首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
对区域气候模式系统PRECIS在SRES A1B情景下模拟的上海日降水输出按季节进行了统计误差订正。该方法首先对降水日数进行比率订正,以消除模式产生的微小值降水。然后利用Γ分布拟合日降水量的累计概率分布,采用整体和分段拟合两种方法构建传递函数TF(Transfer Function)进行订正。选取1962年12月—1992年11月作为控制时段,构建TF并将其应用于验证时段(1992年12月—2002年11月)。该订正方案消除了模式产生的微小值降水,解决了模拟的小降水值偏多的问题,频率误差保持在1%以下,分段拟合订正相比整体拟合订正具有更强的对极端降水的订正能力;对冬、春季的订正效果比夏、秋季更显著。该方案不仅有效消除了平均值的漂移,而且显著订正了变率,同时提高了极端降水事件的再现能力,是一种相对完善的订正方案。   相似文献   

2.
基于分位数映射法的黑河上游气候模式降水误差订正   总被引:1,自引:0,他引:1  
区域气候模式降水弥补了高寒山区气象站点稀少的缺陷,是水文模拟的重要驱动变量。然而,高寒山区模式输出降水的总量和频率都存在较大不确定性。因此,改进了用于降水频率纠正的分位数映射法(Quantile Mapping,QM),对中尺度数值预报模式(Weather Research and Forecasting model,WRF)模拟的黑河上游日降水输出数据进行误差订正。选取第95分位和第98分位降水量为阈值,选择2004-2009年为建模时段,2010-2013年为验证时段,使用分段拟合的方法建立传递函数,侧重于对极端降水进行单独订正。研究结果表明:该方法不仅对降水空间分布有明显的改善,对极端降水也有很好的订正效果。订正前模式模拟日降水与台站之间的均方根误差为3.41 mm·d^-1,绝对偏差为115.67 mm·y^-1,订正后均方根误差减少为3.11 mm·d^-1,绝对偏差有明显改善,为60.3 mm·y^-1。订正后流域内年降水空间分布更加合理,年降水量也更接近于观测降水插值结果,其空间相关系数由0.74改善为0.94。春、夏季订正效果优于秋、冬季,其中夏季订正效果较为明显,订正前降水偏差百分比在-0.1~0.1以内的区域面积仅占流域总面积的28%,而订正后占比增加至66%。同时,该方法对极端降水有较好的订正效果,减小了日降水强度(SDII)和极强降水量(R99p)的模拟偏差,订正后的第95分位模拟降水与观测降水插值的相关系数由0.15提高到0.48。本研究为站点稀少的黑河上游提供了一种更有效的误差订正方案,有利于为寒区水文研究获取更精确的降水数据。  相似文献   

3.
该文使用区域气候模式PRECIS的A1B情景,模拟1961—1990年珠江流域降水平均值、区域分布和概率分布,并对订正方法的效果进行了检验,检验结果表明PRECIS模式模拟的结果与观测值接近,对模拟结果进行概率订正后模拟结果得到了改善。在模式效果可信的基础上,对珠江流域2021—2050年降水量进行了模拟和分析,模拟结果表明未来时段珠江流域的降水总体稍微增加,珠江流域全年下游降水增多,上游降水减少,降水的波动性增加,未来降水量趋于两极化,可能导致极端多雨和极端少雨事件的增加,更易导致干旱和洪涝的发生;未来珠江流域降水在时空分布上将更加不均匀,即冬季和春季南部沿海降水增多,北部降水减少;夏季和秋季北部降水增多,南部降水减少。  相似文献   

4.
基于贵州1961—2017年82个观测站5—9月逐日降水资料,将处于95%位置的降水量作为极端降水阈值,分析极端降水日数和极端降水量的时空分布特征及其与海拔高度的关系。结果表明:极端降水阈值在南部和东北部地区较高,大于45.0 mm;西部和西北部较低,在35.0 mm左右。多年平均极端降水日数和极端降水量呈西高东低的空间分布特点,极端降水日数在3.6~4.6 d之间,极端降水量多处在200~360 mm之间,极端降水量占5—9月降水总量的30%左右。极端降水站次和极端降水量在各旬分布上呈单峰型,最大值均出现在6月下旬。极端降水日数和极端降水量在中南部表现出不同程度的增加趋势,中部增加趋势最为明显。极端降水量对总降水量的贡献率呈增加趋势。极端降水日数和极端降水量随海拔高度的增加而增大,尤其是极端降水日数受海拔高度的影响明显。  相似文献   

5.
利用通辽市9个站1961—2015年逐日降水资料,统计分析极端降水量、降水强度和年最大日降水量的空间分布特征和时间变化趋势。结果表明,通辽市极端降水量、极端降水强度和年最大日降水量近55a来没有明显增加或减少变化趋势,但存在明显的年代际特征;三者的空间特征基本相似,由南向北总体上呈高—低—高的分布特征;通辽市年降水总量主要来自极端降水量的贡献。  相似文献   

6.
我国东部极端降水时空分布及其概率特征   总被引:16,自引:9,他引:16  
蔡敏  丁裕国  江志红 《高原气象》2007,26(2):309-318
利用我国105°E以东地区210个测站近50年(1953—2002年)逐日降水资料,在REOF客观分区的基础上,确定各分区的极端降水最佳采样期为1~2日。进而研究了日极端降水量的气候特征。采用具有优良特性的L-矩参数估计方法对我国东部极端降水拟合Gumbel分布。结果表明,L-矩参数估计方法的拟合优度比其它方法有进一步提高,近50年来,极端降水趋势虽无明显变化,但其时空差异较大。符合Gumbel分布的极端降水重现期的地理空间分布,大致特征是,东南大、西北小,两湖盆地、黄海海湾及辽东半岛也有高值区。  相似文献   

7.
采用分位数映射(Quantile Mapping, QM)和delta分位数映射(Quantile Delta Mapping, QDM)两种误差订正方法对区域气候模式RegCM4在中国区域内模拟的逐日气温和降水数据进行订正。模式数据是5种不同全球气候模式驱动下的区域模式气候变化模拟结果。计算订正前后的极端气候指数进行对比分析,包括日最高气温极大值(TXx)、日最低气温极小值(TNn)、连续干旱日数(CDD)和最大日降水量(RX1day)。结果表明,5组模拟结果和其集合平均(ensR)都显示气温指数的模拟效果高于降水指数,其中对TXx模拟最好,对CDD的模拟最差;经过订正后,针对不同模式的两种订正结果都能够有效地减小模式与观测的偏差并提高了空间相关系数,且两种方法的订正效果无明显差别。对RCP4.5情景下未来变化的分析中,QM在一定程度上改变了模式模拟的未来变化幅度和空间分布特征,QDM则能够有效地保留所有极端指数的气候变化信号。从全国平均来看,除CDD外,所有指数未来都呈现增加趋势,且QDM订正结果与订正前模式模拟的变化趋势更为接近。建议在气候变化模拟的误差订正中采用QDM方法。  相似文献   

8.
2021年8月22日勉县遭遇极端降水事件,日降水量高达2379 mm,灾害十分严重。统计分析1959—2021年勉县历史逐年最大日降水量特点,采用皮尔逊Ⅲ型(简称P-Ⅲ型)曲线分布和耿贝尔极值分布方法推算重现期及降水量,并将两者进行比较,对2021年8月22日极端大暴雨进行重现期估算。结果表明:勉县年最大日降水年际变化明显,2008年以来变率增大且有更极端的趋势;基于P-Ⅲ型曲线分布和耿贝尔极值分布的1959—2020年最大日降水积累概率拟合效果均较好,但耿贝尔极值分布对年最大日降水量的拟合优于P-Ⅲ型分布;应用耿贝尔极值分布推算勉县极值降水,100 a一遇的日降水量为1547 mm,2021年8月22日降水量2379 mm的重现期为4 88133 a。增加2021年最大日降水量进入样本序列重新构建耿贝尔极值分布函数,推算日降水量2379 mm的重现期为70735 a,100 a一遇的估算降水量为1834 mm,重现期及降水量估算变化均较大,说明超极端降水和样本长度对重现期的推算影响较大。  相似文献   

9.
基于1980-2020年山西省109个气象观测站点的逐日降水资料,选取10个极端降水指数,采用气候倾向率、相关分析、因子分析、R/S预测方法等方法,对山西省极端降水进行了时空分布的研究,以期为山西省的气候变化、生态环境保护、防灾减灾、气象服务工作提供参考依据,结果表明:(1)从时间尺度来看,1980-2020年期间,山西省极端降水的强度和极值都有明显增加,连续干旱日数和连续湿日日数呈下降趋势,其余均表现出不同程度的增加,其中年总降水量增加幅度最明显;从空间尺度来看,年总降水量、降水强度、降水频率、极值均为从西北向东南逐渐增多,空间差异较明显;从各站点的空间分布来看,北部和中部地区的极端事件增加最显著,北部地区的干旱日数仍以增加趋势为主,连续湿日日数气候倾向率的空间差异较大,中部地区站点显著增加,南北部以减少趋势为主;(2)基于相关分析方法表明各极端降水指数(除干旱日数外)与年总降水量都有很好的相关关系,强降水量和极强降水量对年总降水量的贡献值呈现出增加趋势;采用因子分析方法提取了3个公共因子,方差贡献率累计达到了87%,可以看出极端降水强度和降水量指数在对极端降水方面影响较大;利用R/S分析法可以得到年总降水量、中雨日数、大雨日数、最大5日降水量这几个指数未来呈现弱减少趋势,而干旱日数仍为减少趋势,连续湿日日数为持续弱增加趋势。总体看来,山西省极端降水近年来呈现出增加趋势,在空间分布有明显差异。  相似文献   

10.
百分位统计降尺度方法及在GCMs日降水订正中的应用   总被引:9,自引:0,他引:9  
刘绿柳  任国玉 《高原气象》2012,31(3):715-722
在格点观测的逐日降水量数据基础上,采用百分位统计降尺度方法对全球气候模式(GCM)输出的日降水量进行了订正处理。5种订正方案的比较结果表明,取12个百分位数进行日降水量订正是合理的。观测资料与3个GCMs订正前后全国平均年、季降水量空间分布以及主要流域平均年、月和日降水序列多年平均、变化趋势及概率密度的对比分析表明:(1)统计降尺度处理可在一定程度上降低GCMs模拟的降水量偏差,特别是中国中部、长江以南和东北部分地区,对德国马普研究所的海气耦合模式(MPI/ECHAM5)模拟的降水量订正效果最显著;(2)GCMs统计降尺度处理的降水量季节分布特征与观测更为接近,所有流域MPI/ECHAM5订正的降水量优于或接近直接输出结果;(3)与GCM直接输出的降水相比,部分流域经统计降尺度处理后降水量变化趋势与观测的一致性有所增加,但不明显;(4)当日降水量<30mm时,订正的降水量与观测的偏差明显减小;当日降水量>30mm时,部分流域由负偏差转为正偏差。由于GCMs结构和降尺度方法的局限性,在用于具体流域未来气候变化预估及气候变化影响评估时,应选择尽可能多的、模拟能力强的GCMs数据,以包含尽可能多的模拟气候情景。  相似文献   

11.
中国近50a极端降水事件变化特征的季节性差异   总被引:14,自引:2,他引:12  
利用中国419个测站1958-2007年逐日降水资料集,分析了近50a中国不同区域年和季节极端降水事件的基本变化特征。结果表明,多年平均极端降水事件的空间分布具有明显的纬向分布特征,并表现出显著的季节性差异。长江以南地区是春、冬季极端降水事件发生频次较高的区域;而年、夏季以及秋季极端降水事件发生频次在西南地区较高,在西北东部较低。年极端降水事件频次的长期变化趋势与夏季相似,华北和东北有增加趋势,其他地区为弱的减少趋势;其他季节的长期变化趋势存在明显的区域和季节性差异。年和季节极端降水事件的发生频次具有显著的年际和年代际变化特征。年极端降水事件时间序列的多项式拟合曲线的变化情况与夏季基本一致;而其他季节的变化则存在较大差异,表现出显著的季节性差异。  相似文献   

12.
Using rain-gauge-observation daily precipitation data from the Global Historical Climatology Network (V3.25) and the Chinese Surface Daily Climate Dataset (V3.0), this study investigates the fidelity of the AHPRODITE dataset in representing extreme precipitation, in terms of the extreme precipitation threshold value, occurrence number, probability of detection, and extremal dependence index during the cool (October to April) and warm (May to September) seasons in Central Asia during 1961–90. The distribution of extreme precipitation is characterized by large extreme precipitation threshold values and high occurrence numbers over the mountainous areas. The APHRODITE dataset is highly correlated with the gauge-observation precipitation data and can reproduce the spatial distributions of the extreme precipitation threshold value and total occurrence number. However, APHRODITE generally underestimates the extreme precipitation threshold values, while it overestimates the total numbers of extreme precipitation events, particularly over the mountainous areas. These biases can be attributed to the overestimation of light rainfall and the underestimation of heavy rainfall induced by the rainfall distribution–based interpolation. Such deficits are more evident for the warm season than the cool season, and thus the biases are more pronounced in the warm season than in the cool season. The probability of detection and extremal dependence index reveal that APHRODITE has a good capability of detecting extreme precipitation, particularly in the cool season.  相似文献   

13.
利用1980—2015年6—8月我国逐日降水观测数据评估CWRF模式(Climate-Weather Research and Forecasting model)多种参数化方案对我国夏季日降水的模拟能力,并考察累积概率变换偏差订正法(CDFt)的订正效果。通过将广义帕累托分布(GPD)引入到偏差订正模型中,提出针对极端降水的累积概率变换偏差订正法(XCDFt),检验和评估其对极端降水订正的适用性。结果显示:CWRF模式微物理过程选用Morrison-aerosol参数化方案组合对我国降水场的模拟较好,CDFt订正效果良好;XCDFt偏差订正模型能够较好地提取模式建模与验证时期变化信号,订正后相比订正前与观测极端降水的概率分布更为接近;经过XCDFt订正后华南、华中和华北地区20年一遇的极端降水重现水平较模拟值更接近观测值,可为CWRF模式提高极端降水的业务预测水平提供参考。  相似文献   

14.
基于RegCM4模式的中国区域日尺度降水模拟误差订正   总被引:4,自引:0,他引:4  
童尧  高学杰  韩振宇  徐影 《大气科学》2017,41(6):1156-1166
气候模式模拟得到的各气候变量与观测相比,总会存在一定的偏差,所得到的气候变化预估结果难以在影响评估模型中直接应用。本文尝试对一个区域气候模式(RegCM4.4)所模拟的中国区域逐日降水,基于概率分布(分位数映射)方法进行统计误差订正。在订正过程中,以模拟时段1991~2010年中的前半段(1991~2000年)作为参照时段,建立传递函数,对后一时段(2001~2010年)进行订正并检验其效果。首先对使用参数和非参数所建立的6种不同传递函数方法进行对比,发现6种方法均可明显减少降水模拟的误差,其中利用非参数转换建立传递函数的RQUANT方法效果更好。随后进一步分析了采用该方法对模式模拟降水所做订正的效果,结果表明,该方法可以明显改善对平均降水,以及降水年际变率和极端事件的模拟结果。  相似文献   

15.
The extreme summer precipitation over East China during 1982-2007 was simulated using the LASG/IAP regional climate model CREM(the Climate version of a Regional Eta-coordinate Model).The results show that the probability density functions(PDFs) of precipitation intensities are reasonably simulated,except that the PDFs of light and moderate rain are underestimated and that the PDFs of heavy rain are overestimated.The extreme precipitation amount(R95p) and the percent contribution of extreme precipitation to the total precipitation(R95pt) are also reasonably reproduced by the CREM.However,the R95p and R95pt over most of East China are generally overestimated,while the R95p along the coastal area of South China(SC) is underestimated.The bias of R95pt is consistent with the bias of precipitation intensity on wet days(SDII).The interannual variation for R95p anomalies(PC1) is well simulated,but that of R95pt anomalies(PC2) is poorly simulated.The skill of the model in simulating PC1(PC2) increases(decreases) from north to south.The bias of water vapor transport associated with the 95th percentile of summer daily precipitation(WVTr95) explains well the bias of the simulated extreme precipitation.  相似文献   

16.
采用泰勒图和偏差分析等统计方法,评估分析了德国区域气候模式(REMO)对中国1989-2008年气温和降水的模拟能力。结果表明:REMO气温模拟值与观测值空间相关系数为0.94,降水空间相关系数较低(0.42),气温模拟结果明显优于降水;从空间偏差上看,在中国大部分地区,REMO模拟的气温高于观测值,偏差在±4℃以内,青藏高原整体有明显的-4~-2℃的冷偏差;模拟的降水值则高于观测值,空间偏差分布较均匀,中国大部分地区偏差在±300 mm之内;除青藏高原、华南和西南地区外,REMO能较准确地反映出中国气温和降水的空间分布特征,其中华北和东北地区模拟效果最好;REMO对夏季气温和冬季降水的模拟能力相对较好;REMO在地形起伏较大地区的模拟能力有待提高。  相似文献   

17.
利用1961~2002年ERA-40逐日再分析资料和江淮流域56个台站逐日观测降水量资料,引入基于自组织映射神经网络(Self-Organizing Maps,简称SOM)的统计降尺度方法,对江淮流域夏季(6~8月)逐日降水量进行统计建模与验证,以考察SOM对中国东部季风降水和极端降水的统计降尺度模拟能力。结果表明,SOM通过建立主要天气型与局地降水的条件转换关系,能够再现与观测一致的日降水量概率分布特征,所有台站基于概率分布函数的Brier评分(Brier Score)均近似为0,显著性评分(Significance Score)全部在0.8以上;模拟的多年平均降水日数、中雨日数、夏季总降水量、日降水强度、极端降水阈值和极端降水贡献率区域平均的偏差都低于11%;并且能够在一定程度上模拟出江淮流域夏季降水的时间变率。进一步将SOM降尺度模型应用到BCCCSM1.1(m)模式当前气候情景下,评估其对耦合模式模拟结果的改善能力。发现降尺度显著改善了模式对极端降水模拟偏弱的缺陷,对不同降水指数的模拟较BCC-CSM1.1(m)模式显著提高,降尺度后所有台站6个降水指数的相对误差百分率基本在20%以内,偏差比降尺度前减小了40%~60%;降尺度后6个降水指数气候场的空间相关系数提高到0.9,相对标准差均接近1.0,并且均方根误差在0.5以下。表明SOM降尺度方法显著提高日降水概率分布,特别是概率分布曲线尾部特征的模拟能力,极大改善了模式对极端降水场的模拟能力,为提高未来预估能力提供了基础。  相似文献   

18.
Influence of SST biases on future climate change projections   总被引:1,自引:0,他引:1  
We use a quantile-based bias correction technique and a multi-member ensemble of the atmospheric component of NCAR CCSM3 (CAM3) simulations to investigate the influence of sea surface temperature (SST) biases on future climate change projections. The simulations, which cover 1977?C1999 in the historical period and 2077?C2099 in the future (A1B) period, use the CCSM3-generated SSTs as prescribed boundary conditions. Bias correction is applied to the monthly time-series of SSTs so that the simulated changes in SST mean and variability are preserved. Our comparison of CAM3 simulations with and without SST correction shows that the SST biases affect the precipitation distribution in CAM3 over many regions by introducing errors in atmospheric moisture content and upper-level (lower-level) divergence (convergence). Also, bias correction leads to significantly different precipitation and surface temperature changes over many oceanic and terrestrial regions (predominantly in the tropics) in response to the future anthropogenic increases in greenhouse forcing. The differences in the precipitation response from SST bias correction occur both in the mean and the percent change, and are independent of the ocean?Catmosphere coupling. Many of these differences are comparable to or larger than the spread of future precipitation changes across the CMIP3 ensemble. Such biases can affect the simulated terrestrial feedbacks and thermohaline circulations in coupled climate model integrations through changes in the hydrological cycle and ocean salinity. Moreover, biases in CCSM3-generated SSTs are generally similar to the biases in CMIP3 ensemble mean SSTs, suggesting that other GCMs may display a similar sensitivity of projected climate change to SST errors. These results help to quantify the influence of climate model biases on the simulated climate change, and therefore should inform the effort to further develop approaches for reliable climate change projection.  相似文献   

19.
The analysis of possible regional climate changes over Europe as simulated by 10 regional climate models within the context of PRUDENCE requires a careful investigation of possible systematic biases in the models. The purpose of this paper is to identify how the main model systematic biases vary across the different models. Two fundamental aspects of model validation are addressed here: the ability to simulate (1) the long-term (30 or 40 years) mean climate and (2) the inter-annual variability. The analysis concentrates on near-surface air temperature and precipitation over land and focuses mainly on winter and summer. In general, there is a warm bias with respect to the CRU data set in these extreme seasons and a tendency to cold biases in the transition seasons. In winter the typical spread (standard deviation) between the models is 1 K. During summer there is generally a better agreement between observed and simulated values of inter-annual variability although there is a relatively clear signal that the modeled temperature variability is larger than suggested by observations, while precipitation variability is closer to observations. The areas with warm (cold) bias in winter generally exhibit wet (dry) biases, whereas the relationship is the reverse during summer (though much less clear, coupling warm (cold) biases with dry (wet) ones). When comparing the RCMs with their driving GCM, they generally reproduce the large-scale circulation of the GCM though in some cases there are substantial differences between regional biases in surface temperature and precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号