首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
深圳一次强飑线过程的闪电频数与天气雷达回波关系分析   总被引:6,自引:4,他引:2  
利用深圳市气象局的闪电定位网资料、多普勒雷达资料和常规天气资料,分析了深圳地区2012年4月一次强飑线过程的地闪变化特征以及闪电活动与雷达回波特征的相关性。结果表明,在整个飑线过程中随着时间的推移,正地闪占地闪总数的比例虽然有所增大,但负地闪仍然占绝对优势,正、负地闪主要发生在30 dBZ以上的强回波区,地闪分布与雷达回波强度表现出很好的对应关系;在-10 ℃、-15 ℃和-20 ℃三个高度层上,雷达回波强度的每一次跳跃变化都对应着地闪频数的跃增,且地闪频数跃增的时间与回波强度跃增时间一致,其中-20 ℃层高度上回波强度与地闪频数相关性最好;在飑线过程不同阶段,雷达回波强度的概率密度分布等特征量可以反映闪电频数在相应时期的变化;另外,强回波面积与闪电活动也有较好的相关性,其中-5 ℃层高度上超过40 dBZ的雷达反射率面积与地闪频数的相关系数为0.90,其对数拟合优度R2为0.798,各温度层上相关系数最高项的线性拟合效果均好于对数拟合。   相似文献   

2.
一次中尺度对流系统的闪电演变特征   总被引:19,自引:11,他引:19  
利用地面雷电探测网资料、多普勒雷达和卫星资料对一次典型的MCS过程的地闪变化特征进行了分析,结果表明,在系统发展的最初阶段全为负地闪;在MCS的成熟阶段地闪频数一直较高,在10次/min以上,负地闪占绝对优势;在消散阶段,地闪频数急剧下降,同时正地闪所占比例越来越大,甚至超过负地闪。地闪基本出现在<-50℃的云区和前部大的温度梯度区内,集中发生于<-60℃的云区。负地闪主要发生在强对流区(>40 dBz),其持续时间和强对流的维持时间几乎相当,说明负地闪可以很好地指示或有助于识别强对流区;密集的正地闪也与强回波区相对应,而稀疏的正地闪则多发生在系统后部的稳定性降水或云砧部位。同时,在MCS成熟阶段出现高正地闪频数的瞬间突增有可能对应着地面强天气的发生,在强对流天气的临近预报中应予以关注。  相似文献   

3.
利用MICAPS资料、多普勒雷达资料和地闪资料,分析了2008年8月1日低纬高原中部一次强对流天气过程。结果表明:台风登陆和副热带高压北抬西伸导致外围的偏东气流带来充沛的水汽和热量,为强对流天气过程提供了有利的环流背景条件;在强对流发展过程中,前部始终有入流存在,多普勒雷达回波上具有"弓"型回波、前侧"V"型槽口、弱回波区、后侧"V"型槽口等特征,强回波区与多普勒雷达速度图上的逆风区和辐合区相关;-10℃层高度上雷达回波强度≥35dBz时,才开始有地闪活动发生,负地闪占整个地闪过程的99.6%,大多数负地闪出现在强度30dBz的强回波区,对应着强辐合上升气流区,正地闪出现在回波前部的云砧或回波后部的较弱回波区域,对应着辐散的下沉气流区域;整个雷暴云发展演变过程中负地闪电流强度呈现出先增大后减小的单峰型变化特征,而正地闪电流强度基本呈现逐渐增大的直线型变化特征。  相似文献   

4.
利用湖北省闪电定位系统监测资料与武汉市多普勒天气雷达资料同步叠加,对2010年4月12日湖北省东南部地区一次强对流过程的两个致灾雹暴单体进行分析。结果表明:雹暴生消的不同阶段,正地闪和负地闪频数及在雷达回波中的分布呈不同的变化特征,通过地闪频次和地闪在雷达回波中位置的变化可以识别雹暴生命史演变的不同阶段。雹暴Ⅰ产生小冰雹,是一个普通对流单体,闪电以负地闪为主,闪电频率最大为15次·(6 min)-1;正地闪落在风暴发展和消亡阶段,负地闪主要落在35—55 dBz强回波边缘,零星正地闪分布在强回波周围层状云中,雹暴移动路径前侧的负地闪对雹暴移动有一定的指示意义。雹暴Ⅱ是一个典型超级单体,产生直径超过3 cm的大冰雹,闪电频率最大为44次·(6 min)-1,风暴成熟阶段正地闪活跃,16—17时正地闪频繁出现时间与大冰雹持续时间一致;负地闪与25—55 dBz强回波区域吻合较好,正地闪分布在强回波30—55 dBz中心及层状云边缘。对比地闪频数和雹暴成熟阶段的回波强度可以发现,降雹均出现在风暴的成熟阶段,小冰雹发生时地闪频数下降幅度较小,大冰雹发生时地闪频数下降幅度较大,且正地闪比例明显增大。  相似文献   

5.
华北一次强对流天气系统的地闪时空演变特征分析   总被引:8,自引:3,他引:5  
利用地面雷电探测网,多普勒天气雷达和常规天气资料,分析了2005年8月1日发生在山东北部的一次具有前部对流线,后部大范围层状云降水(LLTS)的典型中尺度对流系统(MCS)的闪电活动演变特征。结果表明:整个过程中负地闪占主导地位,最高频数达到260次/5min;与负地闪比较,正地闪呈现不活跃状态。负地闪主要落在>40 dBz的强回波区内部及其边缘区域,而正地闪则分布在前部云砧和后部层状云降水区内。对地闪位置与回波强度的进一步对比分析发现,45~55 dBz的回波是最有利于地闪发生的区域,回波强度低于这一区域,随着回波强度的增大,地闪活动呈递增趋势,地闪频数在50~55 dBz的回波区域内达到峰值,>55 dBz的回波区域内地闪频数明显降低。  相似文献   

6.
一次飑线过程的闪电活动特征   总被引:2,自引:0,他引:2  
结合地闪定位资料和TRMM卫星LIS观测的总闪电资料对一次飑线过程闪电活动进行分析,结果如下:这次飑线过程的正地闪超过了负地闪,占地闪的54.7%.在系统发展的初始阶段全部为正地闪;在系统的快速发展阶段地闪频数明显增大,正地闪比例很高,均在75%以上.在系统成熟至减弱阶段,地闪频数开始下降,而正地闪比例下降,负地闪的比例却越来越大,并占据支配地位.正地闪发生在线对流区(即强回波区内或附近),负地闪发生在层状云区.正地闪并不对应于主上升气流区而是紧邻上升气流区的后部.该雷暴云内闪电活动非常频繁,云地闪比例高达26.1:1.降雹和地面大风区位于正地闪密集区内,地闪频数峰值对应于地面大风阶段.  相似文献   

7.
朱义青  高安春 《气象科学》2021,41(2):191-199
利用闪电定位资料、多普勒雷达资料和卫星资料分析2016年6月13日发生在山东的一次飑线天气过程的地闪变化特征和大风形成机制,结果表明:本次过程发生在东北冷涡影响背景下,大气层结上冷下暖,随着层结不稳定性逐渐增强和不稳定能量的积蓄,在较强的深厚垂直风切变环境下触发强对流风暴进而组织成飑线。整个飑线过程中负地闪占主导地位,约占地闪总数的89.25%;在飑线的成熟阶段,负地闪频数达到最大峰值后的5~10 min,正地闪也出现最大峰值;负地闪主要出现在回波发展至成熟阶段,多发生在45 dBZ的强回波区域中;正地闪主要出现在飑线的成熟至消散阶段;当TBB达到最低值时,飑线达到最强盛阶段,地闪频数达顶峰。利用WINDEX计算的地面最大风速的潜势与观测的地面极大风速较接近;地面大风阶段对应着剧烈的闪电活动,冰雹大风等灾害性天气的最强时刻与正地闪的峰值出现时间较为一致。  相似文献   

8.
慕建利  李泽椿  谌芸 《气象》2012,38(1):56-65
利用2007年8月8日18时至9日02时发生在陕西关中强暴雨期间的地闪、卫星TBB、雷达回波和地面加密降水资料,通过统计和对比分析的方法,分析了地闪活动特征及其与中尺度对流系统(MCS)和强降水的关系。地闪活动特征分析显示,暴雨过程中负地闪占绝对优势,为总地闪的97.7%。负闪频数和总闪频数的逐时演变趋势完全一致且呈现两峰一谷的趋势,正闪频数的变化呈现三峰两谷的趋势,但是正闪频数最大值与总闪、负闪频数峰值时间一致。负闪活跃期正负闪6 min演变均表现为多峰结构,正闪的波峰提前于负闪的波峰12 min。负闪频数变化和MCS、雷达反射率因子演变对比分析表明,负闪发生区是未来对流云团和对流发展加强区,负闪频数密集区位于对流云团前部TBB等值线密集区,负闪频数的急剧增加意味着未来对流系统的猛烈发展;负闪主要出现在回波强度大于40 dBz的区域,正闪则落到强回波中心两侧30~40 dBz的回波区,中尺度对流系统快速发展加强期,负闪密集区位于回波单体的前沿,中尺度系统发展稳定少动期,负闪大部分集中在各对流单体的强回波中心附近。对比分析地闪与暴雨发生发展的关系可见,地闪的发生和急剧增加对暴雨发生和发展加强有很好指示意义,初闪的发生提前于强降水发生,地闪急剧增加与降水强度猛增密切关联,负地闪发生密集区是未来强降水发生区。  相似文献   

9.
利用闪电定位、雷达回波、自动气象站等资料,对山西省2005年8月11~12日副高西进北抬过程中其边缘的对流性强暴雨和2005年8月16日副高东退南压过程中其边缘的持续性暴雨过程的闪电特征进行了对比分析.发现两次暴雨地闪均出现在500hPa的5840~5880 gpm之间的区域,都具有负地闪占主导地位、正地闪频数很低、正地闪强度远大于负地闪强度的特征.对流性强暴雨,负地闪的分布与中气旋和中辐合线的位置相对应,负地闪出现在回波强度达50 dBz或以上的区域内,正地闪出现在45 dBz左右的范围;同一次暴雨过程,不同的对流风暴存在不同的地闪分布.持续性暴雨,地闪出现在地面冷锋与700hPa切变线之间的区域,且正地闪出现在锋区的中后部靠近700hPa切变线、500hPa靠近5840 gpm线的区域;负地闪则出现在锋区的中前部靠近地面冷锋、500hPa靠近5880 gpm线一侧的逆风区或负速度区的大值区;稳定性降水出现在700hPa切变线与500 hPa槽线之间、雷达强度图上正地闪的西北部区域.局地地闪频数随时间的演变不能代表整个对流风暴地闪频数随时间的演变,但局地闪电的出现及其频数的增加或减少却能指示风暴对该地区的影响程度,尤其是地闪频数峰值的出现可以指示雨强峰值的即将来临,这对强对流暴雨的临近预报是十分有意义的.  相似文献   

10.
山东半岛一次强飑线过程地闪与雷达回波关系的研究   总被引:6,自引:0,他引:6  
利用山东省气象局地闪定位资料和青岛多普勒雷达资料,分析了2007年7月31日发生在山东半岛一次强飑线过程的地闪活动演变特征以及地闪活动与雷达回波特征的关系.结果表明,此次过程中地闪异常活跃,最大频数达到1 212 fl· (10 min)-1,但正地闪仅有15次.在飑线系统快速发展阶段,地闪频数出现了两次“跃增”现象,地闪频数随时间的增加呈“阶梯状”发展特征.地闪主要集中发生在6 km高度上雷达回波≥35 dBZ的区域,地闪频数与45 dBZ以上强回波面积的相关系数达到0.89,但也有少量地闪零星分布在弱回波区域.地闪频数与45 dBZ回波顶高的相关性要好于与35dBZ和50 dBZ回波顶高的关系,二者之间的相关系数为0.71.为了定量分析对流强度与地闪频数之间的关系,定义了8个对流强度指数,其中0℃层以上所有强回波的反射率因子值之和与0℃层以上所有强回波的反射率因子值与所在高度的乘积之和以及地闪频数的关系非常稳定.对比分析不同强度的对流系统,发现不同雷暴天气过程中的对流强度与地闪频数的关系明显不同,即对流越强,相应的对流强度与地闪频数的相关关系也越好.另外,在飑线系统的发展演变过程中,地闪频数与0℃层以上和7~11 km高度的冰相降水含量也存在着非常密切的关系,相关系数均在0.8以上.  相似文献   

11.
Lightning and Doppler radar observations of a squall line system   总被引:2,自引:0,他引:2  
A typical squall line with damaging wind and hailstones occurred on 28 April 2006 in Shandong Province, middle eastern China, and caused great economic loss. The characteristics of cloud-to-ground lightning (CG) in the squall line were studied in detail by combining the data from the ground-based CG location network, two Doppler radars and the Lightning Imaging Sensor on the TRMM satellite. Results show that positive CG flashes accounted for 54.7% of the total CG flashes. During the initial developing stage, the CG flash rate was lower than 0.5fl min− 1 and most of the CG flashes were positive. It increased significantly, up to 4.5fl min− 1, along with the rapid development of the squall line, and the percentage of positive CG was more than 75% during this period. The CG flash rate began to decrease but the percentage of negative CG flash increased gradually and exceeded that of positive CG during the mature and dissipating stages. Positive CG flashes tended to occur on the right flank and negative ones on the left flank. Strong wind at the surface occurred in or near the regions with dense positive CG flashes. Almost all positive CG flashes occurred near the strong radar echo regions, in the front parts of the squall line. However, the negative CG flashes almost exclusively occurred in the regions with weak and uniform radar echoes. The total flash rate in the storm was very high, up to 136fl min− 1, and its ratio of intracloud flashes (IC) to CG flashes was 35:1. Dense positive CG flashes corresponded to updraft regions, they did not occur in the core of the updraft, but just behind and close to the main updraft instead. The rear inflow jet, between 3 and 6 km, played an important role in the formation of the bow echo and very strong wind at surface. The CG distribution features in the squall line were obviously different from that of an ordinary MCS. The charge structure could be roughly described as an inverted charge structure.  相似文献   

12.
The analyses of spatial and temporal characteristics of positive cloud-to-ground(CG) lightning for four mesoscale convective systems and two severe local convective systems in 1989 and 1990 show that positive CG flash rate usually has two peak values.The major peak occurs during the developing stage of the storm and most of the positive CG flashes originate at the lower part of the storm.The minor occurs during the dissipative stage of the storm and most of the positive CG flashes originate at the upper part of the storm,especially in the region of the wind divergence in the storm anvil.The positive CG flash rate is almost an order of magnitude larger in the developing stage than in the dissipative stage.The appearing time of the peak of negative CG flash rate is in accordance with that of the valley of positive CG flash rate.The higher the intensity of the radar echo,the higher the positive CG flash rate.Most of the positive CG flashes occur when the weak echo area is larger,and mostly originate in the region where the radar echo intensity is about 10dBz and in the back region of the moving storms.The spatial distribution of the positive CG flashes is much more dispersive than that of the negative.The mesoscale analysis reveals a bipolar lightning pattern.The mean bipole-length reaches its minimum during the mature stage of the storm and reaches the maximum during the developing stage of the storm.The vertical distribution of the charge density is calculated by a one-dimensional charging model.Then,we discuss the producing condition of the positive CG lightning and forming cause of charge structure mentioned above.  相似文献   

13.
The analyses of spatial and temporal characteristics of positive cloud-to-ground(CG)lightning for four mesoscaleconvective systems and two severe local convective systems in 1989 and 1990 show that positive CG flash rate usuallyhas two peak values.The major peak occurs during the developing stage of the storm and most of the positive CGflashes originate at the lower part of the storm.The minor occurs during the dissipative stage of the storm and most ofthe positive CG flashes originate at the upper part of the storm,especially in the region of the wind divergence in thestorm anvil.The positive CG flash rate is almost an order of magnitude larger in the developing stage than in thedissipative stage.The appearing time of the peak of negative CG flash rate is in accordance with that of the valley of pos-itive CG flash rate.The higher the intensity of the radar echo,the higher the positive CG flash rate.Most of the positive CG flashes oc-cur when the weak echo area is larger,and mostly originate in the region where the radar echo intensity is about 10dBzand in the back region of the moving storms.The spatial distribution of the positive CG flashes is much more dispersivethan that of the negative.The mesoscale analysis reveals a bipolar lightning pattern.The mean bipole--length reaches itsminimum during the mature stage of the storm and reaches the maximum during the developing stage of the storm.The vertical distribution of the charge density is calculated by a one-dimensional charging model.Then,we discussthe producing condition of the positive CG lightning and forming cause of charge structure mentioned above.  相似文献   

14.
利用地面地闪定位资料、多普勒天气雷达和常规气象资料, 分析了一次具有前部对流线和后部大范围层状云降水(LLTS)的典型中尺度对流系统(MCS)的闪电活动演变特征。整个MCS生命史中负地闪占主导地位, 正地闪则表现不活跃。观测得到MCS消散阶段云闪与地闪的比例为2∶1, 地闪主要分布在地面相对位温和对流不稳定能量均达到高值的区域; 负地闪主要密集地分布在大于40 dBZ的回波范围内; 正地闪则稀疏地分布在30~40 dBZ的回波范围内。在低于-40℃的温度区域内地闪分布较多, 而密集的地闪分布在温度梯度大的区域内。结合单多普勒雷达的水平风场反演, 发现地闪集中出现在气流表现为气旋性切变或水平风呈现切变的区域。该区域与MCS的强回波区相对应, 并且地闪易发生在上升气流达到最大并开始出现下沉气流的阶段。  相似文献   

15.
利用2015年夏季北京闪电综合探测(BLNET)总闪辐射源定位、多普勒天气雷达、地面自动气象站和探空资料等多种协同观测资料,详细分析了2015年8月7日北京一次强飑线过程不同阶段的闪电特征,并探讨了闪电与对流区域和地面热力条件之间的关系。飑线过程整体上以云闪为主,根据雷达回波和闪电频数可以将飑线过程分为发展、增强及减弱三个阶段。发展阶段表现为多个孤立的γ中尺度对流降水单体,随着北京城区降水单体的迅速发展,强回波顶高延伸到-20℃温度层高度,闪电辐射源高度也逐步增加,闪电明显增多,但总闪电频数整体低于80次/min。增强阶段单体合并,闪电频数快速增长,0℃层以上及以下的强回波(>40 dBZ)体积明显增大,飑线形成后,总闪和地闪均达到峰值,分别约248次/min和18次/min,负地闪占总地闪比例为90%,辐射源主要分布在线状对流降水区内,辐射源数量峰值出现在5~9 km高度层。减弱阶段飑线主体下降到0℃以下并迅速衰减,辐射源分布明显向后部层云降水区倾斜。95%的闪电发生在对流线附近10 km范围内,即对流云区和过渡区。在系统发展和增强阶段,对流云区与层云区辐射源的活跃时段基本一致;系统减弱阶段,对流降水云区辐射源数量迅速减少。在系统的不同发展阶段,闪电活跃区域对应于冷池出流同平原暖湿气流在近地面形成的相当位温强梯度带内。  相似文献   

16.
南京一次雷雨的闪电特征与多尺度资料分析   总被引:2,自引:2,他引:2       下载免费PDF全文
顾媛  魏鸣 《气象科学》2013,33(2):146-152
为探究闪电与其他气象要素之间的关系及可预报性,本文利用探空资料、多普勒天气雷达资料、闪电定位仪资料、卫星云图资料和地面自动气象站资料,对2009年7月7日南京雷雨天气进行多尺度分析.结果表明:暴雨过程中负地闪始终占较大比例,正地闪的数目在雷暴消散阶段稍有增长;地闪频数与地面风速时序变化呈现很好的一致性;雷暴来临前风矢位温特征表明对流云发展高度较高,对流层顶的薄层超低温为强对流发生提供了热力不稳定的先兆信息,整层大气深厚的顺时针垂直切变及中低层偏南风为强对流天气提供了有利的动力和水汽条件,为雷暴潜势预报提供了依据;地闪分布与雷达回波顶高、强的风切变区域以及暴雨落区有明显对应关系;负地闪密集区位于雷达强回波核前方强度为40 ~45dBz区域处,对于回波的未来移向有指示作用.  相似文献   

17.
强对流天气雷达回波与闪电特征的个例分析   总被引:7,自引:3,他引:4  
利用闪电定位资料和多普勒天气雷达强度产品,分析了2006年6月22日发生在南京西南140km处的一次强对流天气过程中闪电的演变特征及其与回波强度的关系。结果表明,地闪多发生于雷暴云中回波强度大于40dBz且回波强度梯度较大的区域;正、负地闪频次在强对流系统发展的不同阶段呈现出不同的特点,负地闪占总闪数的90%以上,正地闪出现在系统进入成熟阶段之后,且占总闪的比例在系统消散阶段明显增大;地闪强度越大,相应的地闪频次越小,除少数弱闪(1/1〈10kA)外,二者基本上呈反相位关系。  相似文献   

18.
孙哲  魏鸣 《大气科学学报》2016,39(2):260-269
利用NCEP再分析资料、探空资料、闪电定位资料和南京、常州多普勒雷达资料,通过对比分析南京2012年2月22日春季雷暴和2011年8月10日夏季雷暴两次过程,研究不同季节影响雷暴发生的大气结构以及强弱雷暴地闪特征的差异。结果表明:风矢位温(V-3θ)图揭示的大气动力热力水汽特征能够为雷暴的潜势预报提供先兆信息。两者相较而言,春季雷暴的动力抬升作用明显;夏季雷暴主要由热对流引起,对流层上层的动力抽吸作用不明显。春季弱雷暴正地闪在总地闪中所占比例较高。无论春季弱雷暴还是夏季强雷暴,地闪落点与辐合区对应关系明显,且地闪的落点也与雷达反射率因子有较好的对应关系:地闪主要分布在强回波区(大于40 d Bz)及其外围区域。但在较强雷暴云的发展阶段,地闪多发生在风暴体伸展方向的一侧,具有引导雷达回波移动的作用,夏季强雷暴地闪簇集在垂直风切变区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号