首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
缝洞型储层的孔隙度指数、饱和度等参数的计算一直是测井界亟需解决的问题,它直接关系到储层流体性质、储量规模等方面的评价,前人在这些方面已经进行了大量的研究工作,也取得了一定的研究成果和应用效果,但仍需进一步加强认识.基于前人提出的改进前后的三孔隙度模型,对比研究了缝洞型储层孔隙度指数的变化规律.研究结果表明缝洞型储层的基质孔隙度、裂缝孔隙度、非连通缝洞孔隙度及基质孔隙度指数均对复合系统孔隙度指数有着明显的影响,且各个因素对其影响的效果和程度不同.通过分析改进前后的三孔隙度模型可以看出,两种模型求取的孔隙度指数是存在着明显差异的,而孔隙度指数的变化对准确求取饱和度有着很大的影响,并且发现利用改进后的三孔隙度模型求得的孔隙度指数和饱和度更加符合实际情况.  相似文献   

2.
针对花岗岩储层非均质性特点,采用了三重孔隙结构解释模型对其进行解释评价.该模型的储集空间包括基质、裂缝和孔洞三部分,随着储集空间的变化,可将该模型转化为孔隙型储层解释模型、孔洞型储层解释模型和裂缝型储层解释模型,这样就可适应多种储层性质的解释需要.由此利用常规测井资料计算了花岗岩储层的总孔隙度、基质孔隙度、孔洞孔隙度和裂缝孔隙度,利用岩心和电成像测井对裂缝孔隙度和孔洞孔隙度的计算结果进行标定和验证,并根据这些参数划分储层类型,计算含油气饱和度,划分油气水层.含油气饱和度的计算是采用反映储层孔隙结构变化的孔隙结构指数变m值,使阿尔奇公式适用于非均质花岗岩储层含油气饱和度的计算.应用上述测井解释方法,对目标井进行精细处理解释和综合评价,取得了很好的应用效果.  相似文献   

3.
火成岩岩性特殊,储层非均质性非常严重,裂缝、孔洞发育,属于典型的多重孔隙介质储层,定量计算火成岩储层基质和裂缝的孔隙度和饱和度是评价火成岩油气层的关键。由基质、天然裂缝和非连通孔洞组成的储层可以模拟成基质和裂缝的并联导电网络,非连通孔洞和基质/裂缝的组合的串联导电网络。采用密度测井资料求取总孔隙度,用深浅双侧向电阻率计算裂缝孔隙度,采用密闭取心分析的孔隙度作为基质孔隙度。通过建立以基质、天然裂缝和非连通孔洞组成的储层的三重孔隙解释模型,找到适合于火成岩缝洞型复杂储层的饱和度方程。将三重孔隙解释模型应用于松辽盆地北部火成岩储层,计算的含水饱和度平均相对误差由16.85%降低至12.42%,精度明显提高,为火成岩储层评价、储量计算与地质建模提供了定量参数。  相似文献   

4.
碳酸盐岩储层非均质性强、储集空间类型复杂多样,储层中流体性质的识别及有效厚度的划分比较困难,为了完成碳酸盐岩储层的常规测井评价,根据碳酸盐岩储层地质特征,将储层分为三种类型:1)裂缝+孔隙型储层,其孔隙度大于3.5%,其裂缝为规模较大的构造缝,其次是一些宏观裂缝,是碳酸盐岩储层中最好的储层;2)微裂缝+孔隙型储层,其孔隙度大于3.5%,其裂缝主要为储层微观孔、缝以及孔洞.3)裂缝层,其孔隙度小于3.5%,裂缝较发育,基质孔隙度和储层含油饱和度很小,接近于零,为裂缝层.基于以上三种类型的储层来建立测井地质评价模型,由于碳酸盐岩储层是典型的双重介质模型,分别建立两类孔隙空间的几何模型及流体模型,分别建立三种储层的空间几何模型和流体分布模型,每种模型又分为裂缝系统和岩块孔隙系统,在此基础上总结各种测井曲线的响应特征,分别给出储层参数计算的数理模型,基质岩块和裂缝孔隙度、渗透率和储层油气水饱和度,对裂缝的张开度也进行了定量计算,给出了储层流体性质及有效厚度的划分标准,最终完成碳酸盐岩的常规测井评价.  相似文献   

5.
对于裂缝、溶蚀孔洞发育的碳酸盐岩缝洞储层,如何从测井资料中提取裂缝、溶蚀孔洞信息是评价储层有效性的关键问题.为了从电成像测井静态图像上准确地分割出清晰的裂缝、溶蚀孔洞子图像进而提取其参数信息,本文提出了一种基于小波变换模极大值图像分割技术的电成像测井资料缝洞面孔率提取方法.以钮扣电极电导率曲线为对象,先消除井壁凹凸不平导致的地层背景噪声的影响,利用小波变换模极大值图像分割方法得到包含裂缝和溶蚀孔洞目标的子图像,根据子图像提取裂缝-孔洞总面孔率、裂缝面孔率、孔洞面孔率等信息.本文利用塔里木盆地奥陶系碳酸盐岩地层的电成像测井数据提取了缝洞面孔率参数,还利用同井岩心CT扫描图像计算的平均缝洞面孔率、双侧向电阻率、常规测井资料三孔隙度模型计算的相对连通缝洞孔隙度进行了对比,并进行了试油验证.对比表明,电成像测井裂缝-孔洞总面孔率、裂缝面孔率、孔洞面孔率与岩心CT扫描图像平均缝洞面孔率、双侧向电阻率、相对连通缝洞孔隙度、试油结果均有较好的一致性.这一方面验证了采用本文方法提取的裂缝-孔洞总面孔率、裂缝面孔率、孔洞面孔率的合理性,另一方面表明所提取参数可用于指示缝洞型碳酸盐岩储层的渗透性和有效性.  相似文献   

6.
塔河油田碳酸盐岩缝洞型储层的测井识别与评价方法研究   总被引:12,自引:4,他引:12  
塔河油田奥陶系以碳酸盐岩为主,油气的主要储渗空间为裂缝和溶蚀孔洞,具有很强的非均质性.本文利用常规及成像测井资料,对碳酸盐岩缝洞型储层的识别与评价方法进行研究.为了综合各种测井方法识别裂缝,建立了综合裂缝概率模型,计算综合裂缝概率指示裂缝的发育程度.利用地层微电阻率扫描成像测井资料进行裂缝和溶蚀孔洞的定性、定量解释.定量计算的裂缝参数为:裂缝密度、裂缝长度、裂缝平均宽度、平均水动力宽度、裂缝视孔隙度;定量计算的溶蚀孔洞参数有:面孔率、孔洞密度.根据缝洞型储层孔隙空间类型及其中子孔隙度、补偿密度、声波、双侧向电阻率的测井响应物性特征,建立缝洞型碳酸盐岩储层复杂孔隙介质解释模型,用于确定裂缝、溶蚀孔洞孔隙度和评价储层.  相似文献   

7.
储层孔(裂)隙的物理模拟与超声波实验研究   总被引:7,自引:3,他引:4  
以超声波实验作为研究手段,用人工物理模型模拟油气储层中的裂缝和孔洞.通过室内超声波实验观测不同缝、洞孔隙度物理模型的地震波特征响应,分析了缝、洞孔隙度的变化对地震波属性参数的影响,重点讨论了裂缝、孔洞孔隙度与纵横波属性的关系.实验分析结果表明:储层缝、洞孔隙度的变化对地震波的纵横波速度、振幅、衰减和主频等参数有着明显的影响,并对各参数的影响程度进行了对比分析.随着缝、洞孔隙度的逐渐增加,地震波的纵横波速度、振幅、衰减和主频等参数都有不同程度的减小,但振幅、衰减、主频的减小程度要比速度高1—3个数量级,这为合理地选择和利用地震波的速度、振幅、衰减和主频等参数来进行地下储层中裂缝、孔洞分布和发育程度的检测和预测提供了可靠的实验依据.  相似文献   

8.
为了更深入的研究阵列声波测井资料在缝洞型碳酸盐岩储层评价中的应用,针对阵列声波中不同探测距离、不同分辨率的信息开发了三种新技术.通过对纵波进行频散分析形成了纵波频散谱的处理方法,并建立了根据频散谱的方差对碳酸盐岩储层非均质性进行评价的方法,对于井周裂缝、溶洞的识别及储层类型划分有指导意义;利用井壁斯通利波传播特性,建立了定量计算斯通利波能量衰减的方法,对于评价过井缝洞有重要作用;利用阵列声波反射波信息形成了全新的声波远探测处理方法,通过对井旁反射信息的定量表征建立了井旁缝洞发育程度的定量评价方法.阐述了这些方法的基本原理及适用条件,拓展了阵列声波测井资料在碳酸盐岩储层评价方面的应用.  相似文献   

9.
为了更深入的研究电成像测井资料在储层评价方面的应用,针对碎屑岩、碳酸盐岩及薄互层三种类型的储层建立了三种新技术.通过对环井周电阻率数据进行统计,建立了电阻率谱技术及分选指数的计算方法,根据谱峰的宽窄及分选指数大小对碎屑岩储层分选性及非均质性进行评价,对于预测高产储层具有一定的指导意义;通过阿尔奇公式将环井周电阻率转换为孔隙度,并对孔隙度数据进行统计,建立了孔隙度谱技术及基质孔隙度及次生孔隙度的计算方法,对于评价碳酸盐岩储集层次生孔隙发育情况具有重要作用;利用电成像高分辨的优势,通过对薄互层电阻率进行统计,根据砂泥岩电阻率的差异,建立了薄互层有效厚度的计算方法,成为评价薄互层的一种重要手段.阐述了这些方法的基本原理及适应的岩性条件,拓展了电成像测井资料在储层评价方面的应用.  相似文献   

10.
FMI成像测井给出了由电阻率像素点阵构成的图像。将此电阻率点阵通过Archie公式转换为相应的孔隙度点阵;以一个地层为一个图像窗口单元,计算每一个点阵的孔隙度对用常规测井资料确定的该地层的总孔隙度的贡献份额,并做出它沿孔隙度值的统计分布图;计算出不同m值对应的m√a值,并绘出m√a-m曲线。孔隙度分布图因储层类型的不同而不同,地层的溶蚀程度是影响石m√a-m曲线形态的重要因素。这些现象给定量评价储层的缝洞孔隙发育带来了希望。  相似文献   

11.
裂缝和孔洞型储层孔隙模型的理论进展   总被引:8,自引:6,他引:8       下载免费PDF全文
对有洞的和裂缝型储层的分析已经成为一个热点,因而孔隙模型的研究近年得到了很好的发展.目前已经用双孔隙和三孔隙模型研究这类储层的特性并寻找估计孔隙指数的方法,以便计算含水饱和度.用串联或并联电阻网络模拟储层表明:双孔隙模型适用于基质与非连通孔洞储层以及裂缝和(或)连通孔洞的储层.三孔隙模型更适用于由基质、裂缝和不连通孔洞组成储层的岩石物理评价,对于当前碳酸盐岩和火成岩以及变质岩储层评价具有明显的指导意义.  相似文献   

12.
Carbonate aquifers are prolific and important sources of potable water in many parts of the world owing to enlarged dissolution features that enhance porosity and interconnectivity. To better understand the variations of pore space in different karst aquifers, image and geospatial analyses are used to analyze pore attributes (i.e., pore area and perimeter) in images of vuggy aquifers. Pore geometry and 2D porosity derived from images of the moldic Castle Hayne and vuggy Biscayne aquifers are analyzed at three scales of observation: borehole televiewer, core and thin-section. The Castle Hayne and Biscayne aquifers are the foci of this study because the pore spaces that control the hydrologic properties in each of these aquifers are markedly different even though both of these carbonate reservoirs are prolific aquifers. Assessments of pore area, perimeter and shape index (a measure of shape complexity) indicate that pore geometries and pore complexities vary as a function pore type and scale of observation. For each aquifer type, the areas, perimeters and complexities of pores are higher at the larger scale of observation (e.g., borehole) than the smaller scale of observation (e.g., thin section). When the complexity of the moldic pores is compared to the complexity of vuggy pores, the results indicate that moldic pores are generally more complex than vuggy pores at the same scale of observation. Whereas estimates of 2D porosity from the borehole televiewer image of the vuggy aquifer are higher than those derived from the moldic aquifer, the range of 2D porosities is larger in core and thin section images for the vuggy aquifer than the moldic aquifer. A model for the development of pores is presented that suggests that the coalescence of small pores with simple shapes leads to the growth of larger pores with more complex shapes. The model suggests that the younger Biscayne aquifer is a more mature karst than the Castle Hayne aquifer.  相似文献   

13.
We explore the contribution of fractures (joints) in controlling the rate of weathering advance for a low‐porosity rock by using methods of homogenization to create averaged weathering equations. The rate of advance of the weathering front can be expressed as the same rate observed in non‐fractured media (or in an individual block) divided by the volume fraction of non‐fractured blocks in the fractured parent material. In the model, the parent has fractures that are filled with a more porous material that contains only inert or completely weathered material. The low‐porosity rock weathers by reaction‐transport processes. As observed in field systems, the model shows that the weathering advance rate is greater for the fractured as compared to the analogous non‐fractured system because the volume fraction of blocks is < 1. The increase in advance rate is attributed both to the increase in weathered material that accompanies higher fracture density, and to the increase in exposure of surface of low‐porosity rock to reaction‐transport. For constant fracture aperture, the weathering advance rate increases when the fracture spacing decreases. Equations describing weathering advance rate are summarized in the ‘List of selected equations’. If erosion is imposed at a constant rate, the weathering systems with fracture‐bounded bedrock blocks attain a steady state. In the erosional transport‐limited regime, bedrock blocks no longer emerge at the air‐regolith boundary because they weather away. In the weathering‐limited (or kinetic) regime, blocks of various size become exhumed at the surface and the average size of these exposed blocks increases with the erosion rate. For convex hillslopes, the block size exposed at the surface increases downslope. This model can explain observations of exhumed rocks weathering in the Luquillo mountains of Puerto Rico. Published 2017. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

14.
Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next‐generation, high‐resolution groundwater flow simulations. Digital, optical, borehole‐wall image data from three closely spaced boreholes in the karst‐carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two‐dimensional models of vuggy megaporosity and matrix‐porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple‐point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes.  相似文献   

15.
— The success of the Soultz-sous-Forêts Hot-Dry-Rock project depends on the ability to maintain fluid circulation in a fractured granite. Fractures represent the main fluid pathways. To understand the behavior of this granite in respect to thermal fluid-rock interaction the important aspects are (1) the porous network around these fractures and (2) the thermal conductivity of the rock. This granite is altered and composed of different weathered facies. Variations of porosity and thermal conductivity take place in regard to the alteration and fracturing of the granite. Two types of porosity measurements were performed, mercury injection and water porosity on two samples sizes. The two methods give similar porosity values between 0.3% and 10%. Thermal conductivity measurements were performed in two perpendicular directions to look at anisotropy with two methods at different scale and value ranges from 2.3 to 3.9 W.m?1.K?1. Optical scanning provides us with a good knowledge of local increase of thermal conductivity due to sealed fracture or quartz-cemented matrix. The relationship between porosity and thermal conductivity is not obvious and has to be studied in details, and results show three cases: (1)?a relationship between conductivity and porosity (increase of conductivity with a decrease of porosity), (2)?a relationship between conductivity and sealed fractures (increase of conductivity related to an increase of fracture density), (3)?and a combination of the two previous ones. The results are carefully compared for different types of granite: alterated, fractured or both. These first results indicate that parameters such as thermal conductivity are linked to the porous medium, the structure and the mineralogy of the rock.  相似文献   

16.
Fluid identification in fractured reservoirs is a challenging issue and has drawn increasing attentions. As aligned fractures in subsurface formations can induce anisotropy, we must choose parameters independent with azimuths to characterize fractures and fluid effects such as anisotropy parameters for fractured reservoirs. Anisotropy is often frequency dependent due to wave-induced fluid flow between pores and fractures. This property is conducive for identifying fluid type using azimuthal seismic data in fractured reservoirs. Through the numerical simulation based on Chapman model, we choose the P-wave anisotropy parameter dispersion gradient (PADG) as the new fluid factor. PADG is dependent both on average fracture radius and fluid type but independent on azimuths. When the aligned fractures in the reservoir are meter-scaled, gas-bearing layer could be accurately identified using PADG attribute. The reflection coefficient formula for horizontal transverse isotropy media by Rüger is reformulated and simplified according to frequency and the target function for inverting PADG based on frequency-dependent amplitude versus azimuth is derived. A spectral decomposition method combining Orthogonal Matching Pursuit and Wigner–Ville distribution is used to prepare the frequency-division data. Through application to synthetic data and real seismic data, the results suggest that the method is useful for gas identification in reservoirs with meter-scaled fractures using high-qualified seismic data.  相似文献   

17.
The discovery of Puguang Gas Field provides the exploration of China deep marine carbonate rock with important references.In Puguang Gas Field,the dolomite reservoirs discovered in the deep are the best in the present of China,which present big thickness and wide-range distribution,and develop abundant secondary porosity.The researches show that Puguang Gas Field bears the characteristics of early gas-filling time,deep burial,high matured organic matter and long-term interaction of hydrocarbon(oil and gas)-water-rock(carbonate reservoir).The developments of secondary pores in this area are affected by multiple diagenesis and their formation mechanisms are complicated.Through the research on depositional environment,sedimentary facies and reservoir porosity characters of Changxing and Feixianguan Formations,it is thought that high-quality dolomite reservoirs of Puguang Gas Field form on the favorable sedimentary facies belts,which are the integrate result affected by several factors including superficial corrosion,burial corrosion,overpressure and tectonic movement,among which burial corrosion of TSR to reservoir and overpressure formed by thermal evolution of organic matter have great effect on the formation of secondary porosity of Changxing and Feixianguan Formations.  相似文献   

18.
Vuggy reservoirs are the most common, albeit important heterogeneous carbonate reservoirs in China. However, saturation calculations using logging data are not well developed, whereas Archie method is more common. In this study, electrical conduction in a vuggy reservoir is theoretically analyzed to establish a new saturation equation for vuggy reservoirs. We found that vugs have a greater effect on saturation than resistivity, which causes inflection in the rock-electricity curve. Using single-variable experiments, we evaluated the effects of vug size, vug number, and vug distribution on the rock-electricity relation. Based on the general saturation model, a saturation equation for vuggy reservoirs is derived, and the physical significance of the equation parameters is discussed based on the seepage-electricity similarity. The equation parameters depend on the pore structure, and vugs and matrix pore size distribution. Furthermore, a method for calculating the equation parameters is proposed, which uses nuclear magnetic resonance (NMR) data to calculate the capillary pressure curve. Field application of the proposed equation and parameter derivation method shows good match between calculated and experimental results, with an average absolute error of 5.8%.  相似文献   

19.
The discovery of Puguang Gas Field provides the exploration of China deep marine carbonate rock with important references. In Puguang Gas Field, the dolomite reservoirs discovered in the deep are the best in the present of China, which present big thickness and wide-range distribution, and develop abundant secondary porosity. The researches show that Puguang Gas Field bears the characteristics of early gas-filling time, deep burial, high matured organic matter and long-term interaction of hydrocarbon (oil and gas)-water-rock (carbonate reservoir). The developments of secondary pores in this area are affected by multiple diagenesis and their formation mechanisms are complicated. Through the research on depositional environment, sedimentary facies and reservoir porosity characters of Changxing and Feixianguan Formations, it is thought that high-quality dolomite reservoirs of Puguang Gas Field form on the favorable sedimentary facies belts, which are the integrate result affected by several factors including superficial corrosion, burial corrosion, overpressure and tectonic movement, among which burial corrosion of TSR to reservoir and overpressure formed by thermal evolution of organic matter have great effect on the formation of secondary porosity of Changxing and Feixianguan Formations.  相似文献   

20.
Abstract Crack-filling clays and weathered cracks were observed in the Disaster Prevention Research Institute, Kyoto University (DPRI) 1800 m cores drilled from the Nojima Fault Zone, which was activated during the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake). The crack-filling clays consist mainly of unconsolidated fine-grained materials that fill opening cracks with no shear textures. Most of the cracks observed in the DPRI 1800 m cores are yellow-brown to brown in color due to weathering. Powder X-ray diffraction analyses show that the crack-filling clays are composed mainly of clay minerals and carbonates such as siderite and calcite. Given that the top of the borehole is approximately 45 m above sea level, most of the core is far below the stable groundwater table. Hence, it is suggested that the crack-filling clays and weathered cracks in the cores taken at depths of 1800 m were formed by the flow of surface water down to the deep fractured zone of the Nojima Fault Zone during seismic faulting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号