首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 98 毫秒
1.
太平洋-印度洋暖池次表层水温对广东旱涝的影响   总被引:1,自引:0,他引:1  
为探索次表层水温对广东旱涝的影响,用Argo剖面浮标等实测资料,分析了太平洋-印度洋暖池(简称太-印暖池)次表层水温异常对广东旱涝的影响。结果表明:冬季,太-印暖池次表层水温偏暖(冷)时,可能引起Walker环流加强(减弱),夏季西北太平洋副热带高压强度较常年同期偏弱(强),位置偏北(南),直接导致南海夏季风爆发时间偏早(晚),有利(不利)于西南部暖湿海洋水汽向广东输送,导致广东降水偏多(少)。冬季,太-印暖池次表层水温偏暖(冷),翌年广东降水偏多(少),出现涝年(旱年)是主要现象。  相似文献   

2.
南海夏季风爆发早晚的越赤道气流特征   总被引:1,自引:0,他引:1  
根据国家气候中心提供的南海夏季风爆发期典型偏早(1966、1972、1996、2000、2001年)和偏晚年份(1970、1973、1987、1989、1991年),利用ECMW F再分析1-5月逐日经向风资料,计算5个通道越赤道气流和越赤道乞流总量的距平值;探讨越赤道气流与南海夏季风爆发早晚的关系与特征。为预测南海夏季风爆发早晚提供判据。  相似文献   

3.
印度洋潜热通量对南海夏季风爆发的影响   总被引:2,自引:0,他引:2  
利用OAFlux热通量资料和ERA-Interim高度场资料,分析了热带印度洋区域潜热通量的变化与南海夏季风爆发之间的关系,初步探讨了热带印度洋潜热通量变化对南海夏季风爆发早晚的影响过程。结果表明,2月热带印度洋区域的潜热通量与南海夏季风爆发之间存在密切的联系,当2月热带印度洋区域潜热通量较常年偏多(少)时,当年南海夏季风爆发偏晚(早)。当2月热带印度洋的潜热通量异常偏多(少)时,海洋向大气释放更多(少)的潜热,潜热通量通过对流凝结作用对大气加热形成大气热源,再通过大气环流逐渐影响2—4月的高度场,使得南海上空的850 hPa高度场出现异常偏高(低),即副热带高压偏强(弱)。异常强(弱)的副热带高压结合孟加拉湾弱(强)的异常西南风,造成南海夏季风爆发偏晚(早)。因此可以认为热带印度洋2月的潜热通量变化是影响南海夏季风爆发的重要因素。   相似文献   

4.
南海夏季风爆发早晚的越赤道气流特征   总被引:1,自引:0,他引:1  
根据国家气候中心提供的南海夏季风爆发期典型偏早(1966、1972、1996、2000、2001年)和偏晚年份(1970、1973、1987、1989、1991年),利用ECMW F再分析1~5月逐日经向风资料,计算5个通道越赤道气流和越赤道乞流总量的距平值;探讨越赤道气流与南海夏季风爆发早晚的关系与特征。为预测南海夏季风爆发早晚提供判据。  相似文献   

5.
南海夏季风强度指数及其变化特征   总被引:22,自引:17,他引:22  
依据南海夏季风活动的基本特征,设计了一个动力不因子(西南风分量)与热力学因子(OLR)相结合标准化的南海夏季风强度指数Is。并计算出1975-1999年6、7、8中各月及夏季Is的数据,给出了强、弱夏季风月和年。分析了其变化特征和Is与夏季风爆发早晚,及与广东和我国降水的关系。结果表明:近35年来,南海夏季风年际变化有准10年和准3-4年变化周期。南海夏季风爆发早(晚),则该年夏季风大多偏强(弱)。南海夏季风强(弱)年,广东后汛期偏涝(旱),前汛期降水正常或偏旱(正常),我国东北、华北大部和江南大部夏季降水偏多(少),而长江中下游和华北西部以及华西偏少(多)。  相似文献   

6.
中南半岛对流对南海夏季风建立过程的影响   总被引:14,自引:1,他引:13  
温敏  何金海  肖子牛 《大气科学》2004,28(6):864-875
利用RegCM2模式进行数值试验,得到中南半岛对流对北半球副高带断裂、进而对孟加拉湾对流建立具有重要影响,而孟加拉湾对流建立后激发的Rossby波列又是南海夏季风建立的主要因子之一.进一步分析中南半岛对流、副高带断裂及南海夏季风建立的年际变化,得到中南半岛对流的强弱(活跃的早晚)与副高带在孟加拉湾北部断裂及南海夏季风爆发的早晚有密切关系.它们还与海温异常及纬圈环流的变化相联系:当赤道中东太平洋海温偏暖(冷)时,Walker环流偏弱(强),中南半岛对流偏弱(强),副高带断裂偏晚(早),南海夏季风建立偏迟(早).  相似文献   

7.
利用1948—2017年再分析资料以及反映太阳周期活动的太阳黑子数资料,研究了太阳活动11年周期变化对南海夏季风爆发早晚的可能影响及相关的物理过程,发现太阳黑子数与南海夏季风建立日期之间存在显著的正相关关系,即太阳活动偏强(弱)年南海夏季风爆发偏晚(早)。对相关大气环流特征进行合成分析表明,太阳活动峰值(谷值)年,5月菲律宾附近上空往往出现异常反气旋(气旋),西太平洋副热带高压偏强、西伸(偏弱、东撤)。一方面,这与赤道以南海洋性大陆的对流活动异常以及与之相联系的局地经向环流密切相关,另一方面,热带印度洋-西太平洋沿赤道的纬向Walker环流异常对此也有一定贡献。进一步的研究揭示出太阳活动影响南海夏季风爆发的信号最初很可能来源于平流层温度的响应,随着太阳辐射增强,春季前期整个南半球对流层下层-平流层上层一致偏暖,温度梯度的变化削弱了对流层的平均经圈环流,导致大气质量的重新分布,引起低层出现负的南极涛动(AAO)型分布,在南半球中纬度地区形成气旋性环流异常,造成索马里越赤道气流建立偏晚,进而有利于南海夏季风爆发的推迟。   相似文献   

8.
用合成和相关分析方法及SVD技术研究了南海夏季风爆发早、晚年份4~6月季风建立时期季风环流的异常及其与热带太平洋-印度洋海温的关系。结果表明,南海夏季风爆发与热带大气环流和海温变异密切相关。(1)当热带中、东太平洋—印度洋(主要在西南部)及南海海温低(高),西太平洋—澳洲邻近海域海温高(低)时,南海夏季风爆发早(晚)。不同区域海温对季风的影响有明显的季节差异,印度洋主要为晚春至初夏(4~6月),南海为5~6月,而热带太平洋从前冬一直持续到夏季。(2)不同的海温异常产生不同的季风环流型,南海夏季风爆发早、晚年大气环流的异常变化基本相反。南海夏季风的活动主要受印度季风环流变化的影响,与前期冬春季西太副高的强弱及位置变化密切相关。西太副高弱时,南海夏季风爆发早;反之,爆发晚。(3)热带太平洋—印度洋海温异常引起季风环流和Walker环流的异常变化可能是影响南海夏季风爆发早、晚的物理过程。  相似文献   

9.
对5月东亚至热带东印度洋表面温度距平主要特征向量场的分析表明,以苏门答腊为中心的热带海洋温度异常与南海季风爆发有密切关系。当该海域海温较常年偏暖(冷)时,南海季风爆发往往迟(早),它可能是通过影响中南半岛与其南方热带海洋之间经向热力差异的变化来实现的。分析了从冬到夏南海-热带东印度洋海温距平主要特征向量场的时空演变,末夏初以苏门答腊为中心的热带海温距平场特征可以追溯到冬季南海海温场的变化,后者与南  相似文献   

10.
南海夏季风北推时间及相关环流变化特征   总被引:5,自引:0,他引:5       下载免费PDF全文
利用1958—2004年NCEP/NCAR逐日再分析资料和我国730站降水资料分析了南海夏季风爆发后影响到华南地区的时间差异及其环流变化特征。结果表明:南海夏季风向北推进影响到华南地区的时间存在明显差异,最早的可以1 d就推进影响到华南地区,最晚的却要42 d,并且这种变化具有明显的年代际变化特征,即20世纪70年末以前,南海夏季风影响到华南地区的时间总体上要偏早,而70年代末以后,南海夏季风影响到华南地区的时间总体上要偏晚;当南海夏季风建立后,若东亚大槽较深,冷空气活动较活跃,索马里越赤道气流形成的西南风、110°~120°E地区越赤道气流形成的偏南风以及副热带高压西侧边缘的偏南风均偏弱,南亚高压和东亚地区急流位置偏南,就会使得南海夏季风影响到华南地区的时间偏晚,反之,则偏早;南海夏季风推进影响到华南地区的时间偏晚(早)年期间,索马里、105°E和130°E越赤道气流输送的水汽通量和西太平洋副热带高压南部的东南气流水汽输送均较弱(强),华南地区前汛期的锋面降水较强(弱)。  相似文献   

11.
The South China Sea warm pool interacts vigorously with the summer monsoon which is active in the region. However, there has not been a definition concerning the former warm pool which is as specific as that for the latter. The seasonal and inter-annual variability of the South China Sea warm pool and its relations to the South China Sea monsoon onset were analyzed using Levitus and NCEP/NCAR OISST data. The results show that, the seasonal variability of the South China Sea warm pool is obvious, which is weak in winter, develops rapidly in spring, becomes strong and extensive in summer and early autumn, and quickly decays from mid-autumn. The South China Sea warm pool is 55 m in thickness in the strongest period and its axis is oriented from southwest to northeast with the main section locating along the western offshore steep slope of northern Kalimantan-Palawan Island. For the warm pools in the South China Sea, west Pacific and Indian Ocean, the oscillation, which is within the same large scale air-sea coupling system, is periodic around 5 years. There are additional oscillations of about 2.5 years and simultaneous inter-annual variations for the latter two warm pools. The intensity of the South China Sea warm pool varies by a lag of about 5 months as compared to the west Pacific one. The result also indicates that the inter-annual variation of the intensity index is closely related with the onset time of the South China Sea monsoon. When the former is persistently warmer (colder) in preceding winter and spring, the monsoon in the South China Sea usually sets in on a later (earlier) date in early summer. The relation is associated with the activity of the high pressure over the sea in early summer. An oceanic background is given for the prediction of the South China Sea summer monsoon, though the mechanism through which the warm pool and eventually the monsoon are affected remains unclear.  相似文献   

12.
Conclusions are divided regarding the role of the variations of thermodynamics in the monsoon activity for the South China Sea region. In this study, primary eigenvectors are studied for the SSTA from East Asia to the tropical eastern Indian Ocean in May. The results show that temperature anomalies that center on Sumatra are closely related with the outbreak of the South China Sea monsoon. When the SST is warmer (cooler) than average year, it is likely that the monsoon set in late (early). It may be caused by the changes in meridional difference in thermodynamics between the Indochina Peninsula and its southern tropical oceans. Studying the temporal and spatial evolution of primary eigenvector distribution of the SSTA in the South China Sea-tropical eastern Indian Ocean from winter to summer, we find that the temperature anomalies that center around Sumatra in late spring and early summer can be traced back to the variations of the SST fields in the South China Sea in the preceding winter. Being well associated with the outbreak of the South China Sea monsoon, the latter is a signifi-cant index for it. The work helps understanding the atmospheric and oceanic background against which the South China Sea monsoon breaks out and behaves.  相似文献   

13.
南亚地区季风与邻近海域海温相互影响的初步研究   总被引:1,自引:1,他引:1  
文中利用简化的海 气耦合模式及低谱方法和多平衡态理论 ,讨论了南亚地区冬夏季风与邻近海域海温季节变化之间的相互影响。结果表明 :(1)冬季风较强时 ,冬季海温较低 ,翌年夏季海温也较低 ;反之亦然。夏季风较强时 ,夏季海温较高 ;反之亦然。夏季风强弱对冬季海温的影响不明显。 (2 )海 气相互作用使南亚冬季风和夏季风都加强。海温经向梯度使冬季风加强 ,而夏季风减弱。  相似文献   

14.
Using the regional climate model RegCM4.4.5, coupled with the land model CLM4.5, we investigated the effects of springtime soil moisture in the Indochina Peninsula on summer precipitation over the South China Sea and its surrounding areas in 1999. Results have indicated that there exists positive correlation between soil moisture and summer precipitation over the western Pacific Ocean and negative correlation between soil moisture and summer precipitation over the eastern Indian Ocean. Summer precipitation in the South China Sea and its surrounding areas responds to springtime soil moisture in the Indochina Peninsula (the northwest region is critical) because general atmospheric circulation is sensitive to the near-surface thermodynamic state. Increased (decreased) soil moisture would result in decreased (increased) local surface temperatures. Latitudinal, small-scale land–sea thermal differences would then result in northeasterly wind (southwesterly wind) anomalies in the upper layer and southwesterly wind (northeasterly wind) anomalies in the lower layer, which strengthen (weaken) monsoon development. As a result, precipitation would enter the Western Pacific region earlier (later), and water vapor over the eastern Indian Ocean would enter the South China Sea earlier (later), causing a precipitation reduction (increase) in the eastern Indian Ocean and increase (reduction) in the Western Pacific.  相似文献   

15.
热带次表层海温与南海夏季风的关系研究   总被引:11,自引:0,他引:11  
分析了南海夏季风强度指数 ,与热带太平洋至印度洋 0~ 4 0 0m海水海温距平场的相关关系 ,发现南海夏季风在 12 0m层的信号最强 ,并且与ENSO循环有关。根据相关场反映的信息对季风强度与海温场分类 ,针对其中 4种情况对 12 0m层海温距平和 85 0hPaU分量进行合成分析 ,发现热带海温异常影响南海夏季风强度 ,季风强弱反过来改变海温分布。最后给出了对季风和ENSO预报有指示意义的海温及风场分布  相似文献   

16.
两种反映东亚夏季风异常的指数的比较研究   总被引:3,自引:3,他引:3  
李峰  孙秀荣等 《气象科学》2001,21(2):178-185
本文利用文献^ [4]提出的一种新的反映东亚夏季风异常的海陆温差指数分析了夏季风异常时我国气温、降水异常以及东亚环流状况,通过分析指出,东亚夏季风偏强,则中国东部夏季气温偏高,江淮干旱,华北多雨;夏季风偏弱则夏季气温偏低,江淮多雨,易涝,华北少雨。通过两种夏季风指数的对比,海陆温差指数能更好地反映东亚夏季环流及天气气候异常。文中还指出,海陆温差指数能更好的反映夏季风异常的原因是它的定义方法更科学,更全面的反映东亚海陆热力差异,既包含了东亚纬向海陆热力差异的影响,又考虑了东亚经向海陆热力差异的因素,并用地表气温和海表温度差来表示海陆热力差,好于以往用海平面气压差来反映海陆热力差。  相似文献   

17.
The 850 hPa wind field data from NCEP and OLR data are used to study the variation behavior of the southwesterly wind and OLR in the South China Sea and their mutual relationship. A monsoon index is putforward that reflects the variation of the southwest monsoon in the region. In the preliminary study or intensity variation and establishment time of the monsoon, it is found that it is of dual peaks on the seasonal scale and the interannual variation of the monsoon intensity and the establishment time are related with sea surface temperature. The summer monsoon is established earlier and with higher intensity in the EI Niño year and vice versa.  相似文献   

18.
The NCEP reanalyzed data, OLR and SST observations are used to study the onset time and the multi-time scales features of the South China Sea (SCS) summer monsoon in 1998 and its interaction with the sea surface temperature and the effect on the precipitation in Guangdong province. It is found that the 1998 SCS summer monsoon set in on May 17 (in the fourth pentad of the month). The year witnesses a weak monsoon with the OLR oscillating at cycles of about 1 month and the Southwest Monsoon of about 1/2 month. The mon-soon over the Bay of Bengal and the cross-equatorial current near 105°are two driving forces for low-frequency variations of the SCS monsoon. The weak activity in the year was resulted from positive anomalies of SST in the equatorial eastern Pacific in early spring and subsequent formation of positive anomalies of SST in the SCS through the Arabian Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号