首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
利用江苏近10 a(2005-2014年)暖季(5-9月)69站逐时降水资料,详细分析了短时强降水的空间分布、年际变化、季节内演变以及日变化特征。分析结果表明:短时强降水空间分布不均,整体上北部比南部活跃,最活跃区均位于沿淮西部,高强度短时强降水多发生在淮北东部,且空间分布集中。近10 a来江苏短时强降水整体呈减少趋势,主要表现为北部地区减少最为显著。短时强降水季节内分布不均匀,以7月最为活跃,高强度短时强降水在8月最为频繁;其逐候分布显示,梅期短时强降水骤增,于7月第2候达到峰值,盛夏期间高强度短时强降水增多,8月第3候达到峰值。江苏短时强降水的日变化整体呈双峰结构,主峰和次峰分别出现在傍晚17时(北京时间,下同)和清晨07时,高强度短时强降水多发于午后;短时强降水日变化存在季节内演变的阶段性特征和地域性差异,其中梅期和盛夏两个高发阶段均呈单峰结构,但梅期峰值出现在清晨,盛夏阶段峰值则出现在傍晚;由南向北,日变化特征由单峰向双峰、多峰演变,在淮河以南地区日峰值大多出现在午后至傍晚,而淮河以北地区多出现在夜间至清晨。  相似文献   

2.
利用2010~2019年浙江省基准气象站和自动气象站逐小时降水的观测资料,对浙江省短时强降水的时空分布特征进行了统计分析,结果表明:1)2010 ~2019年浙江短时强降水累计发生频次为72601站次,随雨强增大呈指数式衰减。2)短时强降水空间分布不均匀,沿海向内陆发生频次减少,出现频次最高的地区位于温州西南部。夏半年随时间推进和影响系统演变,短时强降水的空间分布亦存在差异:5~6月浙西地区短时强降水多发,7月短时强降水全省分散分布无明显的区域集中特征,8~10月则主要在沿海地区多发。3)总体而言短时强降水的日变化峰值出现在17:00(北京时间,下同),且高强度短时强降水更倾向发生在午后到傍晚时段。夏秋季节短时强降水在午后到傍晚最为多发,峰值出现在17:00至18:00,这与副热带高压强盛,午后到傍晚热力和不稳定条件好,易触发强对流天气有关;春季除午后到傍晚外夜间和凌晨亦为短时强降水多发时段,可能与低空急流多在夜间和早晨发展加强有关。短时强降水的月变化特征呈现类双峰型分布,8月最为多发(26.0%)(主要由台风降水造成),其次为6月和7月。不同强度的短时强降水月变化特征存在较明显差异。而短时强降水的年际分布不均,2015年之后年际变化幅度增大,其中 2016 年短时强降水发生频次最高达8728站次,2017 年为发生频次最低仅5581站次。  相似文献   

3.
利用横断山脉纵向岭谷典型区域2005~2019年28个地面气象观测站逐时降水数据,分析纵谷区短时强降水时空分布特征,结果表明:(1)纵谷区年降水量自西向东减少,而短时强降水量对年降水量的贡献则从西北向东南增加,短时强降水发生频率空间分布极不均匀,在0.1~6.7次/年之间,纵谷区上段发生频率很低,怒江下游和金沙江下游周边流域出现2个大值中心。(2)纵谷区短时强降水年发生频率具有0.022次/年的增加趋势。发生频率逐月变化峰值在7~8月出现,纵谷区下段2个大值中心在6~9月均明显存在;逐候变化多峰值特征突出(36、39~44、47和51候4个峰值),且51候后的下降趋势强于36候前的增加趋势,候频率高峰到达时间的空间分布表现出东北早、西南晚的特点。(3)发生频率日变化主峰值多出现在凌晨,次峰值在傍晚。子夜前后、凌晨、清晨三个时段频率空间分布均自北向南、东南增加,怒江和金沙江下游的2个大值中心明显,而午后、傍晚二个时段频率的空间分布差异较小。纵谷区中上段发生频率日变化幅度大,其西部多为夜发性短时强降水,而东部则以午后至傍晚的短时强降水为主,纵谷区下段发生频率日变化幅度小,午后、傍晚、夜间都会出现。短时强降水的这些时空分布特征与横断山脉纵向岭谷地形及南亚季风活动特性密切相关。   相似文献   

4.
基于2016—2019年防城港市自动气象站小时雨量,结合地形分析短时强降水时空分布特征,结果表明:十万大山南北两侧短时强降水次数从北到南递增,大值区位于十万大山南侧的迎风坡及喇叭口地形;各月的短时强降水的分布有差异,短时强降水主要发生在4—9月,6月短时强降水分布不均匀,7—8月短时强降水最强盛;受对流日变化、低空急流、海陆风等影响,短时强降水日变化特征明显,前汛期市南部短时强降水高峰期出现在清晨、市北部出现在凌晨和午后,后汛期市南部出现在清晨和午后、市北部出现在午后到傍晚,非汛期短时强降水出现的时段呈多峰值态势。  相似文献   

5.
彭莉莉  邓剑波  谢傲 《湖北气象》2020,39(2):201-206
利用南岳山南坡不同海拔高度上的3个气象观测站2015年9月1日-2018年8月31日逐时降水资料,分析了南岳山降水日演变特征。结果表明:从山底到山顶总降水量逐渐增加,存在3个降水峰值时段,分别在清晨、午后和傍晚,清晨雨量峰值主要由该时段降水频次较高所致,午后与傍晚雨量峰值主要与该时段降水强度较大有关,山顶高山站与山底站降水量差异主要体现在午后与傍晚时段;小时最大降水量主要出现在午后至傍晚,山底站短时强降水出现时段较分散,山腰和山顶高山站短时强降水主要集中在午后至傍晚时段;持续时间小于等于6 h的短持续降水频次多于持续时间大于6 h长持续降水频次,其主要出现在午后至傍晚,长持续降水过程多出现在凌晨至中午,其对总降水量的贡献大于短持续降水。  相似文献   

6.
利用海东区域自动气象站2007—2016年逐小时降水数据,分析比较河湟流域~*5—9月份降水量、降水频次和降水强度的日变化峰值位相的整体特征、空间分布差异和典型区域平均的日变化演变特征。得出,河湟流域降水日变化峰值时间主要是傍晚到夜间和清晨双峰型位相和午夜单峰型位相,就整体而言,降水强度的下午峰值特征更加突出,降水频次以午夜峰值为主。综合考虑降水量和降水强度降水频次的日变化峰值位相发,发现河湟流域降水日变化峰值位相在空间分布上存在南北差异,北部双峰型位相和南部单峰型位相特征;从降水量、频次、强度的日变化演变特征来看,北部地区双峰型位相特征,降水量以傍晚至夜间峰值为主清晨峰值为次,降水量位相与降水频次位同步相滞后于降水强度位相;南部地区是单峰型位相特征,降水量峰值出现在午夜,低谷出现在中午,降水量位相与降水频次位相同步滞后于降水强度位相,这应是降水演变过程中时间演变不对称性和高原对流云系发展演变的具体表现。  相似文献   

7.
利用2013~2019年云南省逐小时气象数据,研究不同等级短时强降水和大风的时空分布特征。结果表明:云南短时强降水和大风多出现在山地和河谷等地形复杂区。其中,云南短时强降水强度大多低于30 mm·h?1,峰值出现在7~8月,午后至清晨出现短时强降水概率高,大多分布在滇西南、滇南、滇东边缘以及金沙江河谷。大风多为6级左右,3月出现最多,中午至午后更易出现,主要分布在滇西北横断山脉至滇南哀牢山以东。雷暴大风多为7级左右,呈双峰型分布,春季多于夏季,日峰值出现在16~17时,高发区主要在玉龙雪山和苍山以东以及哀牢山、无量山附近。   相似文献   

8.
利用2011—2015年安徽省自动气象站的降水观测资料和静止气象卫星FY-2E的黑体辐射温度(Black Body Temperature,TBB)资料,分析了安徽省不同地形条件下汛期短时强降水的时空分布特征及其与中尺度对流活动的关系,并对短时极端强降水的时空特征进行了初步探讨。结果表明:2011—2015年不同地形条件下皖南山区为安徽省汛期短时强降水集中出现的区域,其次为大别山区和中东部丘陵地区,淮北平原发生最少。安徽省不同地形条件下汛期短时强降水发生次数月变化呈显著的单峰型,7月短时强降水发生最频繁,其他月份有所不同;候变化具有显著的多峰值—间断性发展的特点,主要集中出现在6月第1候至8月第6候之间,淮北平原变化最大,皖南山区则较均匀;日变化总体呈单峰型特征,午后15—19时最集中;皖南山区和中东部丘陵最明显;淮北平原和大别山区虽然仍以午后居多,但具有多峰值的特点,其中淮北平原除午后外,06—07时短时强降水发生较多;大别山区除午后外,02—03时和10时也为短时强降水发生的峰值。安徽省不同地形条件下汛期短时极端强降水分布较零散,没有明显的高发区,时间变化与短时强降水类似,具有一定的统计规律:皖南山区7月短时极端强降水发生最多,尤其是7月第5候;淮北平原8月短时极端强降水发生最多,尤其是8月第6候;中东部丘陵7月短时极端强降水发生最多,候变化相对均匀。皖南山区和中东部丘陵短时极端强降水集中出现在午后16—19时,其中大别山区02时还有一个峰值,淮北平原短时极端强降水日变化无显著峰值。  相似文献   

9.
短时强降水是强对流天气的一类.基于中国国家气象信息中心质量控制后的1991-2009年876个基本基准气象站整点逐时降水资料,通过不同时段的发生时次频率分析,给出了中国暖季(4-9月)不小于10、20、30、40、50 mm/h短时强降水的时空分布特征,并重点同利用静止气象卫星红外相当黑体亮度温度(TBB)资料获得的中尺度对流系统(MCS)日变化特征进行了对比分析.结果表明,中国短时强降水时次频率地理分布同暴雨(≥50mm/d)分布都非常相似,但50mm/h以上的短时强降水时次频率非常低,地理分布差异显着.短时强降水发生频率最高的区域为华南,其次为云南南部、四川盆地、贵州南部、江西和长江下游等地.最大降水强度可超过180mm/h(海南);在短时强降水发生频率很低的区域,也有超过50mm/h的强降水.从月际变化来看,7月最为活跃,其次为8月.逐候变化显示,短时强降水具有显着的间歇性发展特征(跳跃性分布的特征),但总体上呈现缓慢增强、迅速减弱的特点;以7月第4候最为活跃.中国总体平均的短时强降水的频率和最大强度的日变化有3个峰值,主峰在午后(16-17时,北京时),次峰在午夜后(01-02时)和早晨(07-08时);中午前后(10-13时)最不活跃.中国短时强降水和中尺度对流系统的日变化特征基本一致,但午夜后时段二者存在较大差异.不同区域的短时强降水和中尺度对流系统日变化具有不同的活跃时段和传播特征,具有单峰型、双峰型、多峰型和持续活跃型等日变化类型,这不仅与较大尺度的天气系统环流相关,且与地势、海陆等地理分布密切相关.  相似文献   

10.
利用秦岭地区1961—2015年暖季(4—10月)国家级地面气象站观测的逐时降水资料,从降水逐候变化与降水日变化的角度,比较了秦岭南北两侧暖季降水的演变特征,研究表明:在逐候演变上,秦岭南北两侧均为夏秋双峰型降水,但北侧降水主峰值出现在秋季,秦岭南侧降水主峰值出现在夏季.在降水日变化上,夏秋两季中南侧降水量、降水频次和降水强度均以清晨峰值为主,仅在降水频次上夏季出现了午后的次峰值;而北侧降水量日变化夏秋变化较大,且主要由降水强度贡献,夏季降水强度在午后较强,而秋季清晨降水强度更大.对于不同持续时间的降水事件,南北两个区域在夏秋均表现为持续9h以上(3h以下)的降水为清晨(午后)降水峰值,其差别主要存在于持续时间为4~8h的降水事件中.  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

13.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

14.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography.  相似文献   

17.
《大气和海洋科学快报》2014,7(6):F0003-F0003
AIMS AND SCOPE
Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

18.
《大气和海洋科学快报》2014,(5):F0003-F0003
AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) pub- lishes short research letters on all disciplines of the atmos- phere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

19.
20.
正Aims Scope Advances in Atmospheric Sciences(AAS)is an international journal on the dynamics,physics,and chemistry of the atmosphere and ocean with papers across the full range of the atmospheric sciences,co-published bimonthly by Science Press and Springer.The journal includes Articles,Note and Correspondence,and Letters.Contributions from all over the world are welcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号