首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 646 毫秒
1.
The equivalent wavelength ( λ E), at which the aerosol optical depth (AOD) is equal to broadband AOD (BAOD), can change in a wide range from 0.619 μm to 1.575 μm in the usual aerosol conditions. By using the least squares technique and some empirical corrections, a parameterized relationship of λ E with BAOD, Ångström wavelength exponent ( α ), solar zenith angle ( θ 0) and H2O amount is developed. Using this relationship, and based on the strong sensitivity of BAOD on θ 0 when θ 0>70°, the broadband extinction method to derive the spectral AOD and α is further proposed. As shown in comparative simulations to retrieve AOD by the present, Molineaux et al. and Gueymard methods, the present method has the best accuracy in most simulations using Junge, MODTRAN, log‐normal and Deirmendjian aerosol models. A key question of the pyrheliometer method to determine wavelength-dependent AODs is the effect of uncertainty in the aerosol size istribution. It is found that the AOD solution around λ E is less sensitive to the uncertainty. The wavelength exponent α is derived using an assumption of the stable atmospheric turbidity. If the pyrheliometer data from θ 0=85° to 70° are used and the change of the turbidity is ±10%, the error of solution α is usually within ±0.32. If the variation of the turbidity is random, the mean value of a lot of the measurements of α would be very reasonable.  相似文献   

2.
The Saharan Mineral Dust Experiment (SAMUM) was conducted in May/June 2006 in southern Morocco. As part of SAMUM, airborne in situ measurements of the particle size distribution in the diameter range 4 nm < D p < 100 μm were conducted. The aerosol mixing state was determined below D p < 2.5 μm. Furthermore, the vertical structure of the dust layers was investigated with a nadir-looking high spectral resolution lidar (HSRL). The desert dust aerosol exhibited two size regimes of different mixing states: below 0.5 μm, the particles had a non-volatile core and a volatile coating; larger particles above 0.5 μm consisted of non-volatile components and contained light absorbing material. In all cases, particles larger than 10 μm were present, and in 80% of the measurements no particles larger than 40 μm were present. The abundance of large particles showed almost no height dependence. The effective diameter D eff in the dust plumes investigated showed two main ranges: the first range of D eff peaked around 5 μm and the second range of D eff around 8 μm. The two ranges of D eff suggest that it may be inadequate to use one average effective diameter or one parametrization for a typical dust size distribution.  相似文献   

3.
The second Aerosol Characterisation Experiment (ACE‐2) was aimed at investigating the physical, chemical and radiative properties of aerosol and their evolution in the North Atlantic region. In the 2nd "Lagrangian" experiment, an air mass was tracked over a 30‐h period during conditions of extensive stratocumulus cover. Boundary‐layer measurements of the aerosol size distribution obtained with a passive cavity aerosol spectrometer probe (PCASP) during the experiment show a gradual growth in size of particles in the 0.1–0.2 μm diameter mode. Simultaneously, SO2 concentrations were found to decrease sharply from 800 to 20 ppt. The fraction of sulphate in aerosol ionic mass increased from 0.68±0.07 to 0.82±0.09 for small particles (diameter below 1.7 μm) and from 0.21±0.04 to 0.34±0.03 for large particles (diameter above 1.7 μm). The measurements were compared with a multicyclic parcel model of gas phase diffusion into cloud droplets and aqueous phase chemical reactions. The model was able to broadly reproduce the observed transformation in the aerosol spectra and the timescale for the transformation of SO2 to sulphate aerosol. The modelled SO2 concentration in the boundary layer fell to below half its initial value over a 6.5‐h time period due to a combination of the entrainment of cleaner tropospheric air and cloud chemical reactions. NH3 and HCl gas were also found to play an important rôle in cloud processing in the model.  相似文献   

4.
Ambient CO2 concentration, air temperature and relative humidity were measured intermittently for a 3-year period from the floor to the canopy top of a tropical rainforest in Pasoh, Peninsular Malaysia. Mean diurnal CO2 storage flux ( S c; μmol m−2 s−1) and sensible and latent heat storage fluxes ( Q a and Q w; W m−2) ranged from −12.7 to 3.2 μmol m−2 s−1, −15 to 27 W m−2 and −10 to 20 W m−2, respectively. Small differences in diurnal changes were observed in S c and Q a between the driest and wettest periods. Compared with the ranges of mean diurnal CO2 eddy flux (−14.7 to 4.9 μmol m−2 s−1), sensible eddy flux (−12 to 169 W m−2) and latent eddy flux (0 to 250 W m−2), the contribution of CO2 storage flux was especially large. Comparison with summertime data from a temperate Japanese cypress forest suggested a higher contribution of S c in the tropical rainforest, probably mainly due to the difference in nighttime friction velocity at the sites. On the other hand, differences in Q a and Q w were smaller than the difference in S c, probably because of the smaller nighttime sinks/sources of heat and water vapour.  相似文献   

5.
As part of the 2nd A erosol C haracterisation E xperiment (ACE‐2), conducted during summer 1997 in the North Atlantic region between the Canary Islands and Portugal, we measured aerosol optical depths (AOD) at a mid‐tropospheric site, near the top of the volcanic mountain "El Teide"(28°16'N, 16°36' W, 3570 m asl). Our instrument was located at the highest altitude in a network of sunphotometers that extended down to sea level. Clear conditions dominated the ACE‐2 period, and, although suggested by back‐trajectories at 300 hPa, no evidence of anthropogenic pollution was found in our data. Three distinct dust episodes were observed. Vertical soundings and back trajectories suggested mineral dust from the Sahel region as a source. During these episodes, AOD increased an order of magnitude with respect to background conditions (from 0.017 up to 0.19 at λ=500 nm). A shift towards neutrality of the extinction spectral dependence (Ångstrom exponent α down to 0.13), indicated that the coarse mode (particle diameter >2 μm) dominated the aerosol size distribution. For 6 days during the episodes of mineral dust, a monomodal size distribution between 2 and 20 μm diameter was obtained from Mie based size distribution calculations. Estimates, at 500 nm, of the single scattering albedo ω0(0.87–0.96), and the aerosol asymmetry parameter g (0.72–0.73) suggest that the dust layer causes a net cooling forcing at the top of the atmosphere.  相似文献   

6.
气溶胶与云的垂直分布特征是气溶胶间接气候效应关注的重点。基于2018年7—8月华北中部6架次飞机观测数据,研究气溶胶和云滴的垂直和水平分布特征。结果表明:华北中部780~5687 m高度内气溶胶数浓度( Na )平均值为821.36 cm-3,最大量级可达到104 cm-3,云中气溶胶数浓度(Nacc)占总颗粒浓度的80%以上,表明细颗粒占大多数,气溶胶粒子算术平均直径( Dm )平均值为0.12~0.52 μm;大气层结对气溶胶垂直分布影响较大,逆温阻挡气溶胶垂直输送,高空(高度2000 m以上) Dm 的垂直分布受到相对湿度影响较大; Na 和 Dm 在垂直方向波动较大,水平方向波动较小;低层云中云滴数浓度(Nc)较大、液态水含量(L)较小,而中层和高层云中Nc较小、L较大,Nc和云滴有效半径(Re)的概率密度函数均为双峰型分布,L的概率密度函数为单峰型分布;气溶胶数浓度谱基本呈现多峰型分布,而云滴数浓度谱多呈现单峰型分布。  相似文献   

7.
During the 1st Lagrangian experiment of the North Atlantic Regional Aerosol Characterisation Experiment (ACE‐2), a parcel of air was tagged by releasing a smart, constant level balloon into it from the Research Vessel Vodyanitskiy . The Meteorological Research Flight's C‐130 aircraft then followed this parcel over a period of 30 h characterising the marine boundary layer (MBL), the cloud and the physical and chemical aerosol evolution. The air mass had originated over the northern North Atlantic and thus was clean and had low aerosol concentrations. At the beginning of the experiment the MBL was over 1500 m deep and made up of a surface mixed layer (SML) underlying a layer containing cloud beneath a subsidence inversion. Subsidence in the free troposphere caused the depth of the MBL to almost halve during the experiment and, after 26 h, the MBL became well mixed throughout its whole depth. Salt particle mass in the MBL increased as the surface wind speed increased from 8 m s−1 to 16 m s−1 and the accumulation mode (0.1μm to 3.0 μm) aerosol concentrations quadrupled from 50 cm−3 to 200 cm−3. However, at the same time the total condensation nuclei (>3 nm) decreased from over 1000 cm−3 to 750 cm−3. The changes in the accumulation mode aerosol concentrations had a significant effect on the observed cloud microphysics. Observational evidence suggests that the important processes in controlling the Aitken mode concentration which, dominated the total CN concentration, included, scavenging of interstitial aerosol by cloud droplets, enhanced coagulation of Aitken mode aerosol and accumulation mode aerosol due to the increased sea salt aerosol surface area, and dilution of the MBL by free tropospheric air.  相似文献   

8.
Aerosol optical properties and direct radiative effects on surface irradiance were examined using seven years(2006–2012)of Cimel sunphotometer data collected at Panyu—the main atmospheric composition monitoring station in the Pearl River Delta(PRD) region of China. During the dry season(October to February), mean values of the aerosol optical depth(AOD)at 550 nm, the ?ngstr?m exponent, and the single scattering albedo at 440 nm(SSA) were 0.54, 1.33 and 0.87, respectively.About 90% of aerosols were dominated by fine-mode strongly absorbing particles. The size distribution was bimodal, with fine-mode particles dominating. The fine mode showed a peak at a radius of 0.12 μm in February and October(~0.10μm~3μm~(-2)). The mean diurnal shortwave direct radiative forcing at the surface, inside the atmosphere(FATM), and at the top of the atmosphere, was-33.4 ± 7.0, 26.1 ± 5.6 and-7.3 ± 2.7 W m~(-2), respectively. The corresponding mean values of aerosol direct shortwave radiative forcing per AOD were-60.0 ± 7.8, 47.3 ± 8.3 and-12.8 ± 3.1 W m~(-2), respectively. Moreover,during the study period, FATMshowed a significant decreasing trend(p 0.01) and SSA increased from 0.87 in 2006 to 0.91 in 2012, suggesting a decreasing trend of absorbing particles being released into the atmosphere. Optical properties and radiative impacts of the absorbing particles can be used to improve the accuracy of inversion algorithms for satellite-based aerosol retrievals in the PRD region and to better constrain the climate effect of aerosols in climate models.  相似文献   

9.
As a component of the Canadian Arctic Haze Study, held coincident with the second Arctic Gas and Aerosol Sampling Program (AGASP II), vertical profiles of aerosol size distribution (0.17 m), light scattering parameters and cloud particle concentrations were obtained with an instrumented aircraft and ground-based lidar system during April 1986 at Alert. Northwest Territories. Average aerosol number concentrations range from about 200 cm–3 over the Arctic ice cap to about 100 cm–3 at 6 km. The aerosol size spectrum is virtually free of giant or coarse aerosol particles, and does not vary significantly with altitude. Most of the aerosol volume is concentrated in the 0.17–0.50 m size range, and the aerosol number concentration is found to be a good surrogate for the SO4 = concentration of the Arctic haze aerosol. Comparison of the aircraft and lidar data show that, when iced crystal scattering is excluded, the aerosol light scattering coefficient and the lidar backscattering coefficient are proportional to the Arctic haze aerosol concentration. Ratios of scattering to backscattering, scattering to aerosol number concentration, and backscattering to aerosol number concentration are 15.3 steradians, 1.1×10–13 m2, and 4.8×10–15 m2 sr–1, respectively. Aerosol scattering coefficients calculated from the measured size distributions using Mie scattering agree well with measured values. The calculations indicate the aerosol absorption optical depth over 6 km to range between 0.011 and 0.018. The presence of small numbers of ice crystals (10–20 crystals 1–1 measured) increased light scattering by over a factor of ten.  相似文献   

10.
Lidar Measurements of Aerosols in the Tropical Atmosphere   总被引:3,自引:0,他引:3  
Measurements of atmospheric aerosols and trace gases using the Laser radar (lidar) techniques, have been in pro-gress since 1985 at the Indian Institute of Tropical Meteorology, Pune (18o32’N, 73o51’E, 559 m AMSL), India. These observations carried out during nighttime in the lower atmosphere (up to 5.5 km AGL), employing an Argon ion / Helium-Neon lidar provided information on the nature, size, concentration and other characteristics of the constituents present in the tropical atmosphere. The time-height variations in aerosol concentration and associated layer structure exhibit marked differences between the post-sunset and pre-sunrise periods besides their seasonal va-riation with maximum concentration during pre-monsoon / winter and minimum concentration during monsoon months. These observations also revealed the influence of the terrain of the experimental site and some selected me-teorological parameters on the aerosol vertical distributions. The special observations of aerosol vertical profiles ob-tained in the nighttime atmospheric boundary layer during October 1986 through September 1989 showed that the most probable occurrence of mixing depth lies between 450 and 550 m, and the multiple stably stratified aerosol lay-ers present above the mixing depth with maximum frequency of occurrence at around 750 m. This information on nighttime mixing depth / stable layer derived from lidar aerosol observations showed good agreement with the height of the ground-based shear layer / elevated layer observed by the simultaneously operated sodar at the lidar site.  相似文献   

11.
《Atmospheric Research》2009,91(2-4):211-222
The microphysical structure, chemical composition and prehistory of aerosol are related to the aerosol optical properties and radiative effect in the UV spectral range. The aim of this work is the statistical mapping of typical aerosol scenarios and adjustment of regional aerosol parameters. The investigation is based on the in situ measurements in Preila (55.55° N, 21.00° E), Lithuania, and the AERONET data from the Gustav Dalen Tower (58 N, 17 E), Sweden.Clustering of multiple characteristics enabled to distinguish three aerosol types for clear-sky periods: 1) clean maritime–continental aerosol; 2) moderately polluted maritime–continental aerosol; 3) polluted continental aerosol. Differences between these types are due to significant differences in aerosol number and volume concentration, effective radius of volume distribution, content of SO4 ions and Black Carbon, as well as different vertical profiles of atmospheric relative humidity. The UV extinction, aerosol optical depth (AOD) and the Ångstrom coefficient α increased with the increasing pollution. The value α = 1.96 was observed in the polluted continental aerosol that has passed over central and eastern Europe and southern Russia. Reduction of the clear-sky UV index against the aerosol-free atmosphere was of 4.5%, 27% and 41% for the aerosol types 1, 2 and 3, respectively.  相似文献   

12.
The vertical distribution of single scattering albedos (SSAs) of Asian dust mixed with pollutants was derived using the multi-wavelength Raman lidar observation system at Gwangju (35.10°N,126.53°E).Vertical profiles of both backscatter and extinction coefficients for dust and non-dust aerosols were extracted from a mixed Asian dust plume using the depolarization ratio from lidar observations.Vertical profiles of backscatter and extinction coefficients of non-dust particles were input into an inversion algorithm to retrieve the SSAs of non-dust aerosols.Atmospheric aerosol layers at different heights had different light-absorbing characteristics.The SSAs of non-dust particles at each height varied with aerosol type,which was either urban/industrial pollutants from China transported over long distances at high altitude,or regional/local pollutants from the Korean peninsula.Taking advantage of independent profiles of SSAs of non-dust particles,vertical profiles of SSAs of Asian dust mixed with pollutants were estimated for the first time,with a new approach suggested in this study using an empirical determination of the SSA of pure dust.The SSAs of the Asian dust-pollutants mixture within the planetary boundary layer (PBL) were in the range 0.88-0.91,while the values above the PBL were in the range 0.76-0.87,with a very low mean value of 0.76 ± 0.05.The total mixed dust plume SSAs in each aerosol layer were integrated over height for comparison with results from the Aerosol Robotics Network (AERONET) measurements.Values of SSA retrieved from lidar observations of 0.92 ± 0.01 were in good agreement with the results from AERONET measurements.  相似文献   

13.
Two airborne campaigns were carried out to measure the tropospheric concentrations and variability of CO2, CO and O3 over Siberia. In order to quantify the influence of remote and regional natural and anthropogenic sources, we analysed a total of 52 vertical profiles of these species collected in April and September 2006, every ∼200 km and up to 7 km altitude. CO2 and CO concentrations were high in April 2006 (respectively 385–390 ppm CO2 and 160–200 ppb CO) compared to background values. CO concentrations up to 220 ppb were recorded above 3.5 km over eastern Siberia, with enhancements in 500–1000 m thick layers. The presence of CO enriched air masses resulted from a quick frontal uplift of a polluted air mass exposed to northern China anthropogenic emissions and to fire emissions in northern Mongolia. A dominant Asian origin for CO above 4 km (71.0%) contrasted with a dominant European origin below this altitude (70.9%) was deduced both from a transport model analysis, and from the contrasted ΔCO/ΔCO2 ratio vertical distribution. In September 2006, a significant O3 depletion (∼–30 ppb) was repeatedly observed in the boundary layer, as diagnosed from virtual potential temperature profiles and CO2 gradients, compared to the free troposphere aloft, suggestive of a strong O3 deposition over Siberian forests.  相似文献   

14.
Using 5 yr (December 2000–November 2005) of satellite data from the clouds and the earths radiant energy system (CERES) and moderate resolution imaging spectroradiometer (MODIS), we examine the instantaneous short-wave radiative efficiency ( Eτ ) of aerosols during the morning Terra satellite overpass time over the global oceans (60°N–60°S). We calculate Eτ using two commonly used methods. The first method uses the MODIS aerosol optical thickness (AOT) at 0.55 μm with radiative transfer calculations, whereas the second method utilizes the same AOT values along with a new generation of aerosol angular distribution models to convert the CERES-measured broad-band radiances to fluxes. Over the 5 yr, the global mean instantaneous Eτ between the methods is remarkably consistent and within 5 W m−2τ−1 with a mean value of –70 W m−2τ−1. The largest differences between the methods occur in high-latitude regions, primarily in the Southern Hemisphere, where AOT is low. In dust dominated regions, there is an excellent agreement between the methods with differences of <3 W m−2τ−1. These differences are largely due to assumptions in aerosol models and definition of clear sky backgrounds. Independent assessments of aerosol radiative effects from different satellite sensors and methods are extremely valuable and should be used to verify numerical modelling simulations.  相似文献   

15.
In this study, we present a relationship between total accumulation mode aerosol mass concentrations and cloud droplet number concentrations ( N d). The fundamental aim with the present method is to arrive at a physically‐based conversion algorithm in which each step in the conversion is based on real physical processes that occur and can be observed in the atmosphere, and in which all of the fields involved can be observed or modeled. In the last conversion (the critical part in the algorithm), we use measurements of the size distributions of cloud droplet residual particles for different pollution conditions. This conversion assumes that the size of the residual particles can be described with a lognormal distribution function and uses the Hatch–Choate relationship to convert between residual volume and number. The relatively sparse data set with which we have developed the present algorithm results in a course classification of the aerosol mass field. Consequently, uncertainties need to be recognized when using the algorithm in its present form in model calculations. The algorithm has been used on data from 15 days and the agreement between calculated and observed N d values is, with one exception, within a factor of 2 and for many of these cases also much better than a factor of 2. In addition to the results of the algorithm itself, we also present a least‐squares fit to the predicted N d values. To improve the algorithm in the longer‐term requires more data of scavenging fractions, particle chemical composition and density, and residual particle size distributions as a function of aerosol mass loading and cloud type.  相似文献   

16.
During the ACE‐2 field campaign in the summer of 1997 an intensive, ground‐based physical and chemical characterisation of the clean marine and continentally polluted aerosol was performed at Sagres, Portugal. Number size distributions of the dry aerosol in the size range 3–10 000 nm were continuously measured using DMPS and APS systems. Impactor samples were regularly taken at 60% relative humidity (RH) to obtain mass size distributions by weighing the impactor foils, and to derive a chemical mass balance by ion and carbon analysis. Hygroscopic growth factors of the metastable aerosol at 60% RH were determined to estimate the number size distribution at a relative humidity of 60%. A size segregated 3‐way mass closure study was performed in this investigation for the first time. Mass size distributions at 60% RH derived from number size distribution measurements and impactors samples (weighing and chemical analysis) are compared. A good agreement was found for the comparison of total gravimetrically‐determined mass with both number distribution‐derived (slope=1.23/1.09; R2>0.97; depending on the parameters humidity growth and density) and chemical mass concentration (slope=1.02; R2= 0.79) for particles smaller than 3 μm in diameter. Except for the smallest impactor size range relatively good correlations (slope=0.86–1.42) with small deviations (R2=0.76–0.98) for the different size fractions were found. Since uncertainties in each of the 3 methods are about 20% the observed differences in the size‐segregated mass fractions can be explained by the measurement uncertainties. However, the number distribution‐derived mass is mostly higher than the chemically and gravimetrically determined mass, which can be explained by sampling losses of the impactor, but as well with measurement uncertainties as, e.g., the sizing of the DMPS/APS.  相似文献   

17.
Concentrations of organic carbon (OC), elemental carbon (EC), selected trace elements and water-soluble (WS) ions were determined for samples collected from August 2004 to February 2005 to assess the aerosol background at two remote sites in China. The OC and EC concentrations in PM10 from near the Tibetan Plateau at Zhuzhang (ZUZ) were comparable with other background sites, averaging 3.1 and 0.34 μg m−3, respectively, with no pronounced seasonality. At Akdala (AKD) on northern margin of the Zhungaer Basin, the average concentrations were similar (mean OC = 2.9 μg m−3 and EC = 0.35 μg m−3), but the concentrations were higher in winter. The aerosol mass at both sites was dominated by OC and SO42−, but a stronger contribution from soil dust was observed at AKD. At ZUZ, NO3 showed a unique weather-related fluctuation in PM10 with a periodicity of ∼1 week. Anthropogenic sources in the Sichuan Basin and southeastern Yunnan Province evidently influence ZUZ in summer and autumn while pollutants from Russia and the China–Mongolia border affect AKD nearly all year. The identification of these upwind sources demonstrates that transboundary transport needs to be taken into account when assessing air quality in remote parts of China.  相似文献   

18.
利用2011年和2013年夏秋季在青藏高原中东部开展的11架次气溶胶特征飞机观测数据,分析气溶胶数浓度、数谱及核化相关特征。结果表明:受天气系统、地形和地表影响,观测区内气溶胶数浓度(Na)和体积直径(Dv)的垂直和水平分布差异较大,Na呈西北高、东南低,Dv低层大、高层小,局地中高层有沙尘。格尔木盛行东风时,云降水对低层气溶胶有清除作用,Na和Dv明显降低,6.2 km高度和7.2~7.4 km高度的中高空受高原大风或对流影响形成沙尘;盛行西风时,低层Dv以0.5~0.8 μm为主,随高度升高和风速增大Na升高,Dv变幅较小,6.2 km高度也有沙尘;不同天气系统影响下6.5 km高度以上均输入亚微米颗粒,Na达5×103 cm-3,8.0 km高度盛行东风时比西风时Na更高,Dv更小,谱垂直分布也有以上特征,整层输入以偏北或偏西路径为主。不同过饱和度测量云凝结核数浓度(Nccn)表明,除格尔木6.0 km高度以下核化率(Nccn/Na)在21%~47%外,其他观测区平均核化率介于1%~16%,6.0~8.5 km高度的核化率总体偏低;当Na增加时核化率明显下降,且过饱和度1%~2%,-15~-5℃层或粒径1~3 μm时的核化率相对偏高。  相似文献   

19.
This study analyzes and compares aerosol properties and meteorological conditions during two air pollution episodes in 19–22 (E1) and 25–26 (E2) December 2016 in Northeast China. The visibility, particulate matter (PM) mass concentration, and surface meteorological observations were examined, together with the planetary boundary layer (PBL) properties and vertical profiles of aerosol extinction coefficient and volume depolarization ratio that were measured by a ground-based lidar in Shenyang of Liaoning Province, China during December 2016–January 2017. Results suggest that the low PBL height led to poor pollution dilution in E1, while the high PBL accompanied by low visibility in E2 might have been due to cross-regional and vertical air transmission. The PM mass concentration decreased as the PBL height increased in E1 while these two variables were positively correlated in E2. The enhanced winds in E2 diffused the pollutants and contributed largely to the aerosol transport. Strong temperature inversion in E1 resulted in increased PM2.5 and PM10 concentrations, and the winds in E2 favoured the southwesterly transport of aerosols from the North China Plain into the region surrounding Shenyang. The large extinction coefficient was partially attributed to the local pollution under the low PBL with high ground-surface PM mass concentrations in E1, whereas the cross-regional transport of aerosols within a high PBL and the low PM mass concentration near the ground in E2 were associated with severe aerosol extinction at high altitudes. These results may facilitate better understanding of the vertical distribution of aerosol properties during winter pollution events in Northeast China.  相似文献   

20.
To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed in this study. The results demonstrated that the vertical distribution of the aerosol number concentration(N_a) was similar to that of the clean rural continent. The average aerosol effective diameter(D_e) was maintained at approximately 0.4 μm at all levels. The data obtained during cloud penetrations showed that there was a progressive increase in the cloud droplet concentration(N_c) and liquid water content(LWC) from outside to inside the clouds, while the Nawas negatively related to the Ncand LWC at the same height. The fluctuation of the N_a, Ncand LWC during cloud penetration was more obvious under polluted conditions(Type 1) than under clean conditions(Type 2). Moreover, the wet scavenging of cloud droplets had a significant impact on the accumulation mode of aerosols, especially on particles with diameters less than 0.4 μm. The minimum wet scavenging coefficient within the cloud was close to 0.02 under Type 1 conditions, while it increased to 0.1 under Type 2 conditions,which proved that the cloud wet scavenging effect under Type 1 conditions was stronger than that under Type 2 conditions.Additionally, cloud droplet spectra under Type 1 conditions were narrower, and their horizontal distributions were more homogeneous than those under Type 2 conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号