首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
Flood control of the Yangtze River is an important part of China’s national water security.In July 2020,due to continuous heavy rainfall,the water levels along the middle-lower reaches of the Yangtze River and major lakes constantly exceeded the warning levels,in which Taihu Lake exceeded its highest safety water level and some stations of Poyang Lake reached their highest water levels in its history.In August 2020,another huge flood occurred in the Minjiang River and the Jialing River in the upper Yangtze River,and some areas of Chongqing Municipality and other cities along the rivers were inundated,resulting in great pressure on flood control and high disaster losses.The 2020 Yangtze River flood has received extensive media coverage and raised concerns on the roles of the Three Gorges Dam and other large reservoirs in flood control.Here we analyze the changes in the pattern of the Yangtze River flood control by comparing the strategies to tackle the three heavy floods occurring in 1954,1998,and 2020.We propose that the overall strategy of the Yangtze River flood control in the new era should adhere to the principle of"Integration of storage and drainage over the entire Yangtze River Basin,with draining floods downstream as the first priority"by using both engineering and non-engineering measures.On the basis of embankments,the engineering measures should use the Three Gorges Dam and other large reservoirs as the major regulatory means,promote the construction of key flood detention areas,keep the floodways clear,and maintain the ecosystem services of wetlands and shoals.In terms of non-engineering measures,we should strengthen adaptive flood risk management under climate change,standardize the use of lands in flood detention areas,give space to floods,and promote the implementation of flood risk maps and flood insurance policies.The ultimate goal of this new flood control system is to enhance the adaptability to frequent floods and increase the resilience to extreme flood disasters.  相似文献   

2.
Soil is a huge terrestrial carbon pool, which has higher carbon storage than the sum of atmospheric and terrestrial vegetation carbon. Small fluctuations in soil carbon pool can affect regional carbon flux and global climate change. As soil organic carbon plays key roles in soil carbon storage and sequestration, studying its composition, sources and stability mechanism is a key to deeply understand the functions of terrestrial ecosystem and how it will respond to climate changes. The recently-proposed concept of soil Microbial Carbon Pump(MCP) emphasizes the importance of soil microbial anabolism and its contributions to soil carbon formation and stabilization, which can be applied for elucidating the source, formation and sequestration of soil organic carbon. This article elaborates MCP-mediated soil carbon sequestration mechanism and its influencing factors, as well as representative scientific questions we may explore with the soil MCP conceptual framework.  相似文献   

3.
Based on deep geophysical detections, we have reconstructed the crustal structure from the eastern margin of the Tibetan Plateau to the Jiangnan-Xuefeng orogenic belt. The results suggest that the Yangtze Block was overthrusted by crustal materials in its NW direction from the eastern Tibetan Plateau but in its SE direction from the Jiangnan orogen. These overthrusting effects control the crustal structure from the western Sichuan to the western area of the Jiangnan orogen-Xuefeng orogenic belt. The eastward extruded materials from the eastern Tibetan Plateau were blocked by the rigid basement in the Sichuan Basin, where upper-middle crust was overthrusted whereas the lower crust was underthrusted beneath the Sichuan Basin. The underthrusted unit was absorbed by crustal folding, shortening and thickening in the Yangtze Block, forming the Xiongpo and Longquan Mountains tectonic belts and resulting in the NW-directed thrusting of the Pujiang-Chengdu-Deyang fault, and the western hillsiden fault in the Longquan Mountain. These results provide resolution to the controversy where the eastward extrusion material from the Qinghai-Tibet Plateau had gone. Overall, that Yangtze Block was subjected to thrusting of the crustal materials from the orogenic belts over its both sides. This finding has implications for the study of the intracontinental orogenic mechanism in South China, the reconstruction of tectonic evolutionary history and the kinematics processes during the lateral extrusion of the Tibet Plateau.  相似文献   

4.
The two leading modes of winter surface air temperature(SAT) over China during 1961–2017 are a spatially consistent pattern and a north-south dipole pattern. Based on the two leading modes, the characteristics of the extreme cold and warm days in the two patterns, defined by the standard deviation larger than 1.28 or smaller than-1.28 in the time series of the two leading modes, are analyzed. With the increase of winter SAT during 1961–2017, the number of spatially consistent extreme cold days decreased and their occurrence was restricted to late December to early January, whereas the number of spatially consistent extreme warm days increased significantly in January and February. Global warming is associated with an increase in the spatially consistent extreme warm days and a decrease in spatially consistent extreme cold days, but has little relation to the sum of extreme cold and warm days of either the spatially consistent or north-south dipole pattern. The Siberian High(SH) is the main factor controlling the sum of spatially consistent extreme warm and cold days. The strong(weak) SH before(after) the1990 s corresponds to an increase(decrease) in the sum of the spatially consistent extreme warm and cold days. The occurrences of extreme south-cold-north-warm and extreme south-warm-north-cold days are related to the north-south difference of the SH.When the center of the SH is in mid-high latitudes, the extreme south-warm-north-cold(south-cold-north-warm) days occur more(less) often. During the winters of 1961–2017, the total number of extreme cold and warm days of the north-south dipole pattern changes negligibly. The North Atlantic meridional overturning circulation(AMOC) may be the main factor affecting the sum of the extreme cold and warm days of the two types of SAT pattern in China.  相似文献   

5.
Large-scale detailed mapping plays a key role in revealing the rupture characteristics and mechanisms of strong earthquakes.Relatively few studies have been performed on the surface ruptures of large earthquakes in central and western Tibet due to its remote nature and high elevation.Based on high-resolution unmanned aerial vehicle(UAV)photography,we mapped the coseismic surface rupture of the 2014 Yutian M_s7.3 earthquake.Along the western Altyn Tagh fault system,the earthquake produced~37 km of surface rupture along the South Xor Kol fault(southern section S1),Xor Kol fault(central section S2)and Ashikule fault(northern section S3).Section S1 has a 16-km-long surface rupture with an average sinistral offset of 52±25 cm and a maximum offset of~90 cm,while section S3 has a 14.2-km-long surface rupture with an average sinistral offset of 36±21 cm and a maximum offset of~84 cm.A compilation of 5308 cracks yields an average crack width along the southern section of 85±71 cm and a maximum width of~700 cm;the average width along the central section is 39±21 cm,and the maximum width is 243 cm;and the average width along the northern section is 61±44 cm with a maximum of~340 cm.In addition,the average cumulative opening across rupture zone is 3.4±2.9 m along the southern section,with a maximum of~17 m;4.3±3.6 m along the central section,with a maximum of~13 m;and 1.7±1.6 m along the northern section,with a maximum of~6 m.Evidently,the average crack width and cumulative opening decrease towards bends and steps along the fault.A global synthesis of surface rupture distributions corresponding to strike-slip earthquakes indicates that the rupture zone is wider near the complex parts of fault geometries(such as bends,steps and fault bifurcations)than along straight sections,suggesting that the fault geometry has an obvious control on the surface rupture width.The widespread cracks at the intersection between the Xor Kol and South Xor Kol faults may indicate that an extensional regime is more likely to produce distributed offfault deformation,which provides an observational constraint for the numerical simulation of dynamic rupture on a fault.In addition to coseismic surface rupture,the Yutian earthquake also produced a large number of gravity-driven slides on alluvial fans with gentle slopes.The friction efficiency of the water-bearing salt layer beneath fans could decrease the sliding threshold and trigger instability under surface shaking.These distributed deformations and gravity-driven slides reflect the coupling between the rupture propagation and fault geometry and indicate that the rupture may have propagated in two directions along the Ashikule fault after passing through a step.Therefore,the investigation of coseismic surface rupture provides important observational constraints on the dynamic rupture process.  相似文献   

6.
A shake-table experiment on pile foundations in liquefi able soils composed of liquefi able sand and overlying soft clay is studied. A three-dimensional(3D) effective stress fi nite element(FE) analysis is employed to simulate the experiment. A recently developed multi-surface elasto-plastic constitutive model and a fully coupled dynamic inelastic FE formulation(u-p) are used to model the liquefaction behavior of the sand. The soil domains are discretized using a solid-fl uid fully coupled(u-p) 20-8 noded brick element. The pile is simulated using beam-column elements. Upon careful calibration, very good agreement is obtained between the computed and the measured dynamic behavior of the ground and the pile. A parametric analysis is also conducted on the model to investigate the effect of pile-pinning, pile diameter, pile stiffness, ground inclination angle, superstructure mass and pile head restraints on the ground improvement. It is found that the pile foundation has a noticeable pinning effect that reduces the lateral soil displacement. It is observed that a larger pile diameter and fi xed pile head restraints contribute to decreasing the lateral pile deformation; however, a higher ground inclination angle tends to increase the lateral pile head displacements and pile stiffness, and superstructure mass seems to effectively infl uence the lateral pile displacements.  相似文献   

7.
Numerical modeling of free-surface flow over a mobile bed with predominantly bedload sediment transport can be done by solving the shallow water and Exner equations using coupled and splitting approaches.The coupled method uses a coupling of the governing equations at the same time step leading to a non-conservative solution.The splitting method solves the Exner and the shallow water equations in a separate manner,and is only capable of modeling weak free-surface and bedload interactions.In the current study,an extended version of a Godunov-type wave propagation algorithm is presented for modeling of morphodynamic systems using both coupled and splitting approaches.In the introduced coupled method the entire morphodynamic system is solved in the form of a conservation law.For the splitting technique,a new wave Riemann decomposition is defined which enables the scheme to be utilized for mild and strong interactions.To consider the bedload sediment discharge within the Exner equation,the Smart and Meyer-Peter&Müller formulae are used.It was found that the coupled solution gives accurate predictions for all investigated flow regimes including propagation over a dry-state using a Courant-Friedrichs-Lewy(CFL)number equal to 0.6.Furthermore,the splitting method was able to model all flow regimes with a lower CFL number of 0.3.  相似文献   

8.
介绍了地震日常分析会商数据库管理软件研制的思路.该软件构建了最优的数据库表结构和Excel模板,实现了会商登记卡、震情监视报告、首都圈地区震情短临跟踪动态等信息的浏览、新添、删除、修改、保存、打印,具有首都圈地区各学科异常频次自动统计、绘图等功能.  相似文献   

9.
Historical biome changes on the Tibetan Plateau provide important information that improves our understanding of the alpine vegetation responses to climate changes.However,a comprehensively quantitative reconstruction of the historical Tibetan Plateau biomes is not possible due to the lack of quantitative methods that enable appropriate classification of alpine biomes based on proxy data such as fossil pollen records.In this study,a pollen-based biome classification model was developed by applying a random forest algorithm(a supervised machine learning method)based on modern pollen assemblages on and around the Tibetan Plateau,and its robustness was assessed by comparing its results with the predictions of the biomisation method.The results indicated that modern biome distributions reconstructed using the random forest model based on modern pollen data generally concurred with the observed zonal vegetation.The random forest model had a significantly higher accuracy than the biomisation method,indicating the former is a more suitable tool for reconstructing alpine biome changes on the Tibetan Plateau.The random forest model was then applied to reconstruct the Tibetan Plateau biome changes from 22 ka BP to the present based on 51 fossil pollen records.The reconstructed biome distribution changes on the Tibetan Plateau generally corresponded to global climate changes and Asian monsoon variations.In the Last Glacial Maximum,the Tibetan Plateau was mainly desert with subtropical forests distributed in the southeast.During the last deglaciation,the alpine steppe began expanding and gradually became zonal vegetation in the central and eastern regions.Alpine meadow occupied the eastern and southeastern areas of the Tibetan Plateau since the early Holocene,and the forest-meadow-steppe-desert pattern running southeast to northwest on the Tibetan Plateau was established afterwards.In the mid-Holocene,subtropical forests extended north,which reflected the“optimum”condition.During the late Holocene,alpine meadows and alpine steppes expanded south.  相似文献   

10.
Much effort has been made in investigating the seismic response and failure mechanism of rectangular subway stations,however,the influence of earth retaining systems has generally been ignored in previous studies.This paper presents a numerical study on the seismic performance of a rectangular subway station with/without earth retaining systems by taking fender piles as the example,and aims to illustrate how the existence of fender piles affects seismic responses on subway stations.The loading conditions of subway stations and their surrounding soils prior to earthquakes are discussed.Next,seismic responses of subway stations with or without fender piles were simulated.Afterward,earthquake-induced deformations of stations and surrounding soils,as well as the internal forces and damage modes of the structural components,were systematically studied.Consequently,the seismic performance of the stations was affected by the existence of fender piles.In addition,earthquake intensity is illustrated.The study showed that deformation modes of surrounding soils and damage modes of stations were different with regard to the existence of fender piles.Meanwhile,earthquake intensity influencing the seismic performance of stations with or without fender piles were found to be opposite.  相似文献   

11.
In this paper, the changes in sediment transport over 51 years from 1955 to 2006 in the Kuye River in the Loess Plateau in China are assessed. Key factors affecting sediment yield and sediment transport, such as precipitation depth, discharge, and human activities are studied. To investigate the changes in sediment yield in this watershed, a trend analysis on sediment concentration, precipitation depth, and discharge is conducted. Precipitation depths at 2 Climate Stations (CSs), as well as discharge and sediment transport at 3 Gauging Stations (GSs) are used to assess the features of sediment transport in the Kuye River. The rtmoff modulus (defined as the annual average discharge per unit area, L/(s·km^2)) and the sediment transport modulus (defined as the annual suspended sediment transport per unit area, t/(yr km^2)) are introduced in this study to assess the changes in runoff and sediment yield for this watershed. The results show that the highest average monthly discharge during the study period in the Kuye River is 66.23 m^3/s in August with an average monthly sediment concentration of 88.9 kg/m^3. However, the highest average monthly sediment concentration during the study period in the Kuye River is 125.34 kg/m^3 and occurs in July, which has an average discharge of 42.6 m^3/s that is much less than the average monthly discharge in August. It is found that both the runoff modulus and sediment transport modulus at Wenjiachuan GS on the Kuye River has a clear downward trend. During the summer season from July to August, the sediment transport modulus at Wenjiachuan GS is much higher than those at Toudaoguai and Longmen GSs on the Yellow River. The easily erodible loess in the Kuye River watershed and the sparse vegetation are responsible for the extremely high sediment yield from the Kuye River watershed. The analyses of the grain size distribution of suspended load in the Kuye River are presented. The average monthly median grain size of suspended load in the Kuye River is largest in February and then decreases until June. In July, the average monthly median grain size of suspended load approaches another peak and decreases until September. Then, the median grain size of suspended load starts to increase until February of the following year. However, the average monthly median grain size of suspended load in the Yellow River at Toudaoguai and Longmen GSs is the smallest between early summer and late fall The median grain size in the Yellow River starts to increase in November and approaches the largest size in January.  相似文献   

12.
13.
3He/4He ratios up to 3.5 times the ratio of atmospheric He were found in groundwater samples. The3He enrichment can be attributed to radiogenic3He produced by in-situ beta-decay of3H. This shows that tritiogenic3He is accumulating in confined waters. From tritiogenic3He and3H concentrations, ages of groundwaters can be calculated. Detection of tritiogenic3He gives a tool to trace a tritium contamination which occurred in the past and cannot be assessed only by the3H counting method.  相似文献   

14.
Observations of trace gases (SO2, NH3, NO2 and O3) were made during the period 1981 to 1984 at 6 different locations representative of urban industrial, urban, nonurban, thermal power plant and marine environment. Diurnal variations of the trace gases were studied in an urban environment. Except in the urban industrial environment, the concentration of NH3 was found in the range of background values. Also, the average concentrations of NO2 and O3 at the different environments were in the order of background values. However, the concentrations of SO2 were substantially higher by about 7 times, in urban industrial and thermal power plant environments. The diurnal variations of SO2, NH3 and NO2 showed anitphase relationship with surface temperature at the urban environment station which is relatively free of industrial pollution. Discussion is centred on trace gas variations in different environments in India together with the values reported for various countries in the world.  相似文献   

15.
The aim of this study is to estimate likely changes in flood indices under a future climate and to assess the uncertainty in these estimates for selected catchments in Poland. Precipitation and temperature time series from climate simulations from the EURO-CORDEX initiative for the periods 1971–2000, 2021–2050 and 2071–2100 following the RCP4.5 and RCP8.5 emission scenarios have been used to produce hydrological simulations based on the HBV hydrological model. As the climate model outputs for Poland are highly biased, post processing in the form of bias correction was first performed so that the climate time series could be applied in hydrological simulations at a catchment-scale. The results indicate that bias correction significantly improves flow simulations and estimated flood indices based on comparisons with simulations from observed climate data for the control period. The estimated changes in the mean annual flood and in flood quantiles under a future climate indicate a large spread in the estimates both within and between the catchments. An ANOVA analysis was used to assess the relative contributions of the 2 emission scenarios, the 7 climate models and the 4 bias correction methods to the total spread in the projected changes in extreme river flow indices for each catchment. The analysis indicates that the differences between climate models generally make the largest contribution to the spread in the ensemble of the three factors considered. The results for bias corrected data show small differences between the four bias correction methods considered, and, in contrast with the results for uncorrected simulations, project increases in flood indices for most catchments under a future climate.  相似文献   

16.
Changes in thermal extremes of the climate of Poland in 1951–2010 are examined. Warm extremes have become more frequent, while cold extremes have become less frequent. In the warming climate of Poland, the increase in the number of extremely warm days in a year and the decrease in the number of extremely cold days in a year have been observed. Also the increase of the maximum number of consecutive hot days in a year and the decrease of the maximum number of consecutive very cold and extremely cold days in a year have been observed. However, the trends are not of ubiquitous statistic significance, as the natural variability is strong.  相似文献   

17.
Cu concentrations in surface (river and lake) and subsurface waters are determined. The geographic pattern of Cu distribution in natural water is identified. This pattern is controlled by the difference between its concentrations in drained rocks and soils and the geochemical redox conditions of its migration. Territories with low, medium, and elevated Cu concentrations in natural waters are identified. The concentrations of Cu in natural waters of the region are found to be generally lower than the Clarke values.  相似文献   

18.
19.
Abstract

The basin area of the Ganges River in Bangladesh is extremely dependent on a regular water supply from upstream to meet requirements for agriculture, fisheries, navigation, salinity control, and domestic and industrial sectors. In 1975, India commissioned a barrage on the Ganges River at Farakka to divert a significant portion of the dry season flow in order to make the Calcutta Port navigable. Statistical analyses of discharge and water level data have been carried out to determine if significant changes have occurred in the hydrology of the Ganges system in Bangladesh in the post-Farakka period. Siltation of the Gorai River (an offtake of the Ganges River) has also been examined using the stage-discharge relationship and regression analysis. The analyses show that the diversion has caused considerable hydrological changes in the Ganges system in Bangladesh. The water supply in the dry season has been reduced substantially, while siltation of the Gorai River has increased significantly.  相似文献   

20.
Water Resources - The results of studies of extreme floods in Crimean rivers in the summer of 2021 are presented. Analytical and historical generalization is made for the problem of the adverse...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号