首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the late 1970s, numerical modelling has become established as an important technique for the understanding of ice sheet and glacier dynamics, and several models have been developed over the years. Ice sheet models are particularly relevant for predicting the possible response of ice sheets to climate change. Recent observations suggest that ice dynamics could play a crucial role for the contribution of ice sheets to future sea level rise under global warming conditions, and the need for further research into the matter was explicitly stated in the Fourth Assessment Report (AR4) of the United Nations Intergovernmental Panel on Climate Change (IPCC). In this paper, we review the state of the art and current problems of ice sheet and glacier modelling. An outline of the underlying theory is given, and crucial processes (basal sliding, calving, interaction with the solid Earth) are discussed. We summarise recent progress in the development of ice sheet and glacier system models and their coupling to climate models, and point out directions for future work.  相似文献   

2.
We apply a coupled thermomechanical ice sheet—self-gravitating viscoelastic solid Earth model (SGVEM), allowing for the dynamic exchange of ice thickness and bedrock deformation, in order to investigate the effect of viscoelastic deformation on ice dynamics and vice versa. In a synthetic glaciation scenario, we investigate the interaction between the ice sheet and the solid Earth deformation, the glacial-isostatic adjustment (GIA), accounting for an atmospheric forcing depending on the ice sheet surface altitude. We compare the results from the coupled model to runs with the common elastic lithosphere/relaxing asthenosphere (ELRA) model, where the lithosphere is represented by a thin plate and the mantle relaxes with one characteristic relaxation time, as well as to a rigid Earth without any deformation. We find that the deformational behaviour of the SGVEM on ice dynamics (i.e. stored ice volume, ice thickness and velocity field) is comparable to the ELRA for an optimal choice of the parameters in steady state, but exhibits differences in the transient behaviour. Beyond the ice sheet, in the region of peripheral forebulge, the differences in the transient surface deformation between ELRA and SGVEM are substantial, demonstrating the inadequacy of the ELRA model for interpreting constraints on GIA in the periphery of the ice sheet, such as sea-level indicators and GPS uplift rates.  相似文献   

3.
Relative sea-level (RSL) observations from the margins of the Greenland Ice Sheet (GIS) provide information regarding the timing and rate of deglaciation and constraints on geophysical models of ice sheet evolution. In this paper we present the first RSL record for the southeast sector of the GIS based on field observations completed close to Ammassalik. The local marine limit is c. 69 m above sea-level (asl) and is dated to c. 11 k cal. yrs BP (thousand calibrated years before present) and is a minimum date for ice free conditions at the study site. RSL fell to c. 24 m asl by 9.5 k cal. yrs BP and continued to fall at a decreasing rate to reach close to present by 6.5 k cal. yrs BP. Our chronology agrees with radiocarbon dates from offshore cores that indicate ice free conditions on the adjacent mid-shelf by 15 k cal. yrs BP. We compare the new RSL data with predictions generated using two recently published glaciological models of the GIS that differ in the amount and timing of ice loading and unloading over our study area. These two GIS models are coupled to the same Earth viscosity model and background (global) ice model to aid in the data-model comparison. Neither model provides a close fit to the RSL observations. Based on a preliminary sensitivity study using a suite of Earth viscosity models, we conclude that the poor data-model fit is most likely due to an underestimate of the local ice unloading. An improved fit could be achieved by delaying the retreat of a thicker ice sheet across the continental shelf. A thick ice sheet extending well onto the continental shelf is in agreement with other recent observations elsewhere in east and south Greenland.  相似文献   

4.
We have used satellite solutions to the low degree zonal harmonics of the Earth's gravitational potential, and rates of surface accumulation to partially constrain, by means of repeated forward solution, the time rates of thickness change over the Antarctic and Greenland Ice Sheets (dTA and dTG respectively). In addition to the observed zonal coefficients j2 through j5 we impose only one other constraint: That dTA and dTG are proportional to surface accumulation. The lagged response of the Earth to secular changes in ice thickness spanning recent time periods (up to 2000 years before present) and the late Pleistocene is accounted for by means of two viscoelastic rebound models. The sea level contributions from the ice sheets, calculated from dTA and dTG, lower mantle viscosity, and the start time of present-day thickness change are all variables subject to the constraints. For a given set of post glacial rebound inputs, a family of solutions that have similar characteristics and that agree well with observation are obtained from the large number of forward solutions. The off axis position of the Greenland ice sheet makes its contribution to the low degree zonal coefficients less sensitive to the spatial details of the mass balance than to the overall sea level contribution. dTG is therefore modeled as surface mass balance offset by a uniform and constant mass loss. Though dTA varies widely with choices of input parameters, the combined sea level contribution from both ice sheets is reasonably well constrained by the gravity coefficients, and is predicted to range from -0.9 to +1.6 mm yr-1. The sign of the slope of the low degree zonal coefficients versus sea level contribution for Greenland is positive, but for Antarctica, the sign of the slope is positive for even degree and negative for odd degree harmonics. By using this property of the zonal coefficients, it is possible to determine the individual sea level contributions for Greenland and Antarctica. They vary from -0.6 to +0.3 mm yr-1 for the Greenland Ice Sheet, and from -0.3 to +1.3 mm yr-1 for the Antarctic Ice Sheet.  相似文献   

5.
Ice streams are integral components of an ice sheet's mass balance and directly impact on sea level. Their flow is governed by processes at the ice‐bed interface which create landforms that, in turn, modulate ice stream dynamics through their influence on bed topography and basal shear stresses. Thus, ice stream geomorphology is critical to understanding and modelling ice streams and ice sheet dynamics. This paper reviews developments in our understanding of ice stream geomorphology from a historical perspective, with a focus on the extent to which studies of modern and palaeo‐ice streams have converged to take us from a position of near‐complete ignorance to a detailed understanding of their bed morphology. During the 1970s and 1980s, our knowledge was limited and largely gleaned from geophysical investigations of modern ice stream beds in Antarctica. Very few palaeo‐ice streams had been identified with any confidence. During the 1990s, however, glacial geomorphologists began to recognise their distinctive geomorphology, which included distinct patterns of highly elongated mega‐scale glacial lineations, ice stream shear margin moraines, and major sedimentary depocentres. However, studying relict features could say little about the time‐scales over which this geomorphology evolved and under what glaciological conditions. This began to be addressed in the early 2000s, through continued efforts to scrutinise modern ice stream beds at higher resolution, but our current understanding of how landforms relate to processes remains subject to large uncertainties, particularly in relation to the mechanisms and time‐scales of sediment erosion, transport and deposition, and how these lead to the growth and decay of subglacial bedforms. This represents the next key challenge and will require even closer cooperation between glaciology, glacial geomorphology, sedimentology, and numerical modelling, together with more sophisticated methods to quantify and analyse the anticipated growth of geomorphological data from beneath active ice streams. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

6.
Lake ice supports a range of socio‐economic and cultural activities including transportation and winter recreational actives. The influence of weather patterns on ice‐cover dynamics of temperate lakes requires further understanding for determining how changes in ice composition will impact ice safety and the range of ecosystem services provided by seasonal ice cover. An investigation of lake ice formation and decay for three lakes in Central Ontario, Canada, took place over the course of two winters, 2015–2016 and 2016–2017, through the use of outdoor digital cameras, a Shallow Water Ice Profiler (upward‐looking sonar), and weekly field measurements. Temperature fluctuations across 0°C promoted substantial early season white ice growth, with lesser amounts of black ice forming later in the season. Ice thickening processes observed were mainly through meltwater, or midwinter rain, refreezing on the ice surface. Snow redistribution was limited, with frequent melt events limiting the duration of fresh snow on the ice, leading to a fairly uniform distribution of white ice across the lakes in 2015–2016 (standard deviations week to week ranging from 3 to 5 cm), but with slightly more variability in 2016–2017 when more snow accumulated over the season (5 to 11 cm). White ice dominated the end‐of‐season ice composition for both seasons representing more than 70% of the total ice thickness, which is a stark contrast to Arctic lake ice that is composed mainly of black ice. This research has provided the first detailed lake ice processes and conditions from medium‐sized north‐temperate lakes and provided important information on temperate region lake ice characteristics that will enhance the understanding of the response of temperate lake ice to climate and provide insight on potential changes to more northern ice regimes under continued climate warming.  相似文献   

7.
联合GRACE和ICESat数据分离南极冰川均衡调整(GIA)信号   总被引:1,自引:1,他引:0       下载免费PDF全文
2002年发射的GRACE重力卫星为南极冰盖质量平衡提供了一种新的测量方式,但由于南极GIA模型的不确定较大,进而影响GRACE结果的可靠性.本文联合2003—2009年的GRACE和ICESat等数据实现了南极GIA信号的分离,联合方法所分离的GIA不依赖于不确定性很大的冰负荷等假设模型,而是直接基于卫星观测数据估算而来的,具有更大的可靠性.在分离过程中,本文提出了冰流速度加权改正法和GPS球谐拟合改正法对GIA结果进行精化,同时引入了南极GPS观测站的位移数据对分离的GIA进行详细的评估和验证,GPS验证表明经过冰流速度加权和GPS球谐拟合双改正后的GIA结果精度明显得到提高.最后本文利用所分离的GIA对GRACE和ICESat结果进行了改正,得到2003—2009年南极冰盖质量变化的趋势为-66.7±54.5 Gt/a(GRACE)和-77.2±21.5Gt/a(ICESat),相比采用其他的GIA模型,本文的GIA结果使GRACE和ICESat这两种不同观测技术得到的南极冰盖质量变化结果更加趋于一致.  相似文献   

8.
Abstract

River ice jams can produce extreme flood events with major social, economic and ecological impacts throughout Canada. Ice breakup and jamming processes are briefly reviewed and shown to be governed by the flow hydrograph, the thickness and strength of the winter ice cover, and the stream morphology. These factors are directly or indirectly influenced by weather conditions which implies potential impacts of climate change and variability on the severity of ice-jamming. Relevant work has to date focused on simple measures of climatic effects, such as the timing of freeze-up and breakup, and indicates trends that are consistent with concomitant changes in air temperature. More recently, it has been found that increased incidence of mid-winter breakup events and higher freshet flows in certain parts of Canada could enhance the frequency and severity of ice jams. Possible future trends under climate warming scenarios are discussed and associated impacts identified in a general manner.  相似文献   

9.
Ice processes taking place in steep channels are sensitive to the thermal and hydrological regimes of upstream reaches and tributaries as well as to the local channel morphology. This work presents freezeup, mid‐winter, and breakup data from four channels of increasing order located in a cold temperate watershed during the winter 2010–2011. From headwater channels to the main drainage system, water temperature, ice coverage, and ice processes are reported and related to weather conditions and to channel characteristics. Headwater channels only formed ephemeral ice features, and their water temperature reached as much as 4 °C in mid‐winter. On the other hand, larger channels formed impressively large ice dams, some of them reaching 2 m in height. The development of a suspended ice cover partially insulated the channels; as a result, water temperatures remained above 0 °C even for air temperatures well below freezing. This work presents steep channels ice processes that have not been described in previous publications. The concept of a watershed cryologic continuum (WCC) is developed from the data collected at each channel order. This concept emphasizes the feedback loops that exist between morphology, hydrology, heat, and ice processes in a given watershed and can lead to a better understanding of ice processes taking place at any channel location within that watershed. The WCC can also contribute in improving our understanding of the impacts of climate change on the cryologic and thermal regimes of steep channels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Sea-level change (SLC) is a much-studied topic in the area of climate research, integrating a range of climate science disciplines, and is expected to impact coastal communities around the world. As a result, this field is rapidly moving, and the knowledge and understanding of processes contributing to SLC is increasing. Here, we discuss noteworthy recent developments in the projection of SLC contributions and in the global mean and regional sea-level projections. For the Greenland Ice Sheet contribution to SLC, earlier estimates have been confirmed in recent research, but part of the source of this contribution has shifted from dynamics to surface melting. New insights into dynamic discharge processes and the onset of marine ice sheet instability increase the projected range for the Antarctic contribution by the end of the century. The contribution from both ice sheets is projected to increase further in the coming centuries to millennia. Recent updates of the global glacier outline database and new global glacier models have led to slightly lower projections for the glacier contribution to SLC (7–17 cm by 2100), but still project the glaciers to be an important contribution. For global mean sea-level projections, the focus has shifted to better estimating the uncertainty distributions of the projection time series, which may not necessarily follow a normal distribution. Instead, recent studies use skewed distributions with longer tails to higher uncertainties. Regional projections have been used to study regional uncertainty distributions, and regional projections are increasingly being applied to specific regions, countries, and coastal areas.  相似文献   

11.
Subglacial bed conditions are key to understanding ice stream behaviour and evolution, with bed roughness re?ecting substrate composition and ?ow resistance. Here we present an analysis of bed roughness in the Siple Coast region of West Antarctica from airborne radio‐echo sounding data. The ice streams are associated generally with low bed roughness values, which decrease downstream. The bed of the slow‐?owing Ice Stream C (~10 000 km2) is also characterized by being smooth at all scales (wavelengths ranging from 5 km to in excess of 40 km). Furthermore, the bed is smooth either side of Ice Stream C. This suggests the location of the ice stream is controlled by internal ice sheet dynamics rather than by bed morphology. If the ice stream were encouraged to migrate laterally, when active, there would be little resistance offered by the subglacial morphology. Other inter‐ice stream regions are rough, however, indicating a subglacial topographic in?uence on ice stream position. Bed roughness increases up‐?ow of ice streams, which, unless the bed is modi?ed, may limit the inland migration of these systems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Grounding-zone wedges (GZWs) mark the grounding terminus of flowing marine-based ice streams and, in the presence of an ice shelf, the transition from grounded ice to floating ice. The morphology and stratigraphy of GZWs is predominantly constrained by seafloor bathymetry, seismic data, and sediment cores from deglaciated continental shelves; however, due to minimal constraints on GZW sedimentation processes, there remains a general lack of knowledge concerning the production of these landforms. Herein, outcrop observations are provided of GZWs from Whidbey Island in the Puget Lowlands (Washington State, USA). These features are characterized by prograded diamictons bounded by glacial unconformities, whereby the lower unconformity indicates glacial advance of the southern Cordilleran Ice Sheet and the upper unconformity indicates locally restricted ice advance during GZW growth; the consistent presence of an upper unconformity supports the hypothesis that GZWs facilitate ice advance during landform construction. Based on outcrop stratigraphy, GZW construction is dominated by sediment transport of deformation till and melt-out of entrained basal debris at the grounding line. This material may be subsequently remobilized by debris flows. Additionally, there is evidence for subglacial meltwater discharge at the grounding line, as well as rhythmically bedded silt and sand, indicating possible tidal pumping at the grounding line. A series of GZWs on Whidbey Island provides evidence of punctuated ice sheet movement during retreat, rather than a rapid ice sheet lift-off. The distance between adjacent GZWs of 102–103 m and the consistency in their size relative to modern ice stream grounding lines suggests that individual wedges formed over decades to centuries. © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
孟秋  胡才博  石耀霖 《地球物理学报》1954,63(10):3751-3763
挪威北海北部在末次冰期存在较大范围的冰盖,其冰盖的加载和卸载会对地表变形和内部应力调整产生重要影响.本文基于Maxwell黏弹性本构关系,根据初应力法自主开发了一套Maxwell黏弹性体有限元程序,它可以考虑重力和构造加载、地球介质弹性的纵向和横向不均匀性以及黏性的分层性,可以计算冰川载荷变化引起的地球表面变形及内部应力状态的变化.利用它研究了挪威北海北部1.1 Ma以来的冰川载荷变化、特别是两万多年以来冰盖的消退引起的地表冰后回弹.结果表明,自2万年以来,冰后回弹效应在冰盖载荷变化的不同阶段呈现明显的时空变化,现今地表垂直变化速率为几个毫米/年,与观测结果一致.下地壳和上地幔的黏弹性松弛效应明显,上地壳的应力状态在现今海岸线两侧存在差异性,水平和垂直正应力变化可达几十兆帕,剪应力变化有一个先增加后迅速减小至零的过程,与古地震、现今地震时空分布及应力测量结果也比较符合,研究结果有助于加深对冰后回弹的动力学过程的认识.  相似文献   

14.
湖冰作为湖泊-大气界面能量和物质交换的结果,其物候变化对揭示区域气候变化和湖泊响应过程具有重要意义.本研究基于2000-2020年色林错边界矢量数据、Terra MODIS和Landsat TM/ETM+/OLI遥感影像并结合气象数据及湖泊资料,利用RS和GIS手段综合分析了色林错湖冰物候变化特征及其影响因素.结果 表...  相似文献   

15.
Recent satellite observations of the Antarctic and Greenland ice sheets show accelerated ice flow and associated ice sheet thinning along coastal outlet glaciers in contact with the ocean. Both processes are the result of grounding line retreat due to melting at the grounding line (the grounding line is the contact of the ice sheet with the ocean, where it starts to float and forms an ice shelf or ice tongue). Such rapid ice loss is not yet included in large-scale ice sheet models used for IPCC projections, as most of the complex processes are poorly understood. Here we report on the state-of-the art of grounding line migration in marine ice sheets and address different ways in which grounding line migration can be attributed and represented in ice sheet models. Using one-dimensional ice flow models of the ice sheet/ice shelf system we carried out a number of sensitivity experiments with different spatial resolutions and stress approximations. These are verified with semi-analytical steady state solutions. Results show that, in large-scale finite-difference models, grounding line migration is dependent on the numerical treatment (e.g. staggered/non-staggered grid) and the level of physics involved (e.g. shallow-ice/shallow-shelf approximation).  相似文献   

16.
Of the various information recovered from radio‐echo sounding (RES) of polar ice sheets, internal layering is currently under‐utilized by glaciologists, due in part to a lack of available data. Here, RES layering of the West Antarctic Ice Sheet, from the 1970s RES survey of approximately 70 per cent of this ice mass, is made available in a series of spreadsheets. Three types of internal layers are evident in the dataset. The first is continuous layers that have a stratigraphic appearance and can often be traced easily for hundreds of kilometres. The second is buckled layering, which also resembles stratigraphy and can sometimes be traced over tens of kilometres (although layer identification can often be difficult). The roughness of these layers is often greater than the bed at the same wavelength. The third is highly distorted or absent layering, which is not possible to trace laterally. Despite debate concerning the origin of RES layers, they are thought by most glaciologists to represent isochronous surfaces. The pattern of internal layering is potentially of importance to glaciologists for three reasons. (1) The position of undeformed layers below the ice surface is a function of accumulation rate, ice flow and basal melting conditions. Numerical modelling (including new ‘data assimilation’ techniques) could be used to discriminate between these processes, so revealing important information about the ice sheet and its environment. (2) Buckled layers are deformed by ice flow process, and so their occurrence can be related to the flow dynamics of the ice sheet. (3) Very buckled layers are often associated with ice stream flow, which allows their location to mark the positions of past and present fast‐flowing ice. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
本文基于CSR最新公布的GRACE RL06版本数据,采用Slepian空域反演法估算了南极冰盖27个流域的质量变化.Slepian空域反演法结合了Slepian空间谱集中法和空域反演法的技术优势,能够有效降低GRACE在小区域反演时信号出现的严重泄漏和衰减,进而精确获得南极冰盖在每个流域的质量变化.相对于GRACE RL05版本数据,RL06在条带误差的控制上要更加优化,获得的南极冰盖质量变化时间序列也更加平滑,但在趋势估算上差别并不明显(小于10Gt/a).本文的估算结果显示:在2002年4月至2016年8月期间,整个南极冰盖质量变化速率为-118.6±16.3Gt/a,其中西南极为-142.4±10.5Gt/a,南极半岛为-29.2±2.1Gt/a,东南极则为52.9±8.6Gt/a.南极冰盖损失最大的区域集中在西南极Amundsen Sea Embayment(流域20-23),该地区质量变化速率为-203.5±4.1Gt/a,其次为南极半岛(流域24-27)以及东南极Victoria-Wilkes Land (流域13-15),质量变化速率分别为-29.2±2.1Gt/a和-19.0±4.7Gt/a,其中Amundsen Sea Embayment和南极半岛南部两个地区的冰排放呈现加速状态.南极冰盖质量显著增加的区域主要有西南极的Ellsworth Land(流域1)和Siple Coast(流域18和19)以及东南极的Coats-Queen Maud-Enderby Land (流域3-8),三个地区质量变化速率分别为17.2±2.4Gt/a、43.9±1.9Gt/a和62.7±3.8Gt/a,质量增加大多来自降雪累积,比如:Coats-Queen Maud-Enderby Land在2009年和2011年发生的大规模降雪事件,但也有来自冰川的增厚,如:Siple Coast地区Kamb冰流的持续加厚.此外,对GRACE估算的南极冰盖质量变化年际信号进行初步分析发现,GRACE年际信号与气候模型估算的冰盖表面质量平衡年际信号存在显著的线性相关关系,但与主要影响南极气候年际变化的气候事件之间却不存在线性相关关系,这说明南极冰盖质量变化的年际信号主要受冰盖表面质量平衡的支配,而气候事件对冰盖表面质量平衡的影响可能是复杂的非线性耦合过程.  相似文献   

18.
Potential future changes in lake physical processes (e.g. stratification and freezing) can be assessed through exploring their sensitivity to climate change, and assessing the current vulnerability of different lake types to plausible changes in meteorological drivers. This study quantifies the impacts of climate change and sensitivity of lake physical processes within a large (5100 km2) Precambrian Shield catchment in south‐central Ontario. Historic regional relationships are established between climate drivers, lake morphology, and lake physical changes through generalized linear modelling (GLM), and are used to quantify likely changes in timing of ice phenology and lake stratification across 72 lakes under a range of future climate models and scenarios. In response to projections of increased temperature (ensemble mean of +3.3 °C), both earlier ice‐off and onset of summer stratification were projected, with later ice‐on and fall turnover compared to the baseline. Process sensitivity to climate change varied by lake type; shallower lakes with a smaller volume (less than 15 m deep and less than 0.05 km3) were more sensitive to processes associated with lake heating (stratification onset and ice‐off), and deeper lakes with a larger surface area (greater than 30 m deep and greater than 1000 ha) were more sensitive to processes associated with lake cooling (fall turnover and ice‐on). These results indicate that whereas small lakes are vulnerable to climate warming because of changes that occur in spring and summer, larger lakes are particularly sensitive during the fall. The findings suggest that lake morphology and associated sensitivity should be considered in the development of sustainable lake management strategies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The interrelationship between the cryosphere and the climate is not always operating on Earth over a scale of billions or millions of years. Indeed, most of the time, the Earth is regulated at temperatures such that no ice sheet exists. Nevertheless, it is very fruitful to understand the conditions where and when ice sheets were triggered during the Earth??s history. This paper deals with the paleoclimate and the cryosphere in the last 4.6 Ga and explains the different processes that make the climate of the first 4 billion years warm despite the weaker solar luminosity. We also describe the more recent evolution in the last 65 million years when a global decrease in atmospheric CO2 from around 4 PAL to 1 PAL was associated with a global cooling (1 PAL present atmospheric level = 280 ppm). It is in this context that the Quaternary occurred characterized by low atmospheric CO2 and the presence of two perennial ice sheets in Greenland and Antarctica. The last million years are certainly the most documented since direct and reliable CO2 measurements are available. They are characterized by a complex climate/cryosphere dynamics leading to oscillations between long glacial periods with four ice sheets and shorter ones with only two ice sheets (interglacial). We are currently living in one of those interglacials, generally associated with a CO2 level of 280 ppm. Presently, anthropogenic activities are seriously perturbing the carbon cycle and the atmospheric CO2 content and therefore the climate. The last but not least question raised in this paper is to investigate whether the anthropogenic perturbation may lead to a melting of the ice sheets.  相似文献   

20.
During the next decade and beyond, climate system models will be challenged to resolve scales and processes that are far beyond their current scope. Each climate system component has its prototypical example of an unresolved process that may strongly influence the global climate system, ranging from eddy activity within ocean models, to ice streams within ice sheet models, to surface hydrological processes within land system models, to cloud processes within atmosphere models. These new demands will almost certainly result in the develop of multiresolution schemes that are able, at least regionally, to faithfully simulate these fine-scale processes. Spherical centroidal Voronoi tessellations (SCVTs) offer one potential path toward the development of a robust, multiresolution climate system model components. SCVTs allow for the generation of high-quality Voronoi diagrams and Delaunay triangulations through the use of an intuitive, user-defined density function. In each of the examples provided, this method results in high-quality meshes where the quality measures are guaranteed to improve as the number of nodes is increased. Real-world examples are developed for the Greenland ice sheet and the North Atlantic ocean. Idealized examples are developed for ocean–ice shelf interaction and for regional atmospheric modeling. In addition to defining, developing, and exhibiting SCVTs, we pair this mesh generation technique with a previously developed finite-volume method. Our numerical example is based on the nonlinear, shallow-water equations spanning the entire surface of the sphere. This example is used to elucidate both the po tential benefits of this multiresolution method and the challenges ahead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号