首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
血流是人体的一个重要生理参数,实时测量脑部、骨骼肌及乳腺等组织的血流对疾病诊断治疗及手术、重症监护有重要意义。近红外漫射光相关谱(DCS)是新兴的组织血流测量技术,利用DCS技术进行血流测量时,每个距离的光源-探测器(S-D)均含有不同程度的表层组织和深层组织的混合信号,其中表层信号对提取深层组织的血流有较大影响。本文结合N阶线性算法(NL算法)和独立成分分析算法(ICA)对DCS技术获取的近距离和远距离光学信号进行分离处理。计算机仿真表明,本文提出的算法可以较好地分离出表层和深层组织的血流信号,对今后DCS技术在临床的血流测量应用有重要潜力。   相似文献   

2.
In seismic exploration for coal data resolution is a fundamental problem. Modeling helps to understand those details of the geology that can be interpreted from the seismic image. For single seam exploration, the vertical resolution of a seismic section is defined by the bandwidth of the signals. If there are several seams, each seam acts as a high-pass filter for reflections and as a low-pass filter for transmitted waves. Synthetic seismograms show that reflections from deep seams have a low frequency content. Within a layered sequence of coal seams, many multiples are generated which disturb later primary reflections. The ratio of primaries to multiples depends on the frequency content of the seismic data and on the number of overlying seams. The multiple problem is more severe with high frequencies. Primary reflections from deep coal seams within a sequence can be detected only if low-frequency signals are used. However, the use of low-frequency signals reduces the resolution of the deeper data.  相似文献   

3.
地球深部结构探测是地球物理学的核心领域,而地震体波可以深入地球内部且分辨率较高,是研究地球内部结构不可或缺的技术手段。基于背景噪声提取高信噪比体波信号技术的迅速发展,极大地促进了地震学的发展和应用范围,使其在地球深部结构成像、城市浅层空间探测等领域日益发挥出重要作用。本文详细综述了如何利用地震干涉法及台阵处理技术提取出用于研究不同探测尺度(局部、区域、全球)的各类体波信号。其中,地震干涉法通过对地震台站记录到的波形信号进行互相关,抵消掉重合的射线路径,最后得到台站对之间的地震记录;而台阵处理方法是基于接收器台阵发展起来的数据处理手段,该技术不仅能够进一步提高信噪比(SNR),而且能够获得方位信息。一般来讲,背景噪声中包含的体波信号能量远低于面波信号能量,提取难度大。本文着重介绍了Bin-叠加法、双波束方法(DBF)以及相位加权叠加法(PWS),并对3种方法的适用条件进行了总结。   相似文献   

4.
S变换谱分解技术在深反射地震弱信号提取中的应用   总被引:1,自引:1,他引:0       下载免费PDF全文
在深反射地震资料处理中,当来自深部的有效弱信号和噪声干扰频带差异较小且难以区分时,传统滤波方法的应用会受到限制.谱分解方法是一种使用离散傅里叶变换,基于信号的频率-振幅谱等信息生成高分辨率地震图像的方法,通常用来识别介质物性横向分布特征,处理复杂介质内频谱变化和局部相位的不稳定性等问题,包括定位复杂断层和小尺度断裂等.S变换作为一种新的时频分析方法,具有自动调节分辨率的能力,近些年来被广泛应用到勘探地震、大地电磁等数据处理中,逐渐成为地球物理方法中噪声压制的有效方法之一.与常规石油反射地震资料相比,深反射主动源地震为了探测深部结构信息,常采用大药量激发方式、长排列观测系统等,导致深部有效信号基本湮灭在噪声干扰之中.针对深反射数据特点,本文结合谱分解和S变换技术,首先设计了简单的脉冲函数实验数据,证实S变换方法的有效性,同时说明谱分解方法的效果受所用时频分析方法影响较大,而其中决定分辨能力的变换窗函数的选取尤为重要.在此基础上,分别应用到深反射地震资料的单道和叠加剖面实际数据上,对比分析了传统变换谱分解和S变换谱分解的应用效果,单道资料对比结果表明:相比传统谱分解,S变换谱分解方法具有自动调节分辨率的能力,能够精确的标定深反射地震资料中弱信号不同时刻的频率分量;叠加剖面资料应用结果表明:由S变换谱分解得到的剖面结果与其他谱分解方法结果整体上具有较高的一致性,同时清晰地刻画出原叠加剖面上被噪声湮灭的低频细节特征,提高了剖面的分辨率及同相轴连续性;对比结果明显看出,Gabor变换谱分解方法得到的结果同相轴较为破碎,分析原因认为这是由Gabor变换的时频分解方法的定长窗函数所致,窗口大小不会随着信号频率的变化来调节长度,只能在处理的过程中根据一定的记录长度范围选取窗函数参数,而S变换谱分解方法在窗函数的选取时,通过时变信号的局部频率特征自动调节窗口长度,能够更好的刻画各个频段的细节特征,在深反射剖面成像应用中效果尤为明显.本文结果表明S变换谱分解技术在深地震叠加剖面上的应用有效地提高了来自深部弱反射信号的信噪比和分辨率,并刻画出了叠加剖面上所不具有的低频细节特征,在实际深反射地震资料处理中能有效保护低频弱信号获得更好的成像效果.本文为深地震反射资料中弱信号的保护处理找到一种有效的方法.  相似文献   

5.
Matching signals have previously been identified from about eighty repeating deep moonquake sources. These moonquakes clearly display tidal periodicities in their histories of origin times and signal amplitudes; they are presumably triggered by the solid-body tide in the moon, raised primarily by the earth. The A1 hypocentre has been the most active and has also produced seismograms with signals of reversed polarity. In an attempt to deduce focal mechanisms for these events, we calculated various tidal stress functions at the Al hypocentre using a homogeneous moon model, and correlated them with the origin times of events. No good correlation was found, either for tidal stress peaks of consistent polarity, or for tidal stress peaks of opposite polarity at the times of “inverted” events. This could be due to an inaccurate moon model, but it has also been noted that the relative amplitudes of signals recorded at different seismic stations vary between events from the same hypocentre. Earthquake swarms often contain events with fault-plane solutions in very different orientations. A similar variation between events from each deep moonquake hypocentre would explain the different amplitude ratios and also the “inverted” events.  相似文献   

6.
香港地区海陆地震联测及深部地壳结构研究   总被引:7,自引:0,他引:7       下载免费PDF全文
为了探明南海北部海陆过渡带的深部地壳结构,我们在香港外海域进行了一次海陆地震联洲的实验,利用固定地震台网远距离接收海上气枪信号,接收距离远达200多km,并利用此次实验的测线1剖面模拟得到了海陆过渡带的深部地壳速度结构.速度结构模型表明:研究区海陆过渡带的地壳结构非均匀性较明显,由陆至海沉积层有一个突然增厚的特点;莫霍面深度约为26~29 km,上地壳P波速度约为5.5~6.4 km/s,下地壳P波速度为6.5~6.9 km/s.在担杆列岛往海方向有一个低速破碎带,其上地壳P波速度为5.2~6.1 km/s,下地壳P波速度为6.2~6.4 km/s,结合野外地质调查的结果,推测它可能为滨海断裂带.在担杆列岛往陆方向香港和深圳之间的研究区域,莫霍面有较大起伏,可能与此处发育的海丰断裂有关.  相似文献   

7.
估计地震数据的信噪比对于地震数据的处理和解释具有重要作用.以往估计地震数据信噪比的方法都需要分离数据中的有效信号和噪声,然后再估计相应的信噪比.这些估计方法的精度严重依赖信号估计方法或噪声压制方法的有效性,往往存在偏差.本文提出一种估计地震数据局部信噪比的深度卷积神经网络模型,通过迭代训练优化参数,构建从含噪地震数据到其信噪比的特征映射.然后使用该神经网络完成信噪比的推理预测,不需要分离地震数据中的有效信号和噪声.模拟数据和实际资料的处理结果都表明,本文的方法可以准确而高效地估计局部地震数据的信噪比,为地震数据质量的定量评价提供依据.  相似文献   

8.
针对高速玄武岩屏蔽层下深层成像困难的实际问题,采用波动方程波场数值模拟技术,根据玄武岩地层的特点,设计三个相应的简单高速玄武岩模型,通过对深层反射地震信号能量的分析,说明了低频地震信号既具有较强的穿透薄高速玄武岩屏蔽层的能力,也具有减弱因粗糙表面所产生的绕射噪音的能力。一个完整的2D玄武岩模型的模拟试验证明了利用低频信号可以提高高速玄武岩屏蔽层下深层成像的质量,实际资料的低通滤波处理也取得了预期的效果。  相似文献   

9.
时变重力场是研究地球内部介质物性变化的重要手段。本文提出了一种适用于地面流动重力测量获得的时变重力信号的场源反演方法,该方法采用球坐标系下的六面体单元来模拟场源介质,适合大尺度地震流动重力测量数据的等效源模型构建。通过引入重力时变信号的一阶光滑先验条件,压制了时变重力信号中的短周期高频分量,可用于提取与地震孕育相关的长周期信号。通过理论和模型实验证明了本文算法的可靠性和稳定性,并使用南北地震带南段2014—2017年的流动重力实测数据进行了反演解释,获得了地壳内部等效场源的视密度时变信号,变化量级在正常地壳密度的±0.7‰之间,其空间形态受川滇菱形块体边界控制。研究成果可用于时变重力场模型解释和深部场源特征提取,可为地震重力前兆信号分析和相关研究提供完备的方法保障。  相似文献   

10.
利用中、小容量气枪组成的立体气枪阵列延迟激发震源和海底地震仪(OBS)在我国北部浅海海域开展了人工地震深部地球物理探测试验.基于水深条件和压制水体虚反射、提升低频能量的需要,使气枪震源有足够的输出能量和高品质子波特性,研究了立体气枪阵列延迟激发震源工作机理,经远场子波理论模拟优选了组合参数并进行了海上试验工作.结果表明,中、小容量气枪组成的立体气枪阵列延迟激发震源,适应了浅水海域的激发环境,降低了由虚反射造成的局部陷波和干扰作用,有效地改善了OBS信号的品质,获得了Ps,Pg,PmP,Pn等多种震相.创新了由中、小容量气枪组成的立体气枪阵列延迟激发震源在浅海区OBS探测中的应用,也填补了南黄海海域深地震探测数据的空白,为南黄海、渤海深部地壳结构研究及含油气盆地形成演化研究提供了重要的基础资料.  相似文献   

11.
南海海底地震仪异常数据的分析和处理   总被引:4,自引:2,他引:2       下载免费PDF全文
海底地震仪(Ocean Bottom Seismometer,OBS)数据处理至关重要,是获取深部地壳结构的基础与前提.2006年实施OBS2006-2测线时,有2台OBS(OBS03,OBS06)数据出现异常,无法使用.由于海上航次花费巨大,采集到的数据弥足珍贵.本文采用数据格式检查、邻近台站对比分析、重采样等方法,成功地对这2台OBS数据进行了解编处理,得到了这两个台站的综合地震记录剖面;利用上述方法对2011年实施的OBS973-3测线中的异常台站OBS03进行了分析处理,同样得到了OBS03台站的综合地震剖面;通过查看两次海上实验班报发现,OBS2006-2测线之OBS06与OBS973-3测线之OBS03内部Sedis编号相同,为同一台记录仪器,再一次验证上述处理方法正确可行;然后对OBS2006-2测线2个台站进行震相识别与走时拾取后,利用前人纵波速度模型开展了射线追踪与走时模拟.此次对异常OBS数据的重新处理工作,不仅为OBS探测提供了宝贵的数据处理经验,而且将提高OBS2006-2测线地壳结构的可靠性和约束性,具有重要的研究意义.  相似文献   

12.
Seismic waves propagating through viscoelastic media experience stratigraphic absorption and attenuation effects, which directly affect the imaging resolution in seismic exploration. Without stratigraphic absorption, the ratio of deep reflection energy to shallow reflection energy (attenuation ratio) is invariable at different frequencies. If a seismogram is decomposed into different frequency bands, these signals will show similar time–energy distributions. Therefore, the attenuation ratios should be similar across different frequency bands, except for frequency-variable weights. Nevertheless, the frequency-variable weights for different frequency bands can be obtained by benchmarking against the time–energy distributions of low-frequency information because the loss of low-frequency information is relatively insignificant. In this light, we obtained frequency-variable weights for different frequencies and established a stratal absorption compensation (SAC) model. The anisotropic basis of the shearlet enables nearly optimal representation of curved-shape seismic signals, and shearlets at different scales can represent signals for different frequency bands. Then, we combined the SAC model with the shearlet transform and established the new compensation method. As the signal and noise have different distributions in the shearlet domain, we selectively compensated the signals using a thresholding algorithm. Hence, it was possible to avoid noise enhancement. This is the prominent advantage of the proposed method over other compensation methods.  相似文献   

13.
Lunar seismicity and tectonics   总被引:1,自引:0,他引:1  
Seismic signals from 300–700 deep moonquakes and about four shallow moonquakes are detected by the long-period seismometers of two or more of the Apollo seismic stations annually. Deep-moonquake activity detected by the Apollo seismic network displays tidal periodicities of 0.5 and 1 month, 206 d and 6 a. Repetitive moonquakes from 60 hypocenters produce seismograms characteristic of each. At each hypocenter, moonquakes occur only within an active period of a few days during a characteristic phase of the monthly lunar tidal cycle. An episode of activity may contain up to four quakes from one hypocenter. Nearly equal numbers of hypocenters are active at opposite phases of the monthly cycle, accounting for the 0.5-month periodicity. The 0.5- and 1-month activity peaks occur near times of extreme latitudinal and longitudinal librations and earth-moon separation (EMS). The 206-d and 6-a periodicities in moonquake occurrence and energy release characteristics are associated with the phase variations between the librations and EMS. Because of the exact relationship between tidal phases and the occurrence of deep moonquakes from a particular hypocenter, it is possible to predict not only the occurrence times from month to month, often to within several hours, but also the magnitudes of the moonquakes from that hypocenter. The predicted occurrence of large A1 moonquakes in 1975, following a 3-a hiatus, confirms the correlation between A1-moonquake activity and the 6-a lunar tidal cycle and implies a similar resurgence for all of the deep moonquakes. Because no matching shallow moonquake signals have been identified to date, tidal periodicities cannot be identified for the individual sources. However, shallow moonquakes generally occur near the times of extreme librations and EMS and often near the same tidal phase as the closest deep moonquake epicenters. With several possible exceptations, the deep-moonquake foci located to date occur in three narrow belts on the nearside of the moon. The belts are 100–300 km wide, 1,000–2,500 km long and 800–1,000 km deep and define a global fracture system that intersects in central Oceanus Procellarum. A fourth active, although poorly defined, zone is indicated. The locations of 17 shallow-moonquake foci, although not as accurate as the deep foci, show fair agreement with the deep-moonquake belts. Focal depths calculated for the shallow moonquakes range from 0–200 km. Deep-moonquake magnitudes range from 0.5 to 1.3 on the Richter scale with a total energy release estimated to be about 1011 erg annually. The largest shallow moonquakes have magnitudes of 4–5 and release about 1015–1018 erg each. Tidal deformation of a rigid lunar lithosphere overlying a reduced-rigidity asthenosphere leads to stress and strain concentrations near the base of the lithosphere at the level of the deep moonquakes. Although tidal strain energy can account for the deep moonquakes in this model, it cannot account for the shallow moonquakes. The tidal stresses within the lunar lithosphere range from about 0.1 to 1 bar and are insufficient to generate moonquakes in unfractured rock, suggesting that lunar tides act as a triggering mechanism. The largest deep moonquakes of each belt usually occur near the same characteristic tidal phases corresponding to near minimum or maximum tidal stress, increasing tidal stress, and alignments of tidal shear stresses that correspond to thrust faulting along planes parallel to the moonquake belts and dipping 30–40°. With few exceptions, the shallow moonquakes occur at times of near minimum tidal stress conditions and increasing tidal stress that also suggest thrust faulting. The secular accumulation of strain energy required for the shallow moonquakes and implied by the uniform polarities of the deep moonquake signals probably results from weak convection. A convective mechanism would explain the close association between moonquake locations and the distribution of filled mare basins and thin lunar crust, the earth-side topographic bulge, and the ancient lunar magnetic field. The low level of lunar seismic activity and the occurrence of thrust faulting both at shallow and great depths implies that the moon is presently cooling and contracting at a slow rate.  相似文献   

14.
The statistical characteristics of the intensity of VLF-LF radio signals transmitted from the midlatitude radio stations and recorded by the receiver at the Mikhnevo geophysical observatory (54.94°N, 37.73°E; Institute of Geosphere Dynamics, Russian Academy of Sciences) in 2007–2010 are analyzed. The experiments revealed strong variations in the intensity of radio signals during the deep solar minimum conditions, when the medium does not experience impacts from above associated with solar and geomagnetic activity. We relate the observed variations to the disturbances from below, which are caused by the meteorological and wave processes occurring in the lower atmosphere.  相似文献   

15.
基于尺度空间技术的归一化Facet模型位场边界识别   总被引:1,自引:0,他引:1       下载免费PDF全文
边界识别是位场数据处理解释中的重要环节,传统边界识别方法通常不能均衡深、浅部地质体边界.基于尺度空间技术和归一化的Facet模型检测算子,本文开发了一种带通空间滤波和边缘检测相结合的边界识别方法,有效地提高位场数据边界识别的精度和可靠性.为了验证本文算法的有效性和稳定性,分析了不同尺度空间函数和检测算子对算法的影响,并且对比了传统边界识别方法的效果.理论模拟和实际数据分析表明,利用位场垂向二阶导数进行的基于尺度空间技术的归一化Facet模型边界识别方法不仅算法的稳定性强,而且可以避免高阶导数对噪声干扰放大作用,同时均衡深部和浅部地质体边界,从而可以更精确地识别地质体的形态.  相似文献   

16.
There are several kinds of coupling mechanisms which can convert mechanical, chemical or thermal energies due to seismic or volcanic activities into electromagnetic energies. As a result of concentrated efforts in laboratory and theoretical research, the basic relationship between the intensity of electromagnetic sources and changes in mechanical, chemical and thermal state is becoming established. Also with the progress of the electromagnetic simulation techniques, it has been possible to evaluate in situ sensitivity. Based on this progress and also due to extensive improvement in measuring techniques, many field experiments have been performed to elucidate subsurface geophysical processes underlying the preparation stage, onset, and subsequent healing stage of earthquakes and volcanic eruptions. In volcanic studies, many studies have reported the measurement of electromagnetic signals which were successfully interpreted in terms of various driving mechanisms. Although there have been numerous reports about the existence of precursory electromagnetic signals in seismic studies, only a few of them could be successfully explained by the proposed mechanisms, whereas coseismic phenomena are often consistent with those mechanisms including the absence of detectable signals. In many cases, one or two orders of higher sensitivity were required, especially for precursory signals. Generally, electromagnetic methods are more sensitive to near-surface phenomena. It will be necessary to discriminate electromagnetic signals due to these near-surface sources, which often possess no relationship with the crustal activities. Further efforts to enhance in situ sensitivity through improvements in observation techniques and in data processing techniques are recommended. At the same time, multi-disciplinary confirmation against the validity of electromagnetic phenomena will inevitably be necessary. A Network-MT observation technique has been developed to determine large-scale deep electrical conductivity structure. In the method, a telephone line network or purpose-built long baseline cables are utilized to measure voltage differences with long electrode separations. Because of the averaging effect of the electric fields, static shift problems due to small-scale, near-surface lateral heterogeneities can be alleviated. Several field experiments revealed regional scale deep electrical conductivity structures related to slab subduction or its stagnation, which enable us to elucidate underlying physical processes caused by the slab motion. The technique can also be applied to monitor the electric potential field related to crustal activities. The annual variation of the potential field and electrical conductivity in the French Alps were interpreted to be caused by the annual variation of lake water level. The method was also used to monitor the regional scale spatio-temporal variation of the SP field and electrical conductivity before and at the onset of earthquakes and volcanic eruptions.  相似文献   

17.
南海中北部地壳深部结构探测新进展   总被引:7,自引:0,他引:7  
2006年8~10月间.国家海洋局第二海洋研究所使用德国SEDIS型三分量海底地震仪以气枪为震源在南海中北部开展了广角地震反射/折射勘测.这是我国大陆科研单位第一次自主开展长距离多剖面的海底地震仪人工地震探测。勘测线共三条。总长达1176.8km.工区最大水深4137m.共投放48台次,回收成功率95-8%。所获得的数据质量良好,深部信息丰富.可直观地分辨出照、Pn、PmP等震相,为南海中北部深部地壳结构、洋壳与陆壳分界和西北、西南次海盆的形成演化研究提供了重要的依据。  相似文献   

18.
Two types of marine controlled source electromagnetic transmitters   总被引:1,自引:0,他引:1       下载免费PDF全文
Marine controlled source electromagnetic methods are used to derive the electrical properties of a wide range of sub‐seafloor targets, including gas hydrate reservoirs. In most marine controlled source electromagnetic surveys, the deep‐tow transmitter is used with a long horizontal electric dipole being towed above the seafloor, which is capable of transmitting dipole moments in the order of up to several thousand ampere‐metres. The newly developed deployed transmitter uses two horizontal orthogonal electrical dipoles and can land on the seafloor. It can transmit higher frequency electromagnetic signals, can provide accurate transmission orientation, and can obtain higher signal stacking, which compensates for the shorter source dipole length. In this paper, we present the study, key technologies, and implementation details of two new marine controlled source electromagnetic transmitters (the deep‐tow transmitter and the deployed transmitter). We also present the results of a marine controlled source electromagnetic experiment conducted from April to May 2014 in the South China Sea using both the deep‐tow transmitter and the deployed transmitter, which show that the two types of marine transmitters can be used as effective source for gas hydrate exploration.  相似文献   

19.
从能量释放的角度讨论了深部岩体开挖激发微地震的机制. 研究表明, 伴随着爆破破岩新自由面形成而发生的岩体弹性应变能释放属于瞬态过程, 高地应力条件下爆破开挖产生的微地震由爆炸荷载和初始地应力(开挖荷载)瞬态释放耦合作用引起. 地应力瞬态释放激发的微地震可成为周围岩体振动的主要组成部分, 这有赖于岩体自身的蓄能能力、岩体开挖方式及开挖面的大小. 通过瀑布沟地下厂房爆破开挖过程中实测围岩地震信号的时能密度和幅值谱分析, 对地应力瞬态释放激发的微地震进行了识别. 耦合地震信号的低频成分主要由初始地应力瞬态卸荷引起,而高频成分主要由爆炸荷载引起. 应用数字信号处理的FIR滤波方法对耦合振动信号进行了初步分离,数值计算验证了分离结果的可靠性.   相似文献   

20.
—?Because the Soultz Hot Dry Rock (HDR) site, France, is to be expanded to a scientific pilot plant of greater depth, measurement of the deep area below the predeveloped artificial reservoir is gaining importance. In this paper, we present estimates of deep subsurface structure at the Soultz HDR site, obtained by a reflection method using acoustic emission (AE) signals, that is, induced seismicity, as the wave source. First, we briefly describe the AE reflection method in the time-frequency domain with wavelet transform. Then we show estimates of the subsurface structure by using 101 high-energy AE events observed in 1993. We compare and discuss the results obtained, using the AE reflection method in two wells with other independent borehole observations. Furthermore, we present the results of an investigation of the frequency dependence of reflectors identified by hodogram linearity as a possible means of further characterizing detected structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号