grid point in the DEM. To assess field soil redistribution rates (SRR) and patterns the distribution of the environmental tracer 137Cs has been analysed. Net hill slope SRR predicted by SIBERIA (a soil loss rate of 1.7 to 4.3 t ha-1 yr-1) were found to be in good agreement with 137Cs based estimates (2.1 – 3.4 t ha-1 yr-1) providing confidence in the predictive ability of the model at the hillslope scale. However some differences in predicted erosion/deposition patterns were noted due to historical changes in landscape form (i.e. the addition of a contour bank) and possible causes discussed, as is the finding that soil erosion rates are an order of magnitude higher than likely soil production rates. The finding that SIBERIA can approximate independently quantified erosion and deposition patterns and rates is encouraging, providing confidence in the employment of DEM based models to quantify hillslope erosion rates and demonstrating the potential to upscale for the prediction of whole catchment erosion and deposition. The findings of this study suggest that LEMs can be a reliable alternative to complex and time consuming methods such as that using environmental tracers for the determination of erosion rates. The model and approach demonstrates a new approach to assessing soil erosion that can be employed elsewhere. © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
Soil loss rates due to piping erosion   总被引:1,自引:0,他引:1  
Compared with surface soil erosion by water, subsurface erosion (piping) is generally less studied and harder to quantify. However, wherever piping occurs, it is often a significant or even the main sediment source. In this study, the significance of soil loss due to piping is demonstrated through an estimation of soil volume lost from pipes and pipe collapses (n = 560) in 137 parcels under pasture on loess‐derived soils in a temperate humid climate (Belgium). Assuming a period of 5 to 10 years for pipe collapse to occur, mean soil loss rates of 2.3 and 4.6 t ha?1 yr?1 are obtained, which are at least one order of magnitude higher than surface erosion rates (0.01–0.29 t ha?1 yr?1) by sheet and rill erosion under a similar land use. The results obtained for the study area in the Flemish Ardennes correspond well to other measurements in temperate environments; they are, however, considerably smaller than soil loss rates due to subsurface erosion in semi‐arid environments. Although local slope gradient and drainage area largely control the location of collapsed pipes in the study area, these topographic parameters do not explain differences in eroded volumes by piping. Hence, incorporation of subsurface erosion in erosion models is not straightforward. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Despite widespread bench‐terracing, stream sediment yields from agricultural hillsides in upland West Java remain high. We studied the causes of this lack of effect by combining measurements at different spatial scales using an erosion process model. Event runoff and sediment yield from two 4‐ha terraced hillside subcatchments were measured and field surveys of land use, bench‐terrace geometry and storage of sediment in the drainage network were conducted for two consecutive years. Runoff was 3·0–3·9% of rainfall and sediment yield was 11–30 t ha−1 yr−1 for different years, subcatchments and calculation techniques. Sediment storage changes in the subcatchment drainage network were less than 2 t ha−1, whereas an additional 0·3–1·5 t ha−1 was stored in the gully between the subcatchment flumes and the main stream. This suggests mean annual sediment delivery ratios of 86–125%, or 80–104% if this additional storage is included. The Terrace Erosion and Sediment Transport (TEST) model developed and validated for the studied environment was parameterized using erosion plot studies, land use surveys and digital terrain analysis to simulate runoff and sediment generation on the terraced hillsides. This resulted in over‐estimates of runoff and under‐estimates of runoff sediment concentration. Relatively poor model performance was attributed to sample bias in the six erosion plots used for model calibration and unaccounted covariance between important terrain attributes such as slope, infiltration capacity, soil conservation works and vegetation cover. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Mulching with forest residues has proved to be highly effective in reducing post-fire soil losses at the plot scale. However, its effectiveness has not been quantified at the application rates that are typically used in operational post-fire land management (2–3 Mg ha-1 using straw), as well as at scales larger than 100 m2. The present study compared post-fire erosion rates for six convergent hillslopes or swales of 500 to 800 m2, three of which were left untreated while the other three were mulched immediately after the fire with shredded eucalypt bark at a rate of 2.4 Mg ha-1. Erosion rates were monitored at irregular intervals during the first three post-fire years, whilst ground cover was assessed yearly. Selected topsoil properties (0–2 cm) such as organic matter content and aggregate stability were determined at a single occasion – two years after the wildfire, for three micro-environments separately: bare soil, and under mulch/litter and vegetation. Soil losses on the untreated swales decreased with post-fire year from 2.2 to 0.4 and 0.11 Mg ha-1 yr-1 (respectively for the first, second and third post-fire years), while the mulched swales produced 84%, 77% and 38% less soil losses than the untreated swales. Soil losses also depended on slope aspect, with the north-facing swales producing less erosion than the west-facing ones. This could be linked to their significant differences in bare soil, vegetation and stone cover, or a combination thereof. The type of micro-environment also played a significant role in topsoil properties (stone content, bulk density, resistance to penetration/shear stress, porosity and organic matter content). The present results add to the increasing evidence that forest residues should be duly considered for operational post-fire land management. Forest residues were highly effective in reducing erosion from swales at application rates as low as the typical 2 Mg ha-1 of post-fire straw mulch. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

10.
Piping has been recognized as an important geomorphic, soil erosion and hydrologic process. It seems that it is far more widespread than it has often been supposed. However, our knowledge about piping dynamics and its quantification currently relies on a limited number of data for mainly loess‐derived areas and marl badlands. Therefore, this research aimed to recognize piping dynamics in mid‐altitude mountains under a temperate climate, where piping occurs in Cambisols, not previously considered as piping‐prone soils. It has been expressed by the estimation of erosion rates due to piping and elongation of pipes in the Bere?nica Wy?na catchment in the Bieszczady Mountains, eastern Carpathians (305 ha, 188 collapsed pipes). The research was based on the monitoring of selected piping systems (1971–1974, 2013–2016). Changes in soil loss vary significantly between different years (up to 27.36 t ha?1 yr?1), as well as between the mean short‐term erosion rate (up to 13.10 t ha?1 yr?1), and the long‐term (45 years) mean of 1.34 t ha?1 yr?1. The elongation of pipes also differs, from no changes to 36 m during one year. The mean total soil loss is 48.8 t ha?1 in plots, whereas in the whole studied catchment it is 2.0 t ha?1. Hence, piping is both spatially and temporally dependent. The magnitude of piping in the study area is at least three orders of magnitude higher than surface erosion rates (i.e. sheet and rill erosion) under similar land use (grasslands), and it is comparable to the magnitude of surface soil erosion on arable lands. It means that piping constitutes a significant environmental problem and, wherever it occurs, it is an important, or even the main, sediment source. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Two principal groups of processes shape mass fluxes from and into a soil: vertical profile development and lateral soil redistribution. Periods having predominantly progressive soil forming processes (soil profile development) alternate with periods having predominantly regressive processes (erosion). As a result, short-term soil redistribution – years to decades – can differ substantially from long-term soil redistribution; i.e. centuries to millennia. However, the quantification of these processes is difficult and consequently their rates are poorly understood. To assess the competing roles of erosion and deposition we determined short- and long-term soil redistribution rates in a formerly glaciated area of the Uckermark, northeast Germany. We compared short-term erosion or accumulation rates using plutonium-239 and -240 (239+240Pu) and long-term rates using both in situ and meteoric cosmogenic beryllium-10 (10Be). Three characteristic process domains have been analysed in detail: a flat landscape position having no erosion/deposition, an erosion-dominated mid-slope, and a deposition-dominated lower-slope site. We show that the short-term mass erosion and accumulation rates are about one order of magnitude higher than long-term redistribution rates. Both, in situ and meteoric 10Be provide comparable results. Depth functions, and therefore not only an average value of the topsoil, give the most meaningful rates. The long-term soil redistribution rates were in the range of −2.1 t ha-1 yr-1 (erosion) and +0.26 t ha-1 yr-1 (accumulation) whereas the short-term erosion rates indicated strong erosion of up to 25 t ha-1 yr-1 and accumulation of 7.6 t ha-1 yr-1. Our multi-isotope method identifies periods of erosion and deposition, confirming the ‘time-split approach’ of distinct different phases (progressive/regressive) in soil evolution. With such an approach, temporally-changing processes can be disentangled, which allows the identification of both the dimensions of and the increase in soil erosion due to human influence. © 2019 John Wiley & Sons, Ltd.  相似文献   

12.
Wildfire is a natural component of sagebrush (Artemisia spp.) steppe rangelands that induces temporal shifts in plant community physiognomy, ground surface conditions, and erosion rates. Fire alteration of the vegetation structure and ground cover in these ecosystems commonly amplifies soil losses by wind- and water-driven erosion. Much of the fire-related erosion research for sagebrush steppe has focused on either erosion by wind over gentle terrain or water-driven erosion under high-intensity rainfall on complex topography. However, many sagebrush rangelands are geographically positioned in snow-dominated uplands with complex terrain in which runoff and sediment delivery occur primarily in winter months associated with cold-season hydrology. Current understanding is limited regarding fire effects on the interaction of wind- and cold-season hydrologic-driven erosion processes for these ecosystems. In this study, we evaluated fire impacts on vegetation, ground cover, soils, and erosion across spatial scales at a snow-dominated mountainous sagebrush site over a 2-year period post-fire. Vegetation, ground cover, and soil conditions were assessed at various plot scales (8 m2 to 3.42 ha) through standard field measures. Erosion was quantified through a network of silt fences (n = 24) spanning hillslope and side channel or swale areas, ranging from 0.003 to 3.42 ha in size. Sediment delivery at the watershed scale (129 ha) was assessed by suspended sediment samples of streamflow through a drop-box v-notch weir. Wildfire consumed nearly all above-ground live vegetation at the site and resulted in more than 60% bare ground (bare soil, ash, and rock) in the immediate post-fire period. Widespread wind-driven sediment loading of swales was observed over the first month post-fire and extensive snow drifts were formed in these swales each winter season during the study. In the first year, sediment yields from north- and south-facing aspects averaged 0.99–8.62 t ha−1 at the short-hillslope scale (~0.004 ha), 0.02–1.65 t ha−1 at the long-hillslope scale (0.02–0.46 ha), and 0.24–0.71 t ha−1 at the swale scale (0.65–3.42 ha), and watershed scale sediment yield was 2.47 t ha−1. By the second year post fire, foliar cover exceeded 120% across the site, but bare ground remained more than 60%. Sediment yield in the second year was greatly reduced across short- to long-hillslope scales (0.02–0.04 t ha−1), but was similar to first-year measures for swale plots (0.24–0.61 t ha−1) and at the watershed scale (3.05 t ha−1). Nearly all the sediment collected across all spatial scales was delivered during runoff events associated with cold-season hydrologic processes, including rain-on-snow, rain-on-frozen soils, and snowmelt runoff. Approximately 85–99% of annual sediment collected across all silt fence plots each year was from swales. The high levels of sediment delivered across hillslope to watershed scales in this study are attributed to observed preferential loading of fine sediments into swale channels by aeolian processes in the immediate post-fire period and subsequent flushing of these sediments by runoff from cold-season hydrologic processes. Our results suggest that the interaction of aeolian and cold-season hydrologic-driven erosion processes is an important component for consideration in post-fire erosion assessment and prediction and can have profound implications for soil loss from these ecosystems. © 2019 John Wiley & Sons, Ltd.  相似文献   

13.
Soil erosion is a particularly important problem in the loess areas of Central Europe. Numerous studies of past and present soil erosion based on colluvial sediments have so far been conducted. The main problem is the fact that colluvia usually do not represent the complete sedimentation record. Closed depressions (CDs) collect all colluvial sediments from their catchment, therefore, constitute sediment stores enabling the calculation of soil erosion rates. Colluvial sediments and fossil soils, infilling four CDs in the Polish loess belt, were OSL and C‐14 dated. Human settlements near the studied CDs were analyzed. Phases of soil erosion and colluviation from the Neolithic (5400–2900 bc ), from the Middle Bronze Age to the Early Iron Age (1600–0 bc ), and from the Early Middle Ages to Modern Times (500 AD until today) were documented within the CDs studied. Phases of low soil erosion rate and pedogenesis occurred from the Late Vistulian to the Early Neolithic and from the Iron Age to Early Middle Ages. This study reveals that these phases are not synchronous with the soil erosion phases in Central Europe, as the latter mainly occurred in the Bronze Age, Roman Period and Middle Ages. The obtained soil erosion rates were compared with erosion rates in different areas of Central Europe. This study indicates that in loess regions with long‐term agricultural land use, mean erosion rates (i.e. 3.7–5.9 t ha‐1 yr‐1) from the Middle Ages to Modern Times were ten times higher than during the entire prehistoric period (0.39–0.67 t ha‐1 yr‐1). The mean soil erosion rates for forested CDs was 0.24–0.74 t ha‐1 yr‐1. Soil erosion phases are most probably caused by human activities (i.e. land use change) but the early Holocene erosion phase (7.96 +/‐ 0.67 kyr) could have been induced by a climatic fluctuation (e.g. a 8.2 kyr Bond event). Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
Field measurement and modelling of soil erosion provides insights into landscape systems as well as the potential for enhanced landscape management. There are a number of field and numerical methods by which soil erosion and deposition can be quantified. Here we examine the capability of the SIBERIA landscape evolution model to quantify short-term erosion and deposition on a well-managed cattle grazing landscape on the east coast of Australia. The model is calibrated by two methods (1) a geomorphological approach using a site digital elevation model (DEM) and soil data and (2) a laboratory-scale flume. The two calibration processes resulted in similar model input parameters and estimated erosion rates of 3.1 t ha−1 year−1 and 4.4 t ha−1 year−1, respectively. These were found to closely match erosion rates estimated using the environmental tracer 137Cs (2.7–4.8 t ha−1 year−1). However, erosion and deposition estimated at individual points along the hillslope was not well correlated with 137Cs at the same position due to the temporal averaging of the model and microtopography. Sensitivity analysis showed the model was more sensitive to parameterisation than sub-DEM-scale topography. This places confidence in the model's ability to estimate erosion and deposition across an entire hillslope and catchment on decadal time scales. We also highlight the robustness and flexibility of the calibration methods.  相似文献   

15.
A sediment budget was developed for the 1.7 km2 Maluna Creek drainage basin located in the Hunter Valley, New South Wales, Australia, for the period 1971-86. the impact of viticulture, which commenced at Maluna in 1971, was studied using erosion plots, with caesium-137 as an indicator of both soil erosion and sedimentation. Two methods were used to estimate vineyard soil losses from caesium-137 measurements. Sediment output from the catchment was measured for three years, and extrapolated from readings taken at a nearby long-term stream flow gauging station for the remaining 13 years. Relative amounts of soil loss from forest (60 per cent basin area), grazing land (30 per cent) and vineyards (10 per cent) were calculated. Soil losses by rain splash detachment were ten times greater from bare/cultivated sufaces than from the forest. Erosion plots of area 2 m2 showed no significant differences in soil loss between forest and grassland but, under bare soil, losses were 100 times greater. the 137Cs method was employed to calculate net soil loss from all vineyard blocks using both a previously established calibration curve and a proportional model. the latter method gave estimates of soil loss which were 3-9 times greater than by the calibration curve, and indicated that average soil losses from the vineyard were equivalent to 62 t ha?1 y?1 (1971-86). It was estimated that the forest contributed 1-8 per cent, the grazing land 1.6 per cent, and the vineyard 96.6 per cent of the total soil loss during that period. Sediment storages within the fluvial system adjacent to the vineyard ws 9460 t for the period, whereas sediment output was equivalent to 215 t km?1 y?1. Independent measurements of soil erosion, storage, and output showed that 56 per cent of the eroded sediment remained in the catchment, and 34 per cent was transported out by Maluna Creek. the budget was able to be balanced to within 10 per cent.  相似文献   

16.
ABSTRACT

Soil erosion is a serious ecological problem in Mediterranean areas. The IntErO model based on the erosion potential method (EPM) and the modified universal soil loss equation (MUSLE) have been used to assess soil erosion in several basins. This study aimed to assess and evaluate the effectiveness of these methods for evaluating sediment production and deposition rates in the Arbaa Ayacha basin, Morocco, in order to estimate sediment fluxes on a catchment scale. Our findings suggest that the basin is strongly exposed to erosion owing to geological formations, slope and land use, with average losses of about 28.4 t ha?1 year?1. Erosion processes were evaluated at the erosion production (Eocene marly formations) and sedimentation zones (Quaternary terraces). The results of these models may be useful to address soil and water management in this region and to assess the impact of a river dam that will be built in the basin.  相似文献   

17.
The long-term average annual soil loss (A) and sediment yield (SY) in a tropical monsoon-dominated river basin in the southern Western Ghats, India (Muthirapuzha River Basin, MRB; area: 271.75 km2), were predicted by coupling the Revised Universal Soil Loss Equation (RUSLE) and sediment delivery ratio (SDR) models. Moreover, the study also delineated soil erosion risk zones based on the soil erosion potential index (SEPI) using the analytic hierarchy process (AHP) technique. Mean A of the basin is 14.36 t ha?1 year?1, while mean SY is only 3.65 t ha?1 year?1. Although the land use/land cover types with human interference show relatively lower A compared to natural vegetation, their higher SDR values reflect the significance of anthropogenic activities in accelerated soil erosion. The soil erosion risk in the MRB is strongly controlled by slope, land use/land cover and relative relief, compared to geomorphology, drainage density, stream frequency and lineament frequency.  相似文献   

18.
High mountainous areas are geomorphologically active environments which are strongly shaped by redistribution of sediments and soils. With the projected climate warming in the twenty-first century and the continued retreat of glaciers, the area of newly exposed, highly erodible sediments and soils will increase. This presents a need to better understand and quantify erosion processes in young mountainous soils, as an increase in erodibility could threaten human infrastructure (i.e. hydroelectric power, tourist installations and settlements). While soil development is increasingly well understood and quantified, a coupling to soil erosion rates is still missing. The aim of this study was, therefore, to assess how soil erosion rates change with surface age. We investigated two moraine chronosequences in the Swiss Alps: one in the siliceous periglacial area of Steingletscher (Sustenpass), with soils ranging from 30 a to 10 ka, and the other in the calcareous periglacial area of Griessgletscher (Klausenpass) with surfaces ranging from age of 110 a to 13.5 ka. We quantified the erosion rates using the 239+240Pu fallout radionuclides and compared them to physical and chemical soil properties and the vegetation coverage. We found no significant differences between the two parent materials. At both chronosequences, the erosion rates were highest in the young soils (on average 5−10 t ha-1 a-1 soil loss). Erosion rates decreased markedly after 3−5 ka of soil development (on average 1−2.5 t ha-1 a-1 soil loss) to reach a more or less stable situation after 10−14 ka (on average 0.3–2 t ha-1 a-1). Climate change not only causes glacier retreat, but also increased sediment dynamics. Depending on the relief and vegetational development, it takes up to at least 10 ka to reach soil stability. The establishment of a closed vegetation cover with dense root networks seems to be the controlling factor in the reduction of soil erodibility. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
Most of the lowland in the central rift valley of Ethiopia is arid or semiarid and in degradation,with frequent occurrence of droughts.Soil erosion by water during the rainy season is a serious problem...  相似文献   

20.
River banks are important sources of sediment and phosphorus to fluvial systems, and the erosion processes operating on the banks are complex and change over time. This study explores the magnitude of bank erosion on a cohesive streambank within a small channelized stream and studies the various types of erosion processes taking place. Repeat field surveys of erosion pin plots were carried out during a 4‐year period and observations were supplemented by continuous monitoring of volumetric soil water content, soil temperature, ground water level and exposure of a PEEP sensor. Bank erosion rates (17·6–30·1 mm year?1) and total P content on the banks were relatively high, which makes the bank an important source of sediment and phosphorus to the stream, and it was estimated that 0·27 kg Ptot year?1 ha?1 may potentially be supplied to the stream from the banks. Yearly pin erosion rates exceeding 5 cm year?1 were mainly found at the lower parts of the bank and were associated with fluvial erosion. Negative erosion pin readings were widespread with a net advance of the bank during the monitoring period mainly attributed to subaerial processes and bank failure. It was found that dry periods characterized by low soil water content and freeze–thaw cycles during winter triggered bank failures. The great spatial variability, in combination with the temporal interaction of processes operating at different scales, requires new tools such as 3‐D topographical surveying to better capture bank erosion rates. An understanding of the processes governing bank erosion is required for riparian management using vegetational measures as root size and structure play different roles when it comes to controlling bank erosion processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号