首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
开展交通领域大气污染物与温室气体协同减排研究对于实现能源、环境和气候变化综合管理具有重要意义。文中以我国交通部门污染物与温室气体协同治理为切入点,开展道路、铁路、水运、航空和管道运输等各子部门未来需求预测,并运用长期能源可替代规划系统模型(LEAP),通过构建基准情景、污染减排情景、绿色低碳情景和强化低碳情景,模拟分析我国交通领域能源需求、污染物及碳排放趋势。结果表明,强化低碳情景下,我国交通部门能源消费将在2037年达峰,CO2排放将在2035年达峰;绿色低碳情景下,CO2排放将在2040年达峰;淘汰老旧汽车、“公转铁”“公转水”等政策性措施将有效减少NOx、PM2.5等污染物排放,发展氢燃料、生物航油等技术性措施将进一步减少污染物排放;要实现交通领域绿色低碳发展,需分别对客运、货运交通从节能降碳与协同减排两方面实施相关措施,综合施策是完成能源消费与碳排放达峰目标的重要保证。  相似文献   

2.
在中国经济步入新常态之际,为了研究城镇化背景下的长期碳排放趋势,构建了人口变动与能源系统互动的综合分析框架与社会经济-能源系统模型。结果显示,从2014年至2050年,预计有3亿人口从农村流向城市,并呈现从中小型城市逐步向大型和特大型城市汇集的趋势。人口流动趋势与人民生活质量改善结合,推动中国基础设施建设、工业产品生产和能源服务需求增长。基准情景下,2050年中国一次能源消费总量达到84亿tce,能源相关CO2排放达到176亿t,比2013年增长83%;而在低碳转型情景下,通过技术创新,2050年中国一次能源消费需求可以控制在61亿tce左右,CO2排放在2020—2025年间达峰,2050年比基准情景降低78%。低碳转型过程中,非化石能源电力和能效技术的减排潜力最大,工业和电力部门率先在2020年达峰,建筑和交通 (①按照国际通行的能源系统部门划分标准和能耗概念,工业、建筑、交通均属于终端能源消费部门,其中建筑部门能耗指建筑运行能耗,而非建筑建造过程中的能耗;交通部门能耗指所有交通活动能耗,既包括交通运输业营运类运输工具的交通能耗,也包括私人、公务非营运类运输工具的交通能耗 [1]。)将在2030年左右达峰。实现低碳转型所需新增固定投资占GDP的1.5%,不会给国民经济带来重大负担。中国实施新型城镇化战略具有技术和经济可行性。  相似文献   

3.
交通部门在中长期具有很高的碳排放增长潜力,对我国低碳转型有重要影响。构建自下而上的能源系统模型PECE-LIU2017及其交通模块,设置未来交通发展的基准、NDC和低碳3个情景,深入分析交通需求背后的驱动因子及发展趋势,制定交通部门中长期低碳发展路径。结果显示,随着经济发展和人均收入水平提高,未来我国交通需求将持续增长。NDC情景下,交通部门有望在2038年左右达峰。在低碳情景下,我国交通部门2050年CO2排放将从基准情景30亿t降低为6亿t,并在2030年左右达峰,为我国中长期低碳发展目标贡献17.5%的累计减排量。2016—2050年低碳交通固定投资需求为15.7万亿元人民币,占我国中长期低碳投资总需求的53%。通过提高燃油经济性、推广新能源汽车以及发挥城市公共出行最大潜力,交通部门能够以技术可行的方式实现低碳转型,并对我国长期低碳发展战略做出重要贡献。  相似文献   

4.
推动电力行业低碳发展是中国有效控制CO2排放和推动尽早达峰的重要抓手。在分别利用学习曲线工具和自下而上技术核算方式分析风电、光伏两类主要的可再生电力和其他各类电源发展趋势的基础上,综合评估了既有政策和强化政策条件下2035年前中国电力行业能源活动碳排放变化趋势。研究发现,既有政策情景下电力行业碳排放在2030年左右达到峰值,届时非化石能源在发电量中比重为44%,而通过强化推动能源绿色低碳发展的相关政策,2025年前即可达到电力行业碳排放峰值,2030年非化石电力在发电量中比重可以提升至51%,其中可再生电力加速发展将分别贡献2025、2030和2035年当年减排量(相对于既有政策情景)的45%、54%和62%。尽管从保障电力稳定安全供应角度,煤电装机仍有一定增长空间,但考虑到电力行业绿色低碳和可持续发展的长期需求,仍应加强对煤电装机的有效控制,“十四五”期间努力将煤电装机控制在11亿kW左右的水平。  相似文献   

5.
中国交通二氧化碳排放研究   总被引:18,自引:0,他引:18       下载免费PDF全文
评述了中国全国及区域水平交通领域CO2排放研究的不足和困难,提出了道路运输、铁路运输燃油消费量的估算方法、参数及区域分配方法,并根据文献研究和公开资料进行校对,采用中国交通领域CO2排放因子,计算中国2007年全国和各省道路运输、铁路运输、航空运输和水路运输的CO2排放。中国2007年交通领域CO2排放量为4.36亿t,占2007年全国能源利用CO2排放的7%,低于2007年全球交通部门23%的排放比例。中国道路运输CO2排放占交通领域绝对主体,为86.32%。  相似文献   

6.
对选取的36个中国典型大城市,分析2005—2019年直接CO2排放与总CO2排放特征,构建基于条件判断函数和Mann-Kendall趋势分析检验法的城市CO2排放达峰判断模型,判断36个城市排放是否达峰,并对达峰城市特征和处于不同排放阶段的典例城市进行深入分析。结果表明,36个典型大城市中,昆明、深圳与武汉3个城市已达峰,8个城市处于平台期,其余25个城市综合来看尚未达峰。建议未达峰城市根据自身特点借鉴已达峰城市经验,调整产业结构与能源结构,降低碳排放强度,加强碳排放与经济增长的脱钩,尽早实现达峰。  相似文献   

7.
目前,交通行业已成为中国局地大气污染物和温室气体的重要排放来源之一,而且随着交通运输规模的不断扩大,与工业和生活排放相比,交通排放贡献占比呈相对增加趋势。文中构建了“CGE-CIMS联合模型”,对中国交通行业实施环境经济政策的局地大气污染物和CO2协同控制效应进行量化评估。结果显示,与BAU情景相比,环境税、碳税、成品油消费税以及政策组合情景均促进了交通行业的电力消费替代汽油、柴油等石油制品,即使考虑政策实施后电力消费增加导致的间接排放,各情景下综合大气污染物协同减排量(ICER)仍为正值,即各项环境经济政策均具有较好的协同控制局地大气污染物和CO2的效果。本文最后提出了包括聚焦高排放交通工具,以补贴低碳交通方式配合绿色税制改革,以及电力行业低碳发展等交通行业实施环境经济政策的配套措施建议。  相似文献   

8.
根据沈阳市72家供暖企业调研数据,利用IPCC温室气体清单方法核算供热企业碳排放量。结果表明:在151 d供暖期内,不同热源形式碳排放强度差异显著,小型分散锅炉房平均碳排放强度为58.25 kg CO2/m2,区域锅炉房为53.42 kg CO2/m2,热电联产为49.87 kg CO2/m2,组合式热源(燃煤锅炉+热泵)为34.49 kg CO2/m2,清洁能源为21.58 kg CO2/m2。基于不同热源形式碳排放强度和清洁发展机制推荐的基准线确定方法,设置了实际排放、历史排放、单体容量40 t/h以上区域锅炉房排放、热电联产排放、技术水平领先前30%和40%企业排放6种基准线情景。通过各个碳排放基准线值比较,结合沈阳市的经济技术发展水平和未来碳交易市场计划,建议选择技术水平领先前40%企业排放情景下的碳排放基准值46.57 kg CO2/m2作为沈阳市2013年供暖行业的碳排放基准线。以此基准线为起始基准线,对2014-2020年的碳排放基准线进行了预测。  相似文献   

9.
全球到2100年实现将温度上升控制在和工业化前相比2℃以内,已经成为一个政策目标。本文结合中国能源环境政策综合评估(IPAC)模型的近期研究结果,分析了实现全球2℃温升目标下我国能源活动的CO2排放情景,并对其关键因素进行研究,得到实现这些情景的可行性。研究表明,考虑到我国经济转型、能源效率提升、可再生能源和核电的发展、碳捕获和碳封存技术,以及低碳生活方式的转变,我国能源活动的CO2排放是可以在2025年之前,甚至更早(如在2020—2022年)实现排放峰值,峰值总量在90亿t左右,之后开始下降,这和我国在全球2℃温升目标情景中给予的碳空间相一致,支持我国未来在全球温室气体减排中的国际合作路径,以及国内低碳发展政策的制定。实现这样的减排路径,需要在既有的环境和能源政策之外制定针对气候变化减缓的明确和长期的政策,如碳定价。  相似文献   

10.
本文应用LMDI分解分析方法对中国2000—2014年生产部门CO2排放量变化做因素分解分析,同时结合STIRPAT模型建立CO2预测模型,分析2017—2030年中国的CO2排放情况。结果表明,经济增长和能耗强度变化对中国CO2排放量变化的影响分别为114.9%、-22.6%。基于预测模型变量构建未来情景,设定正常路线、减排路线和激进路线3条路线,共包含9种情景。正常路线的低碳情景和减排路线的基准情景下可实现2025年达到CO2排放峰值,减排路线的低碳情景可实现2020年达到排放峰值。  相似文献   

11.
以高能耗为主要特征的工业部门是大气污染物和温室气体的重要排放源。为推动协同管控,文中结合生态环境部在重庆市组织开展的试点工作,对工业企业NOx污染治理协同控制温室气体的效应进行了量化分析。结果表明,以末端治理为手段的NOx治理措施协同控制温室气体的效果为负,即工业企业去除1 t NOx会直接或间接增加CO2排放1.811 t,采用SNCR技术且选择氨水等非尿素类脱硝剂有助于减少工艺过程和电力间接CO2排放。2017年工业企业NOx减排导致CO2排放增加52.57万t,占重庆市能源活动CO2排放总量的0.3%。电力碳排放因子降低1%和降低5%情景下,NOx减排的总协同度将分别提高0.9%和4.3%,尤以水泥制造业的协同效果改善最明显。减少尿素使用和提高电力低碳化程度有助于降低工业领域NOx减排对CO2排放的负协同效果。  相似文献   

12.
通过系统地比较各主要国家CO2排放总量、人均排放量及排放强度等,总结发达国家碳排放特点,分析中国碳排放历程及各阶段出现的原因。比较分析发达国家和发展中国家应对气候变化的相关政策,结合中外碳排放特征,总结中国碳排放及应对气候变化面临的主要问题。提出中国新常态下应对气候变化的建议,包括在国际层面上,积极参与气候谈判,推动国际社会低碳化发展,在中国层面上,切实改变经济增长方式,引领经济低碳发展等。  相似文献   

13.
航空运输是交通领域CO2排放增长最快速的部门。文中选择中国民航使用频率较高的超大型、大型、中型和小型飞机的典型机型,基于不同飞机在起飞、爬升、巡航、接近和滑行阶段引擎油耗速率、运行时间和油耗量的变化,计算航空飞机CO2排放因子。同时结合各机型碳排放因子、额定载客量与客座率评估旅客搭乘不同飞机时的人均CO2排放量(即单位客运周转量CO2排放因子)。结果显示,超大型飞机、大型飞机、中型飞机和小型飞机在其航程区间内的平均CO2排放因子分别为49.8、31.7、16.2和8.5 kg CO2/km;满载条件下单位客运周转量CO2排放因子均值分别为102.6、95.2、81.7和112.4 g CO2/(人∙km)。起飞和爬升阶段引擎油耗速率约为巡航阶段油耗速率的2.6~3.4倍和2.0~2.8倍,飞机CO2排放因子随飞行里程的提高而降低。航空运输是高碳客运方式,相同里程条件下,航空单位客运周转量CO2排放因子显著高于高铁、道路机动车等其他客运方式。提升燃油效率、减少短途航运、合理安排航线以提高客座率并减少中途转机是降低航空碳排放量的有效途径。  相似文献   

14.
1.5℃温升目标下中国碳排放路径研究   总被引:1,自引:0,他引:1  
《巴黎协定》提出1.5℃目标以及中国2060年前达到碳中和的目标背景下,为研究实现1.5℃目标的技术路径,构建了综合性的能源-经济-环境系统模型,研究中国在2℃情景基础上实现1.5℃目标的额外减排要求、部门贡献和关键减排措施。结果显示,1.5℃情景要求到2050年CO2排放量减少到6亿t。一次能源消费总量2045年达峰,峰值控制在68亿tce。能源结构实现大幅度优化,非化石能源占比达到67%,煤炭比例下降到16%。与2℃情景相比,2015—2050年1.5℃情景需要额外累积减排380亿t CO2,额外减排量主要来自电力部门。在减排措施方面,额外减排主要来自新型低碳能源与生物质能结合碳捕集与封存(BECCS)技术。不同部门的主要减排措施存在差异,电力部门更多依赖BECCS等减排技术以实现较大幅度负排放,是实现1.5℃目标路径的关键因素。工业部门主要依赖能效提高。建筑和交通部门则更多依赖终端能源结构调整,氢能在其中发挥了较大作用。  相似文献   

15.
能源转型是推动“双碳”目标实现的关键举措,文中构建能源转型综合评价模型并以粤港澳大湾区为例,设计了基准情景、转型情景和深度转型情景,评估不同能源转型路径对大湾区经济产业、环境正外部性和健康效益的影响。结果显示,相比基准情景,能源清洁替代促进转型情景和深度转型情景的碳排放分别在2025年和2022年提前达峰,到2035年碳排放分别下降了22.0%和35.9%,转型情景电力结构优化促使碳排放减少了0.59亿t,占全社会减排量的53%;投资结构优化和产业转型升级推动转型情景2035年GDP相比基准情景增长0.68%,而深度转型情景碳限制过于严格,造成GDP损失0.34%;能源转型对环境产生正外部性,2035年转型情景SO2、NOX、PM2.5、PM10排放分别下降35%、20%、36%、37%,带来155.6亿元的环境健康效益,约占大湾区GDP的0.05%。综合考虑能源转型对全社会的经济、环境、健康影响,转型情景的经济性较好,2035年相对基准情景增加了0.73%的经济效益。粤港澳大湾区应合理设置碳减排目标,稳步推进能源转型,实现绿色能源转型和能源、经济、环境的协调发展。  相似文献   

16.
2012年,中国房间空气调节器(空调器)保有量约为3.57亿台,依据抽样调查数据计算得到保有量装机容量,采用各省市夏季平均温度估算超过26℃的时间作为运行时间计算得出年电力消耗约3.28×1011 kW?h,折合碳排放约为318 Mt CO2当量。由于空调器国内需求量将进一步增长,预计到2030年保有量将达到当前的4~5倍。在电力结构不变情景下,空调器总体能效提高1倍,2030年空调器电力消耗产生的温室气体排放约为603 Mt CO2当量。假设空调器总体能效提高1倍、高能效产品消费比例进一步提高并伴随中国能源结构调整,如水电、核电、太阳能等低碳能源比例不断提高,在满足中国空调器需求的前提下,2030年中国空调器电力消耗产生的温室气体排放可以争取控制在当前的水平。  相似文献   

17.
基于各国提交的165份国家自主贡献文件,以其中提出的减排目标为基准,尽可能充分地考虑了减排目标的范围不确定性、不同经济情景带来的碳强度减排目标不确定性、减排气体种类边界差异、碳排放达峰约束等因素,并通过蒙特卡洛模拟的方法对全球、各区域和主要经济体的温室气体排放总量、不确定度及其来源进行了定量分析。结果表明,到2030年全球温室气体排放总量将达到62.69 Gt CO2当量,其90%信度的置信区间为53.17~74.26 Gt CO2当量;由于未来经济总量预期不确定对排放量的影响最显著,因此,不同地区之间不确定性来源差异较大。同时,基于到2050年排放总量比2010年下降40%~70%的2℃目标排放情景,2030—2050年全球温室气体排放年均需要下降5.0% %。为了尽可能减小全球温室气体排放预期目标的不确定性和继续实现2℃目标,各国在进行自主贡献文件更新时进一步提出统计边界更为明确和统一且更有雄心的减排目标将是第一次全球盘点继续解决的重点问题。  相似文献   

18.
碳普惠制是一种以城市居民为主体的温室气体自愿减排机制。将乘坐地铁出行作为低碳行为纳入碳普惠制,是建设全民参与型低碳社会的重要探索。本文提出了替代法和均值法两种市民乘坐地铁出行减碳量的核算方法,并以广州市为例,计算了2015年广州市民乘坐地铁出行的减碳量。结果显示:替代法下广州市民乘坐地铁出行的减碳量约为0.5419 kg CO2/人次,均值法下约为0.5155 kg CO2/人次,如果按2015年广州市地铁系统的客运量计算,替代法和均值法下全市地铁系统的年减碳量分别约为130万t CO2和124万t CO2。其中,替代法主要参考已有的CCER方法学设计,具有一定的理论基础,但其替代出行模式的确定受被调查对象的主观影响较大,而均值法以城市现有的机动化出行模式为基准线,较少受到人为因素的干扰,均值法被认为更适合于计算碳普惠制下市民乘坐地铁出行的碳减排量。  相似文献   

19.
基于不同共享社会经济路径(Shared Socioeconomic Pathways, SSPs)形成的8组最新的未来可能情景(SSPx-y情景),被用于第六次耦合模式比较计划(CMIP6),以据此来预估未来气候变化的可能幅度和趋势。本文主要对比分析了8组SSPx-y新情景中主要温室气体和气溶胶排放数据的基准年排放强度分布、未来排放强度的时空变化、以及在6个典型区域排放强度的逐年变化等特征。结果表明:二氧化碳(CO2)、甲烷(CH4)、黑碳(BC)、二氧化硫(SO2)在基准年的排放强度高值区都位于东亚和南亚。相比于基准年,2100年CO2和CH4在高和低辐射强迫情景下表现出的排放强度变化有显著差异。此外,所有情景下2100年的BC和SO2全球平均排放强度都弱于基准年的排放强度。在时间变化上,随着生物质能碳捕获与封存技术的不断进步,所有地区在4组不超过3.4 W/m2的低辐射强迫情景下,CO2排放强度到2100年都呈现负值。其中,南美洲的负排放最强,2100年在SSP5-3.4情景下该地区的排放强度为-0.3 kg m-2 a-1。最后,对比东亚和南亚排放强度的逐年变化可以发现,在各情景所描述的未来发展过程中,东亚的减排行动的成效都要好于南亚。  相似文献   

20.
中国2050年碳排放情景比较   总被引:2,自引:0,他引:2       下载免费PDF全文
从方法论、情景设置、宏观参数、能源消费量、能源消费结构、碳排放量、碳排放强度等几个方面,对国内外有代表性的6个中国碳排放情景研究进行了比较。在维持现有政策框架的基准情景下,尽管中国未来的能源结构持续优化,碳排放强度持续下降,但中国2050年的二氧化碳排放量将显著增长,排放量为119亿~162亿t。通过一定的低碳发展政策,在比较情景下,能源结构的优化和碳排放强度的下降更加明显,2050年碳排放量显著下降,排放量为43亿~95亿t。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号